CN108461593B - 具有纳米级二氧化硅光栅钝化层的GaN基发光二极管及其加工方法 - Google Patents

具有纳米级二氧化硅光栅钝化层的GaN基发光二极管及其加工方法 Download PDF

Info

Publication number
CN108461593B
CN108461593B CN201810253009.1A CN201810253009A CN108461593B CN 108461593 B CN108461593 B CN 108461593B CN 201810253009 A CN201810253009 A CN 201810253009A CN 108461593 B CN108461593 B CN 108461593B
Authority
CN
China
Prior art keywords
layer
sio
electrode
gan
type gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810253009.1A
Other languages
English (en)
Other versions
CN108461593A (zh
Inventor
周圣军
赵杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Zhao Chi Semiconductor Co Ltd
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201810253009.1A priority Critical patent/CN108461593B/zh
Publication of CN108461593A publication Critical patent/CN108461593A/zh
Application granted granted Critical
Publication of CN108461593B publication Critical patent/CN108461593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种具有纳米级SiO2光栅钝化层的GaN基发光二极管及其加工方法,包括衬底和外延层,外延层包括AlN成核层、GaN缓冲层、n型GaN层、InGaN/GaN超晶格层、In0.16Ga0.84N多量子阱层、p‑AlGaN/GaN电子阻挡层和p型GaN层,刻蚀部分外延层至n型GaN层,外延层未刻蚀部分形成梳齿型凸起结构,刻蚀部分形成与之匹配的梳齿型凹槽结构;在p型GaN层上设置ITO层、SiO2钝化层和P电极,在刻蚀暴露出的n型GaN层上设置N电极,N电极与n型GaN层之间沉积有SiO2钝化层,凸起结构侧壁上沉积有SiO2钝化层;其中,ITO层和SiO2钝化层具有沿P电极或N电极的形状均匀分布的图形化通孔结构。本发明一方面对发光二极管表面进行保护,并限制漏电流的产生,同时对电流进行扩展,减小电流集聚,提高了出光效率。

