CN108452803B - 一种Nb-Rh共掺二氧化钛光催化剂及其制备方法和用途 - Google Patents

一种Nb-Rh共掺二氧化钛光催化剂及其制备方法和用途 Download PDF

Info

Publication number
CN108452803B
CN108452803B CN201710097479.9A CN201710097479A CN108452803B CN 108452803 B CN108452803 B CN 108452803B CN 201710097479 A CN201710097479 A CN 201710097479A CN 108452803 B CN108452803 B CN 108452803B
Authority
CN
China
Prior art keywords
catalyst
ethanol solution
gel
rhodium chloride
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710097479.9A
Other languages
English (en)
Other versions
CN108452803A (zh
Inventor
郭旺
黄集权
李国京
江亚彬
薛垂兵
黄秋凤
兰海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN201710097479.9A priority Critical patent/CN108452803B/zh
Publication of CN108452803A publication Critical patent/CN108452803A/zh
Application granted granted Critical
Publication of CN108452803B publication Critical patent/CN108452803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6484Niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种多用途Nb‑Rh共掺二氧化钛光催化剂及其制备方法和用途,所述催化剂通过Nb和Rh对TiO2进行掺杂改性合成。掺杂改性合成的Ti1‑x‑yNbxRhyO2催化剂具有极好的光催化效应,主要是针对光催化裂解水和光催化裂解有机物。改性后的Ti1‑x‑yNbxRhyO2维持了TiO2原有的化学稳定性。根据这些特性,该催化剂在能源和环境领域具有较好的应用前景。

Description

一种Nb-Rh共掺二氧化钛光催化剂及其制备方法和用途
技术领域
本发明涉及一种光催化裂解水制氢和光催化裂解有机物催化剂及其制备方法和应用,涉及半导体光催化技术领域,具体涉及二氧化钛光催化材料技术领域。
背景技术
随着石油、煤炭等传统化石能源的逐渐枯竭和环境问题的日益恶化,以化石能源为基础的传统能源结构体系正面临着前所未有的危机与挑战。氢气具有高的能量密度、优异的燃烧性能、清洁无污染等优点,是传统化石能源的最佳可替代绿色能源。然而,氢能的利用很大程度上取决于制氢技术工艺的发展,目前工业制氢工艺主要是石化催化裂化及天然气蒸汽重整制氢,该工艺从环境以及能量综合利用的角度来考虑并不符合“绿色可持续发展”的发展需求。近年来,随着新型技术和材料的不断发展和电网系统的不断优化与升级,光解水制氢技术的优势被不断放大,甚至被许多科学家与企业家们誉为“最理想的工业制氢方法”,而该技术的最核心问题是高效、稳定、廉洁的制氢光催化剂的开发。
二氧化钛成本低,化学性质稳定且无污染,被认为是较有前景的光催化剂。然而,二氧化钛的价带较宽对光的吸收利用较为有限,限制了其在光催化领域的应用。
发明内容
本发明的目的是针对目前光催化领域存在的催化剂催化效率低的问题,提供一种Nb-Rh共掺杂TiO2催化剂,其化学组成可表示为Ti1-x-yNbxRhyO2,其中,x的范围为0<x≤0.1,y的范围为0<y≤0.1。优选地,1×10-5≤x≤0.08,1×10-5≤y≤0.08;还优选地,1×10-4≤x≤0.06,1×10-4≤y≤0.06;进一步优选地,5×10-4≤x≤0.05,5×10-4≤y≤0.06。
作为示例性的实例,所述催化剂的化学组成可表示为:Ti0.998Nb0.001Rh0.001O2;Ti0.949Nb0.05Rh0.001O2;Ti0.949Nb0.001Rh0.05O2;Ti0.996Nb0.002Rh0.002O2;Ti0.98Nb0.01Rh0.01O2;Ti0.90Nb0.05Rh0.05O2;Ti0.97Nb0.02Rh0.01O2;Ti0.999Nb0.0005Rh0.0005O2;Ti0.97Nb0.015Rh0.015O2;Ti0.94Nb0.03Rh0.03O2;Ti0.99Nb0.005Rh0.005O2;Ti0.96Nb0.02Rh0.02O2
根据本发明,当所述催化剂用于光解水产氢时,优选地,x、y为0.002≤x=y≤0.02,进一步优选地,x、y为0.01。