Description

具有纳米级二氧化硅光栅钝化层的GaN基发光二极管及其加 工方法
技术领域
本发明属于半导体技术领域,涉及一种具有纳米级SiO2光栅钝化层的高效率GaN基发光二极管结构及其加工方法。
背景技术
GaN基发光二极管,尤其是蓝光发光二极管,因其具有发光效率高,使用寿命长特性,广泛应用于各种器件中,涉及照明领域、全色显示以及应用于生物、医疗、化工和光通信等领域,具有极大的市场潜力。而对其发光效率的提高和使用寿命的延长更是一个不断研究的话题。
因其GaN(n=2.5),平滑的ITO(n=2.08)和环境空气(n=1)之间的界面处发生的全内反射限制了光提取效率,有意粗糙化LED表面可以提高LED的光提取效率。
GaN基发光二极管,在其对外延片加工处理后,需要在芯片表面生长一层钝化层,防止芯片受到杂质的影响,减小漏电流和非辐射复合中心,同时隔绝p、N电极,防止短路。
GaN基发光二极管,一般常用为水平和倒装结构。在本研究中的水平结构发光二极管,因其电流在水平方向扩展受到台阶的阻碍,造成电流在电极附近聚集,热量集中并且复合产生的光子易被电极吸收,导致发光二极管外量子效率和寿命大大减小。
发明内容
为克服现有技术的不足,本发明的目的旨在提出一种高光效的GaN基发光二极管结构,并同时提供一种GaN基发光二极管制作方法,使其改善电流扩展同时提高发光二极管的发光效率。
本发明上述第一个目的,其技术解决方法是:
一种具有纳米级SiO2光栅钝化层的GaN基发光二极管,包括图形化蓝宝石衬底和外延层,所述外延层包括依次层状叠加在蓝宝石衬底上的AlN成核层、GaN缓冲层、n型GaN层、InGaN/GaN超晶格层、In0.16Ga0.84N多量子阱层、p-AlGaN/GaN电子阻挡层和p型GaN层,刻蚀部分外延层至n型GaN层,外延层未刻蚀部分形成梳齿型凸起结构,刻蚀部分形成与之匹配的梳齿型凹槽结构;在p型GaN层上设置ITO层、SiO2钝化层和P电极,在刻蚀暴露出的n型GaN层上设置N电极,N电极与n型GaN层之间沉积有SiO2钝化层,凸起结构侧壁上沉积有SiO2钝化层;其中,所述ITO层上具有沿P电极形状均匀分布且垂直于ITO层的图形化通孔结构,所述SiO2钝化层具有沿P电极和N电极的形状均匀分布且垂直于SiO2钝化层的纳米级图形化通孔结构。
所述ITO层上的图形化通孔结构为圆柱通孔。
所述SiO2钝化层上的纳米级图形化通孔结构为圆柱、矩形或三角形通孔,通孔尺寸量级为亚波长级。
上述具有纳米级SiO2光栅钝化层的GaN基发光二极管的加工方法,包括以下步骤:
(一)在衬底上生长外延层,然后利用ICP刻蚀部分外延层,暴露出n型GaN层,外延层未刻蚀部分形成梳齿型凸起结构,刻蚀部分形成与之匹配的梳齿型凹槽结构;
(二)在p型GaN层上沉积ITO层,利用光刻和ICP技术在ITO层上刻蚀出图形化通孔结构;
(三)在整体芯片表面沉积SiO2钝化层后,利用纳米压印技术在SiO2钝化层上刻蚀出图形化通孔结构;
(四)使用电子束蒸镀技术在SiO2钝化层表面沿图形化通孔结构分别制备P电极和N电极。
步骤(一)中,所述的衬底为图形化蓝宝石衬底,使用MOCVD生长外延层,其结构包括依次层状叠加在蓝宝石衬底上的AlN成核层、GaN缓冲层、n型GaN层、InGaN/GaN超晶格层、In0.16Ga0.84N多量子阱、p-AlGaN/GaN电子阻挡层、p型GaN层。
步骤(二)中,在p型GaN上使用电子束蒸镀技术沉积ITO层,复合利用光刻和ICP技术在ITO层上刻蚀出圆柱形通孔,沿P电极形状均匀分布在ITO层。
步骤(三)中,利用PECVD沉积SiO2钝化层,然后复合利用纳米压印技术、RIE刻蚀和等离子体灰化机在SiO2钝化层上刻蚀出通孔,所述通孔沿P电极和N电极形状均匀分布在SiO2钝化层中。
上述加工方法,具体包括以下步骤:
(1)提供一层图形化蓝宝石衬底;
(2)利用反应磁控溅射技术溅射一层AlN成核层;