根据本发明,优选地,所述催化剂为掺杂型纳米材料,微结构为零维纳米颗粒。
根据本发明,所述纳米颗粒平均粒度可以为10-55nm,优选为30-50nm,进一步优选地,所述平均粒度为40nm。
根据本发明,优选地,所述催化剂为金红石相与锐钛矿相混合晶相,进一步优选地,以金红石相为主要晶相。
根据本发明,所述催化剂可循环使用15次以上,其催化活性没有衰减,具体的,所述催化剂可循环使用20次其活性没有衰减。
本发明所述催化剂具有较高的催化活性,作为实例,Ti0.98Nb0.01Rh0.01O2的光解水产氢率高达1.62mmol/g.h,为同等条件下制备的TiO2的产氢率(0.039mmol/g.h)的41倍。
本发明进一步提供上述Nb-Rh共掺杂TiO2催化剂的制备方法,通过溶胶-凝胶法制备。
根据本发明,所述方法包括以下步骤:
(1)将盐酸,五氯化铌乙醇溶液,氯化铑乙醇溶液和钛酸丁酯依次加入到乙醇中,搅拌形成透明溶液;
(2)然后加入水,继续搅拌形成溶胶,溶胶经过静置老化直至形成凝胶;
(3)将上述凝胶置于烘箱干燥,之后放入马弗炉中煅烧,获得所述催化剂。
根据本发明,步骤(1)中,所述盐酸的质量分数可以为20%-35%,优选质量分数为35%的浓盐酸;
所述五氯化铌乙醇溶液的浓度可以为0.001-0.2M,优选为0.01-0.1M,还优选0.02-0.08M,例如为0.05M;
所述氯化铑乙醇溶液的浓度可以为0.001-0.2M,优选为0.005-0.1M,还优选0.009-0.05M,例如为0.01M;
根据本发明,步骤(1)中,所述盐酸的体积与五氯化铌乙醇溶液中五氯化铌,氯化铑乙醇溶液中氯化铑,钛酸丁酯的摩尔比可以为(0.02-1.5mL):(1×10-7-0.001mol):(1×10-7-0.001mol):0.01mol,优选为(0.1-1.0mL):(1×10-6-0.001mol):(1×10-6-0.001mol):0.01mol,作为示例性的实例,为0.3mL:(5×10-6-5×10-4mol):(5×10-6-5×10-4mol):0.01mol;
根据本发明,步骤(1)中,所述乙醇优选为无水乙醇;
优选地,所述乙醇的体积与钛酸丁酯的摩尔量的比可以为(5-40mL):0.01mol,优选为(10-15mL):0.01mol。
根据本发明,步骤(2)中,所述水优选为蒸馏水。
根据本发明,步骤(3)中,所述干燥温度为60℃以上,作为示例性的实例,干燥温度为70℃;
优选地,所述干燥时间为15h以上,例如可以为20h;
优选地,所述煅烧的温度可以为400℃以上,例如可以为450℃,550℃,900℃或1200℃;
优选地,所述煅烧时间可以为1h以上,例如可以为2h,3h,4h或6h。
本发明还提供如上所述催化剂用于光解水产氢的用途。
本发明还提供如上所述催化剂用于光催化裂解有机物的用途,例如可催化裂解甲基橙、亚甲基蓝、罗丹明B,优选为用于催化亚甲基蓝分解。
本发明的有益效果:
1.本发明的催化剂与普通的光催化剂二氧化钛相比,具有较高的光催化产氢活性,且其制备方法简单,易于大规模生产。
2.本发明催化剂可重复利用,循环使用多次(如至少20次)未发现其催化效果有明显下降现象。
3.本发明的催化剂具有多种用途,一方面可以用作光解水产氢催化剂,另一方面可用作催化裂解有机物,例如亚甲基蓝。当本发明的催化剂用作光解水产氢催化剂时,其催化产氢率可高达1.62mmol/g.h,为同等条件下制备的TiO2的产氢率(0.039mmol/g.h)的41倍;
附图说明
图1为实施例1-12中不同煅烧条件下所得催化剂Ti1-x-yNbxRhyO2纳米颗粒的XRD图。其中各附图标记含义如下:(a)Ti0.998Nb0.001Rh0.001O2;(b)Ti0.949Nb0.05Rh0.001O2;(c)Ti0.949Nb0.001Rh0.05O2;(d)Ti0.996Nb0.002Rh0.002O2;(e)Ti0.98Nb0.01Rh0.01O2;(f)Ti0.90Nb0.05Rh0.05O2;(g)Ti0.97Nb0.02Rh0.01O2;(h)Ti0.999Nb0.0005Rh0.0005O2;(i)Ti0.97Nb0.015Rh0.015O2;(j)Ti0.99Nb0.005Rh0.005O2;(k)Ti0.94Nb0.03Rh0.03O2;(l)Ti0.96Nb0.02Rh0.02O2
图2为实施例4中Ti0.996Nb0.002Rh0.002O2的TEM图谱。
图3为对比例1、实施例4、实施例5、实施例6、实施例8以及实施例11中催化剂Ti1-x- yNbxRhyO2的紫外-可见光吸收谱图。其中各附图标记含义如下:(s)TiO2;(d)Ti0.996Nb0.002Rh0.002O2;(e)Ti0.98Nb0.01Rh0.01O2;(f)Ti0.90Nb0.05Rh0.05O2;(h)Ti0.999Nb0.0005Rh0.0005O2;(j)Ti0.99Nb0.005Rh0.005O2
图4为经550℃煅烧3h后的Ti1-x-yNbxRhyO2(0≤x=y≤0.05)纳米粉的产氢率随掺杂量(x)变化图。
图5为对比例1、实施例1、实施例5、实施例9、实施例10、实施例12中催化剂Ti1-x- yNbxRhyO2纳米粉光催化降解有机物亚甲基蓝的性能测试。其中,各附图标记含义如下:(s)TiO2;(a)Ti0.998Nb0.001Rh0.001O2;(e)Ti0.98Nb0.01Rh0.01O2;(i)Ti0.97Nb0.015Rh0.015O2;(k)Ti0.94Nb0.03Rh0.03O2;(l)Ti0.96Nb0.02Rh0.02O2
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外,应理解,在阅读了本发明所记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的范围。
本发明通过下述实施例进行详细说明。但本领域技术人员了解,下述实施例不是对本发明保护范围的限制。任何在本发明基础上做出的改进和变化,都在本发明的保护范围之内。
除非另有说明,实施例中使用的原料和试剂均为市售物质。
实施例样品的XRD谱图是使用miniflex-600粉末衍射仪进行表征。
实施例样品的透射电镜是使用扫描透射电子显微镜Tecnai G2F20进行表征。
实施例样品的紫外可见吸收光谱是使用Lambda950紫外-可见分光光度计进行表征。
实施例样品的催化光解水产氢是使用北京中教金源的光催化系统进行测试。
对比例1
将0.3mL盐酸和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于550℃煅烧2h,获得TiO2纳米粉。
实施例1
将0.3mL质量分数为35%的盐酸,0.2mL 0.05M五氯化铌乙醇溶液,1mL 0.01M氯化铑乙醇溶液和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于450℃煅烧2h,获得Ti0.998Nb0.001Rh0.001O2纳米粉。
实施例2
将0.3mL质量分数为35%的盐酸,10.5mL 0.05M五氯化铌乙醇溶液,1.1mL 0.01M氯化铑乙醇溶液和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于450℃煅烧2h,获得Ti0.949Nb0.05Rh0.001O2纳米粉。
实施例3
将0.3mL质量分数为35%的盐酸,0.2mL 0.05M五氯化铌乙醇溶液,53mL 0.01M氯化铑乙醇溶液和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于450℃煅烧2h,获得Ti0.949Nb0.001Rh0.05O2纳米粉。
实施例4
将0.3mL质量分数为35%的盐酸,0.4mL 0.05M五氯化铌乙醇溶液,2mL 0.01M氯化铑乙醇溶液和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于550℃煅烧3h,获得Ti0.996Nb0.002Rh0.002O2纳米粉。
实施例5
将0.3mL质量分数为35%的盐酸,2mL 0.05M五氯化铌乙醇溶液,10mL 0.01M氯化铑乙醇溶液和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于550℃煅烧3h,获得Ti0.98Nb0.01Rh0.01O2纳米粉。
实施例6
将0.3mL质量分数为35%的盐酸,11mL 0.05M五氯化铌乙醇溶液,56mL 0.01M氯化铑乙醇溶液和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于550℃煅烧3h,获得Ti0.90Nb0.05Rh0.05O2纳米粉。
实施例7
将0.3mL质量分数为35%的盐酸,4mL 0.05M五氯化铌乙醇溶液,10mL 0.01M氯化铑乙醇溶液和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于900℃煅烧6h,获得Ti0.97Nb0.02Rh0.01O2纳米粉。
实施例8
将0.3mL质量分数为35%的盐酸,0.1mL 0.05M五氯化铌乙醇溶液,0.5mL 0.01M氯化铑乙醇溶液和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于1200℃煅烧4h,获得Ti0.999Nb0.0005Rh0.0005O2纳米粉。
实施例9
将0.3mL质量分数为35%的盐酸,3mL 0.05M五氯化铌乙醇溶液,15mL 0.01M氯化铑乙醇溶液和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于1200℃煅烧4h,获得Ti0.97Nb0.015Rh0.015O2纳米粉。
实施例10
将0.3mL质量分数为35%的盐酸,6mL 0.05M五氯化铌乙醇溶液,30mL 0.01M氯化铑乙醇溶液和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于550℃煅烧3h,获得Ti0.94Nb0.03Rh0.03O2纳米粉。