(3)生长GaN缓冲层;
(4)生长n型GaN层;
(5)生长InGaN/GaN超晶格层;
(6)生长In0.16Ga0.84N多量子阱层;
(7)生长p-AlGaN/GaN电子阻挡层;
(8)生长p型GaN层;
(9)在生长好的外延片上旋涂光刻胶,再进行热回流工艺,使得光刻胶形成梳齿型结构;
(10)进行ICP刻蚀,暴露出n型GaN层;
(11)去除p型GaN层表面光刻胶;
(12)利用电子束蒸发技术在p型GaN层上沉积ITO层;
(13)利用光刻和ICP刻蚀ITO层;
(14)去除ITO层表面光刻胶;
(15)利用PECVD技术沉积SiO2钝化层;
(16)利用纳米压印技术在SiO2钝化层上制备纳米级圆柱通孔;
(17)蒸镀Cr/Pt/Au作为P电极和N电极。
所述步骤(13)中,在ITO层上刻蚀的图形为沿P电极形状均匀排列的圆柱通孔阵列:圆柱的直径为8-10μm,深度为230nm,间隔为25-27μm。
所述的步骤(16)具体为:利用纳米压印技术在SiO2钝化层上制备沿P电极、N电极均匀排列的纳米级圆柱通孔阵列,其中,圆柱的直径为450nm,深度为200nm,间隔为23-25μm。
本发明提出在原有的ITO层上使用圆柱形通孔,沿P电极、N电极形状均匀分布在ITO层,使得光滑的ITO层粗化后,打破原有的全反射界面,使光子出射概率提高,进而提高出光效率。这是区别现有GaN基发光二极管创新点之一
本发明提出在原有的SiO2钝化层上使用圆柱形通孔结构,首先钝化层防止芯片受到杂质的影响,减小漏电流和非辐射复合中心,同时隔绝P、N电极;再者纳米级的圆孔均匀分布在对应于P、N电极的ITO层上,起着光栅的作用,虽然减少了传统无孔的角度区域的出光率,但扩展了出光的角度区域,进而从总体上提高了发光二极管的发光效率;最后位于ITO层和电极之间的SiO2钝化层,通过ITO层孔沉积在p-GaN上,充当着电流阻挡层对电流扩展,使电流均匀分布在发光二极管内部,同时减少电极对光子的吸收。这是区别现有GaN基发光二极管创新点之二。
本发明一方面对发光二极管表面进行保护,并限制漏电流的产生,另一方面对电流进行扩展,减小电流集聚,最后图形化的ITO层和SiO2光栅结构钝化层有效提高了发光二极管出光效率。
附图说明
图1为本发明GaN基发光二极管的结构示意图;
图2为本发明GaN基发光二极管的制造流程图;
图3为本发明GaN基发光二极管的俯视示意图;
图4为本发明的GaN基发光二极管与传统的GaN基发光二极管光输出功率对比图。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明。
在本实施例中,GaN基发光二极管,如图1所示,其包括图形化蓝宝石衬底1,AlN成核层2、GaN缓冲层3、n型GaN层4、InGaN/GaN超晶格层5,In0.16Ga0.84N多量子阱层6,p-AlGaN/GaN电子阻挡层7,p型GaN层8,ITO层9,SiO2钝化层10,P电极和N电极。
本发明发光二极管制造流程图参照图2,具体实施步骤如下:
(1)将清洗干净的c面图形化蓝宝石衬底1放置在可旋转的基板上;
(2)将反应室抽成2.5×10-3Pa的真空室,通入H2
(3)在温度为1010℃的条件下,生长一层25nm厚的AlN成核层;
(4)在温度为525℃的条件下,生长一层3μm厚的GaN缓冲层;
(5)在温度为1010℃的条件下,生长2.5μm的n-GaN层,Si的掺杂浓度为1×1019/cm-3
(6)通入N2
(7)生长500nm厚InGaN/GaN超晶格层,InGaN和GaN的生长温度分别控制在750℃和800℃;
(8)生长12周期In0.16Ga0.84N/GaN多量子阱层,其中In0.16Ga0.84N层的厚度为3nm,GaN层厚度为12nm,InGaN和GaN的生长温度分别控制在730℃和820℃;
(9)通入N2和H2