实施例11
将0.3mL质量分数为35%的盐酸,1mL 0.05M五氯化铌乙醇溶液,5mL 0.01M氯化铑乙醇溶液和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于550℃煅烧3h,获得Ti0.99Nb0.005Rh0.005O2纳米粉。
实施例12
将0.3mL质量分数为35%的盐酸,4mL 0.05M五氯化铌乙醇溶液,20mL 0.01M氯化铑乙醇溶液和3.4g钛酸丁酯依次加入到10mL无水乙醇溶液中,搅拌以形成透明溶液,然后慢慢滴加蒸馏水,同时继续搅拌直至形成凝胶。将凝胶于70℃烘箱干燥20h,之后放入马弗炉中于550℃煅烧3h,获得Ti0.96Nb0.02Rh0.02O2纳米粉。
实施例13催化剂催化光解水产氢测试
向石英反应容器中加入10mL甲醇、100mL蒸馏水,分别加入如上实施例1-12的催化剂0.1g,利用机械泵抽真空直至光催化系统真空度达到负的一个大气压并继续抽真空约2h,以除去光解水制氢系统中的空气,打开磁控玻璃气泵促进系统内气体流动使气体分布均匀,用300W氙灯垂直向下照射反应器,维持光催化反应10小时,每隔1h采样一次,通过气相色谱在线检测反应产物中的氢气组分的含量。
测试结果见图4。由图4可见随着Nb和Rh的掺杂量x的增加,催化剂的产氢率升高,当x达到一定值后,随着x的增加,催化剂的产氢率逐渐下降,当x数值在0.005-0.03之间时样品的产氢率较高。
实施例14催化剂催化裂解亚甲基蓝测试
向石英反应器中分别加入0.1g如上对比例1、实施例1、5、9、10、12中的一种催化剂和100mL 5×10-5M亚甲基蓝溶液,开始搅拌。将发射波长为254nm的低压汞灯至于反应器上方,汞灯距离液面约20cm。打开汞灯光源使得紫外光可以垂直照射在液体表面。每隔一段时间,取出5mL溶液,离心,取上层清液,用紫外分光光度计测试并和预测试的标准曲线对照以确定其浓度变化。
测试结果见图5。从图5可见图中对比例1和实施例中所述催化剂都有明显的降解亚甲基蓝的作用,且实施例所述Nb-Rh共掺杂的催化剂的降解效率远高于对比例1催化剂,其中Nb和Rh的掺杂量为0.01时降解效果最佳。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

1.一种Nb-Rh共掺杂TiO2催化剂,其特征在于,所述催化剂的化学组成表示为Ti1-x- yNbxRhyO2,其中,x的范围为0<x≤0.1,y的范围为0<y≤0.1;
所述催化剂为金红石相与锐钛矿相混合晶相;
所述催化剂为掺杂型纳米材料,微结构为零维纳米颗粒;
纳米颗粒平均粒度为10-55nm。
2.如权利要求1所述的Nb-Rh共掺杂TiO2催化剂,其特征在于,1×10-5≤x≤ 0.08,1×10-5≤y≤0.08。
3.如权利要求2所述的Nb-Rh共掺杂TiO2催化剂,其特征在于,1×10-4≤x≤0.06,1×10-4≤y≤0.06。
4.如权利要求3所述的Nb-Rh共掺杂TiO2催化剂,其特征在于,5×10-4≤x≤0.05,5×10-4≤y≤0.06。
5.如权利要求1所述的Nb-Rh共掺杂TiO2催化剂,其特征在于,所述催化剂的化学组成表示为:Ti0.998Nb0.001Rh0.001O2;Ti0.949Nb0.05Rh0.001O2;Ti0.949Nb0.001Rh0.05O2;Ti0.996Nb0.002Rh0.002O2;Ti0.98Nb0.01Rh0.01O2;Ti0.90Nb0.05Rh0.05O2;Ti0.97Nb0.02Rh0.01O2;Ti0.999Nb0.0005Rh0.0005O2;Ti0.97Nb0.015Rh0.015O2;Ti0.94Nb0.03Rh0.03O2;Ti0.99Nb0.005Rh0.005O2;Ti0.96Nb0.02Rh0.02O2
6.如权利要求1所述的Nb-Rh共掺杂TiO2催化剂,其特征在于,当所述催化剂用于光解水产氢时,x、y为0.002≤ x=y ≤ 0.02。
7.如权利要求6所述的Nb-Rh共掺杂TiO2催化剂,其特征在于,纳米颗粒平均粒度为30-50nm。
8.如权利要求1-6任一项所述的Nb-Rh共掺杂TiO2催化剂,其特征在于,所述催化剂以金红石相为主要晶相。
9.一种如权利要求1-8任一项所述催化剂的制备方法,其特征在于,所述催化剂通过溶胶-凝胶法制备,包括以下步骤:
(1)将盐酸,五氯化铌乙醇溶液,氯化铑乙醇溶液和钛酸丁酯依次加入到乙醇中,搅拌形成透明溶液;
(2)然后加入水,继续搅拌形成溶胶,溶胶经过静置老化直至形成凝胶;
(3)将上述凝胶置于烘箱干燥,之后放入马弗炉中煅烧,获得所述催化剂。
10.如权利要求9所述的制备方法,其特征在于,步骤(1)中,所述盐酸的质量分数为20%-35%。
11.如权利要求9所述的制备方法,其特征在于,步骤(1)中,所述五氯化铌乙醇溶液的浓度为0.001-0.2M。
12.如权利要求9所述的制备方法,其特征在于,步骤(1)中,所述氯化铑乙醇溶液的浓度为0.001-0.2M。