(10)在温度为900℃的条件下,生长一层48nm厚的p-AlGaN/GaN电子阻挡层;
(11)在温度为945℃的条件下,生长一层50nm厚的p型GaN层,p-GaN中Mg的掺杂浓度为1×1020/cm-3
(12)在N2气氛、550℃温度条件下,退火20min,外延生长过程结束;
(13)外延片上旋涂光刻胶,再进行热回流工艺。光刻胶的厚度为1-2μm,匀胶速度为:低速下900r/min,持续10s,后转入高速:4000r/min持续50s,涂后在90℃的热板上烘烤1min;
(14)外延片光刻,参数如下:光刻时间:14s,设备电压:60v,电流:1mA;
(15)ICP刻蚀外延片,刻蚀到n型GaN层,刻蚀的气压:10mTorr;刻蚀的时间:10min;刻蚀的深度:1μm;刻蚀的气体为Cl2、BCl3,刻蚀的速率比:1:3;
(16)超净间去胶,利用浸入丙酮溶液的外延片放入超声清洗机中,调节参数:超声的频率为20Hz,时间为1min,并用酒精和去离子水清洗,重复此步骤,直至清洗干净;此时,外延层未刻蚀部分形成梳齿型凸起结构,刻蚀部分形成与之匹配的梳齿型凹槽结构;
(17)电子束蒸镀在p型GaN上沉积ITO层,ITO层的厚度为230nm;
(18)ITO层上匀涂光刻胶,光刻胶的厚度为1-2μm,匀胶速度为:低速下900r/min持续10s,后转入高速:4000r/min,持续50s,涂后在90℃的热板上烘烤1min;
(19)ITO层光刻,参数如下:光刻时间:14s;设备电压:60v;电流:1mA;掩膜版的图形沿对应于P电极形状均匀分布的的圆孔结构;
(20)ICP刻蚀ITO层,刻蚀的压强:10mTorr;刻蚀的时间:10min;刻蚀的深度:1μm;刻蚀的气体为Cl2、BCl3,刻蚀的速率比:1:3;
(21)超净间去胶,利用浸入丙酮溶液的外延片放入超声清洗机中,调节参数:超声的频率为20Hz,时间为1min,并用酒精和去离子水清洗,重复此步骤,直至清洗干净;
(22)PECVD沉积SiO2钝化层,反应气体(N2O/10%SiH4)比例为33.3,射频功率为50W,温度为300℃,腔体压强为850mTorr时,SiO2薄膜沉积速率约为640A/min,沉积厚度为200nm的SiO2钝化层;
(23)SiO2层上匀涂光刻胶,压印胶类型为mr-17010E,转速为2000r/min持续30s,厚度为110nm,涂后在140℃的热板上烘烤2min;
(24)温度升高至130℃(压印胶玻璃化温度Tg=60℃),压印胶由固态变为烙融态,使用带有圆柱形凸起结构的Si模板以15KN的压力按压样品,保持25min,温度降至45℃,压印胶结构凝固变硬,活塞退回原位,释放压力;
(25)RIE去除残留压印胶,参数为:刻蚀压强:20mTorr;刻蚀功率:20W;刻蚀气体及流速:O2为2sccm/s和N2为20sccm/s;刻蚀速率:0.74nm/s;
(26)RIE刻蚀SiO2钝化层,参数为:刻蚀压强:50mTorr;刻蚀功率:45W;刻蚀气体及流速:CF4为14sccm/s和CHF3为26sccm/s;刻蚀速率:0.58nm/s;
(27)等离子体灰化机去除残余压印胶,参数为:刻蚀压强:1.2mbar;刻蚀功率:600W;刻蚀气体及流速:O2为400sccm/s和N2为70sccm/s;
(28)残余的SiO2钝化层用SiO2刻蚀药剂去除,SiO2刻蚀剂由体积比为1:14的SiOEtch和去离子水组成,SiOEtch用润湿剂稀释的12.5%氢氟酸缓冲液,刻蚀速率为6nm/min;
(29)电子束蒸镀在ITO层上的SiO2钝化层上沉积P电极,其成分为Cr/Pt/Au;
(30)电子束蒸镀在沉积在n-GaN层上的SiO2钝化层上沉积N电极,其成分为Cr/Pt/Au。
由本发明的GaN基发光二极管与传统的GaN基发光二极管光输出功率对比图(图4)可以看出,本发明制备的GaN基发光二极管在同样电流下的光输出功率比传统GaN基发光二极管高很多。