13.如权利要求9所述的制备方法,其特征在于,步骤(1)中,所述盐酸的体积与五氯化铌乙醇溶液中五氯化铌,氯化铑乙醇溶液中氯化铑,钛酸丁酯的摩尔比为(0.02-1.5mL):(1×10-7-0.001mol):(1×10-7-0.001mol):0.01mol。
14.如权利要求9所述的制备方法,其特征在于,步骤(1)中,所述乙醇为无水乙醇;
所述乙醇的体积与钛酸丁酯的摩尔量的比为(5-40mL):0.01mol。
15.如权利要求9-14任一项所述的制备方法,其特征在于,步骤(1)中,所述氯化铑乙醇溶液的浓度为0.005-0.1M;
所述盐酸的体积与五氯化铌乙醇溶液中五氯化铌,氯化铑乙醇溶液中氯化铑,钛酸丁酯的摩尔比为(0.1-1.0mL):(1×10-6-0.001mol):(1×10-6-0.001mol):0.01mol;
乙醇的体积与钛酸丁酯的摩尔量的比为(10-15mL):0.01mol。
16.如权利要求9所述的制备方法,其特征在于,步骤(2)中,所述水为蒸馏水。
17.如权利要求9所述的制备方法,其特征在于,步骤(3)中,所述干燥温度为60oC以上;
所述煅烧的温度为400oC以上。
18.如权利要求1-8任一项所述的催化剂的用途,其特征在于,所述催化剂用于光解水产氢。
19.如权利要求1-8任一项所述的催化剂的用途,其特征在于,所述催化剂用于光催化裂解有机物。
20.根据权利要求19所述的用途,其特征在于,所述催化剂用于催化裂解甲基橙、亚甲基蓝、罗丹明B。
CN201710097479.9A 2017-02-22 2017-02-22 一种Nb-Rh共掺二氧化钛光催化剂及其制备方法和用途 Active CN108452803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710097479.9A CN108452803B (zh) 2017-02-22 2017-02-22 一种Nb-Rh共掺二氧化钛光催化剂及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710097479.9A CN108452803B (zh) 2017-02-22 2017-02-22 一种Nb-Rh共掺二氧化钛光催化剂及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN108452803A CN108452803A (zh) 2018-08-28
CN108452803B true CN108452803B (zh) 2020-06-09

Family

ID=63220848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710097479.9A Active CN108452803B (zh) 2017-02-22 2017-02-22 一种Nb-Rh共掺二氧化钛光催化剂及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN108452803B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029599B (zh) * 2019-08-28 2021-10-15 深圳市通用氢能科技有限公司 燃料电池抗反极催化剂及其制备方法
CN113813944B (zh) * 2021-10-22 2024-03-15 上海科技大学 一种单原子铑催化剂及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101791562A (zh) * 2010-03-25 2010-08-04 东华大学 铁、氟共掺杂的纳米二氧化钛可见光光催化剂的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101791562A (zh) * 2010-03-25 2010-08-04 东华大学 铁、氟共掺杂的纳米二氧化钛可见光光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Photocatalytic O2 Evolution of Rhodium and Antimony-Codoped Rutile-Type TiO2 under Visible Light Irradiation;Ryo Niishiro等;《J. Phys. Chem. C》;20071030;第111卷;摘要、3.1 Characterization of Rhodium Species in TiO2:Rh and TiO2:Rh/M(M=Sb,Ta,and Nb) *
Ryo Niishiro等.Photocatalytic O2 Evolution of Rhodium and Antimony-Codoped Rutile-Type TiO2 under Visible Light Irradiation.《J. Phys. Chem. C》.2007,第111卷摘要、3.1 Characterization of Rhodium Species in TiO2:Rh and TiO2:Rh/M(M=Sb,Ta,and Nb). *