Claims (9)

1.一种具有纳米级SiO2光栅钝化层的GaN基发光二极管,包括图形化蓝宝石衬底和外延层,其特征在于:所述外延层包括依次层状叠加在蓝宝石衬底上的AlN成核层、GaN缓冲层、n型GaN层、InGaN/GaN超晶格层、In0.16Ga0.84N多量子阱层、p-AlGaN/GaN电子阻挡层和p型GaN层,刻蚀部分外延层至n型GaN层,外延层未刻蚀部分形成梳齿型凸起结构,刻蚀部分形成与之匹配的梳齿型凹槽结构;在p型GaN层上设置ITO层、SiO2钝化层和P电极,在刻蚀暴露出的n型GaN层上设置N电极,N电极与n型GaN层之间沉积有SiO2钝化层,凸起结构侧壁上沉积有SiO2钝化层;其中,所述ITO层上具有沿P电极形状均匀分布且垂直于ITO层的第一图形化通孔结构,所述第一图形化通孔结构为直径为8-10μm的圆柱通孔;所述SiO2钝化层具有沿P电极和N电极的形状均匀分布且垂直于SiO2钝化层的纳米级的第二图形化通孔结构,所述第二图形化通孔结构的通孔尺寸量级为亚波长级。
2.根据权利要求1所述的具有纳米级SiO2光栅钝化层的GaN基发光二极管,其特征在于:所述SiO2钝化层上的纳米级的第二图形化通孔结构为圆柱、矩形或三角形通孔。
3.一种权利要求1所述的具有纳米级SiO2光栅钝化层的GaN基发光二极管的加工方法,其特征在于,包括以下步骤:
(一)在衬底上生长外延层,然后利用ICP刻蚀部分外延层,暴露出n型GaN层,外延层未刻蚀部分形成梳齿型凸起结构,刻蚀部分形成与之匹配的梳齿型凹槽结构;
(二)在p型GaN层上沉积ITO层,利用光刻和ICP技术在ITO层上刻蚀出第一图形化通孔结构;
(三)在整体芯片表面沉积SiO2钝化层后,利用纳米压印技术在SiO2钝化层上刻蚀出第二图形化通孔结构;
(四)使用电子束蒸镀技术在SiO2钝化层表面沿第二图形化通孔结构分别制备P电极和N电极。
4.根据权利要求3所述的加工方法,其特征在于:步骤(一)中,所述的衬底为图形化蓝宝石衬底,使用MOCVD生长外延层,其结构包括依次层状叠加在蓝宝石衬底上的AlN成核层、GaN缓冲层、n型GaN层、InGaN/GaN超晶格层、In0.16Ga0.84N多量子阱、p-AlGaN/GaN电子阻挡层、p型GaN层。
5.根据权利要求3所述的加工方法,其特征在于:步骤(二)中,在p型GaN上使用电子束蒸镀技术沉积ITO层,复合利用光刻和ICP技术在ITO层上刻蚀出圆柱形通孔,沿P电极形状均匀分布在ITO层。
6.根据权利要求3所述的加工方法,其特征在于:步骤(三)中,利用PECVD沉积SiO2钝化层,然后复合利用纳米压印技术、RIE刻蚀和等离子体灰化机在SiO2钝化层上刻蚀出通孔,所述通孔沿P电极和N电极形状均匀分布在SiO2钝化层中。
7.根据权利要求3所述的加工方法,其特征在于:具体包括以下步骤:
(1)提供一层图形化蓝宝石衬底;
(2)利用反应磁控溅射技术溅射一层AlN成核层;
(3)生长GaN缓冲层;
(4)生长n型GaN层;
(5)生长InGaN/GaN超晶格层;
(6)生长In0.16Ga0.84N多量子阱层;
(7)生长p-AlGaN/GaN电子阻挡层;
(8)生长p型GaN层;
(9)在生长好的外延片上旋涂光刻胶,再进行热回流工艺;
(10)进行ICP刻蚀,暴露出n型GaN层;
(11)去除p型GaN层表面光刻胶;
(12)利用电子束蒸发技术在p型GaN层上沉积ITO层;
(13)利用光刻和ICP刻蚀ITO层;
(14)去除ITO层表面光刻胶;
(15)利用PECVD技术沉积SiO2钝化层;
(16)利用纳米压印技术在SiO2钝化层上制备纳米级圆柱通孔;
(17)蒸镀Cr/Pt/Au作为P电极和N电极。
8.根据权利要求7所述的加工方法,其特征在于:所述步骤(13)中,在ITO层上刻蚀的图形为沿P电极形状均匀排列的圆柱通孔阵列:圆柱的直径为8-10μm,深度为230nm,间隔为25-27μm。
9.根据权利要求7所述的加工方法,其特征在于:所述的步骤(16)具体为:利用纳米压印技术在SiO2钝化层上制备沿P电极、N电极均匀排列的纳米级圆柱通孔阵列,其中,圆柱的直径为450nm,深度为200nm,间隔为23-25μm。
CN201810253009.1A 2018-03-26 2018-03-26 具有纳米级二氧化硅光栅钝化层的GaN基发光二极管及其加工方法 Active CN108461593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810253009.1A CN108461593B (zh) 2018-03-26 2018-03-26 具有纳米级二氧化硅光栅钝化层的GaN基发光二极管及其加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810253009.1A CN108461593B (zh) 2018-03-26 2018-03-26 具有纳米级二氧化硅光栅钝化层的GaN基发光二极管及其加工方法

Publications (2)

Publication Number Publication Date
CN108461593A CN108461593A (zh) 2018-08-28
CN108461593B true CN108461593B (zh) 2019-10-11

Family

ID=63236512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810253009.1A Active CN108461593B (zh) 2018-03-26 2018-03-26 具有纳米级二氧化硅光栅钝化层的GaN基发光二极管及其加工方法

Country Status (1)

Country Link
CN (1) CN108461593B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200091388A1 (en) * 2018-09-19 2020-03-19 Vuereal Inc. Highly efficient microdevices
CN111129257B (zh) * 2019-12-30 2021-10-08 广东德力光电有限公司 一种紫外高反射率的复合电极及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851946A (zh) * 2015-05-27 2015-08-19 合肥彩虹蓝光科技有限公司 一种高提取外量子效率的led芯片制造方法
CN107331736A (zh) * 2016-04-28 2017-11-07 中国科学院物理研究所 具有改善性能的led器件及其制造方法
CN107808913A (zh) * 2017-10-27 2018-03-16 江西乾照光电有限公司 一种发光二极管及制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI437738B (zh) * 2010-10-06 2014-05-11 Huga Optotech Inc 半導體發光元件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851946A (zh) * 2015-05-27 2015-08-19 合肥彩虹蓝光科技有限公司 一种高提取外量子效率的led芯片制造方法
CN107331736A (zh) * 2016-04-28 2017-11-07 中国科学院物理研究所 具有改善性能的led器件及其制造方法
CN107808913A (zh) * 2017-10-27 2018-03-16 江西乾照光电有限公司 一种发光二极管及制作方法

Also Published As

Publication number Publication date
CN108461593A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
TWI647335B (zh) 利用化學腐蝕的方法剝離生長襯底的方法
CN101702419B (zh) 一种GaN基LED芯片结构中p-GaN层或ITO层的表面粗化方法
CN109119436B (zh) 表面粗化的纳米孔led阵列芯片及其制备方法
US20130005065A1 (en) Solid state lighting devices with cellular arrays and associated methods of manufacturing
US20070246700A1 (en) Light Emitting Device and Method of Manufacturing the Same
CN104157765B (zh) 一种半导体发光器件及其制作方法
CN105185883A (zh) 侧壁粗化的AlGaInP基LED及其制造方法
CN101345274A (zh) 一种利用图形化衬底提高GaN基LED发光效率的方法
CN101009344A (zh) 蓝宝石衬底粗糙化的发光二极管及其制造方法
CN105023984B (zh) 一种基于GaN厚膜的垂直结构LED芯片的制备方法
CN104037293B (zh) 一种生长在Si图形衬底上的LED外延片及其制备方法
JP2008047860A (ja) 表面凹凸の形成方法及びそれを利用した窒化ガリウム系発光ダイオード素子の製造方法
CN108878602A (zh) 一种三基色垂直结构微型led芯片制造与转印方法
JP2007305909A (ja) 窒化ガリウム系化合物半導体の製造方法及び発光素子の製造方法
CN102522467A (zh) 一种蓝宝石衬底上亚微米级的图形的制备方法
CN108461593B (zh) 具有纳米级二氧化硅光栅钝化层的GaN基发光二极管及其加工方法
CN203910840U (zh) 一种生长在Si图形衬底上的LED外延片
JP4889361B2 (ja) 半導体発光素子の製造方法
JP2006261659A (ja) 半導体発光素子の製造方法
CN208861987U (zh) 表面粗化的纳米孔led阵列芯片
CN106298450B (zh) 一种纳米级图形化蓝宝石衬底及其制备方法和应用
CN104638081A (zh) 基于晶硅光伏技术的硅基GaN发光器件及制备方法
CN104465899A (zh) 一种led垂直结构的制备方法
CN104465900A (zh) 一种规整排列纳米粗化蓝宝石衬底及制备方法
CN115020565B (zh) 复合图形化衬底的制备方法及具有空气隙的外延结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220719

Address after: 330000 No. 1717, Tianxiang North Avenue, Nanchang high tech Industrial Development Zone, Nanchang City, Jiangxi Province

Patentee after: JIANGXI ZHAOCHI SEMICONDUCTOR Co.,Ltd.

Address before: 430072 Hubei Province, Wuhan city Wuchang District of Wuhan University Luojiashan

Patentee before: WUHAN University

TR01 Transfer of patent right