Also Published As

Publication number Publication date
CN108452803A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
Wang et al. Nanocasting synthesis of chromium doped mesoporous CeO2 with enhanced visible-light photocatalytic CO2 reduction performance
Rungjaroentawon et al. Hydrogen production from water splitting under visible light irradiation using sensitized mesoporous-assembled TiO2–SiO2 mixed oxide photocatalysts
Pan et al. Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties
CN107552033B (zh) 一种含氧空位钛酸锶光催化剂的制备方法
Li et al. Enhanced photocatalytic activity of Fe2O3 decorated Bi2O3
Xue et al. Nanocrystalline ternary wide band gap p-block metal semiconductor Sr2Sb2O7: hydrothermal syntheses and photocatalytic benzene degradation
CN106076390B (zh) 一种二氧化钛/石墨相氮化碳复合光催化剂的制备方法
Ullah et al. Comparative investigation of photocatalytic degradation of toluene on nitrogen doped Ta2O5 and Nb2O5 nanoparticles
Sreethawong et al. Investigation of thermal treatment effect on physicochemical and photocatalytic H2 production properties of mesoporous-assembled Nb2O5 nanoparticles synthesized via a surfactant-modified sol–gel method
CN103084196B (zh) 钽基分级结构空心纳米光催化材料制备方法及其应用
CN110787822A (zh) 一种四氧化三钴催化剂及其制备方法和应用
CN108452805B (zh) 一种用于光解水产氢的NiTiO3/TiO2催化剂及其制备方法和用途
Suriyachai et al. Synergistic effects of co-doping on photocatalytic activity of titanium dioxide on glucose conversion to value-added chemicals
CN108452803B (zh) 一种Nb-Rh共掺二氧化钛光催化剂及其制备方法和用途
CN104511280B (zh) 一种可见光催化剂及其制备方法
CN108452802B (zh) 一种Nb-Rh共掺杂二氧化钛纳米棒光催化剂及其制备方法和应用
CN110292919B (zh) 一种氧化硼和二氧化钛复合纳米材料及其制备方法
Uzunova-Bujnova et al. Lanthanide-doped titanium dioxide layers as photocatalysts
Raj et al. Single-step synthesis and structural study of mesoporous sulfated titania nanopowder by a controlled hydrolysis process
CN113546659B (zh) 采用配位法的高分散CeCN-urea-N2材料及其制备方法和应用
CN106179442A (zh) 一种铈与氮共掺杂的二氧化钛光催化剂及其制备方法和应用
CN104923197A (zh) 具有高效光催化性能的复合物溶胶制备方法
CN108607549B (zh) 一种可见光催化剂Ag-H2Ti4O9及其制备方法和应用
CN114950439B (zh) 一种高效光解水产氢MOF TiO2-NiO材料及其制备方法和应用
CN110756224A (zh) 一种Nb/W混配型多金属氧酸盐及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant