CN108435248A - 一种磁性固体磺酸负载胺基催化剂的复合磁性催化剂的制备和应用 - Google Patents

一种磁性固体磺酸负载胺基催化剂的复合磁性催化剂的制备和应用 Download PDF

Info

Publication number
CN108435248A
CN108435248A CN201810204038.9A CN201810204038A CN108435248A CN 108435248 A CN108435248 A CN 108435248A CN 201810204038 A CN201810204038 A CN 201810204038A CN 108435248 A CN108435248 A CN 108435248A
Authority
CN
China
Prior art keywords
magnetic
sulfonic acid
catalyst
preparation
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810204038.9A
Other languages
English (en)
Other versions
CN108435248B (zh
Inventor
周鹏鑫
宋靖靖
张鹏兵
张哲�
霍淑慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201810204038.9A priority Critical patent/CN108435248B/zh
Publication of CN108435248A publication Critical patent/CN108435248A/zh
Application granted granted Critical
Publication of CN108435248B publication Critical patent/CN108435248B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0275Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 also containing elements or functional groups covered by B01J31/0201 - B01J31/0269
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种磁性固体磺酸负载二元胺的复合磁性催化剂的制备方法,是采用“一锅法”制备了巯基包覆的球四氧化三铁Fe3O4@SiO2‑SH,再采用双氧水将Fe3O4@SiO2‑SH中的硫醇基团(‑SH)氧化,得到磁性磺酸MSA,然后以磁性固体磺酸作为载体,通过酸碱作用非共价负载有机小分子胺基催化剂,制备了磁性固体磺酸负载二元胺的复合催化剂。由于该复合催化剂的磁性固体磺酸不仅可以作为载体,还通过酸碱作用直接参与和影响催化过程,从而有效提高了复合催化剂的催化Knoevenagel缩合反应的活性;同时可通过外置磁铁直接吸引分离,多次循环利用,有效地解决了催化剂的固载、分离回收及重复利用的问题。

Description

一种磁性固体磺酸负载胺基催化剂的复合磁性催化剂的制备 和应用
技术领域
本发明涉及一种磁性固体磺酸负载二元胺的复合磁性催化剂的制备方法,主要用于催化剂在醛与活泼亚甲基的Knoevenagel缩合反应体系中。
背景技术
Knoevenagel缩合反应是醛或酮与含有活泼亚甲基的化合物生成不饱和化合物与水的反应,已广泛用作天然产物,药物和有机光伏材料合成的中间体。目前,有机碱和酸以及离子液体均用作催化Knoevenagel缩合反应的催化剂。然而,这些催化剂中的大多数都是不可回收的并在催化体系中使用有机溶剂。而采用微波辐射和超声波条件可以促进无溶剂的Knoevenagel缩合反应,但需要高功率微波和超声波条件,因此不适合做放大反应。虽然科学家们正在广泛地探索Knoevenagel缩合反应,但催化剂再循环和再利用的问题仍然有待解决。大多数胺基元胺催化剂以高剂量使用(10~30 mol%),且它们在反应之后难以回收利用造成较大的损耗。
在现代的工业生产和国民经济发展中,化学催化技术扮演着至关重要的作用,固体酸由于其在工业上可能取代液态矿物酸应用已受到重视。固体酸的优点在于催化剂容易与液体反应介质分离,腐蚀小,可回收性好。而磁性固体酸因具有强磁性,可以利用外置磁铁吸引快速分离。
发明内容
本发明的目的是针对现有用于Knoevenagel缩合反应的催化剂存在的问题,提供一种磁性固体磺酸负载胺基催化剂的复合磁性催化剂的制备方法。
一、复合磁性催化剂的制备
(1)巯基修饰的四氧化三铁Fe3O4@SiO2-SH的制备
先将结构导向剂十六烷基三甲基溴化铵(CTAB)分散于水乙醇-浓氨水的混合溶液中,再加入Fe3O4磁性微粒,在搅拌下超声10~15分钟,然后加入去离子水,在剧烈搅拌下加入正硅酸四乙酯(TEOS)和(3-巯基丙基)-三甲氧基硅烷(MPTS),搅拌5~6小时,通过外置磁铁分离收集产物,反复用乙醇和去离子水洗涤以除去溶解的杂质,最后用丙酮回流除去结构导向剂CTAB,真空干燥,得经硅胶层和硫基层包覆的Fe3O4微粒——Fe3O4@SiO2-SH。
无水乙醇-浓氨水的混合溶液中,无水乙醇与浓氨水的体积比为65:1~70:1;
Fe3O4磁性微粒与结构导向剂十六烷基三甲基溴化铵的质量比为1:0.5~1:1;
无水乙醇-浓氨水的混合溶液与去离子水的体积比为1:1~1:1.5;
Fe3O4磁性微粒与TEOS(正硅酸四乙酯)的质量比为1: 6~1:8;
Fe3O4磁性微粒与(3-巯基丙基)-三甲氧基硅烷(MPTS)的质量比为1: 1.5~1:2。
(2)磁性固体磺酸Fe3O4@SiO2-SO3H(MSA)的制备
将上述制备的巯基修饰的四氧化三铁Fe3O4@SiO2-SH分散于27~30wt.%双氧水中,在常温下氧化氧化20~24h,再于0.1~0.2M H2SO4溶液中进一步氧化1~2h,分离,干燥,得到磁性磺酸磁性固体磺酸Fe3O4@SiO2-SO3H(MSA)。
(3)复合磁性催化剂MSA/A的制备:将磁性固体磺酸(MSA)分散在二氯甲烷中,加入胺基催化剂,在室温下搅拌0.5-1h后分离出固体,干燥,得到复合磁性催化剂(MSA/An)。
胺类催化剂为二元胺类催化剂,如N,N'-二甲基-1,2-乙二胺(A1)、N1,N1,N2,N2-四甲基乙烷-1,2-二胺(A2)、4-二甲基氨基吡啶(A3)、三乙胺(A4)。
胺基催化剂与性固体磺酸(MSA)的摩尔比为1:1~1:1.2。
二、复合磁性催化剂的表征
图1是本发明制备的复合磁性催化剂的红外光谱图。由红外光谱图1可知,磁性磺酸(MSA)在954 cm-1,1077 cm-1,1528 cm-1和3242cm-1处分别具有对应于Si-O-Si,Si-OH,SO3H的振动。这表明磺酸基团成功地嫁接在了包裹二氧化硅的磁性纳米颗粒Fe3O4表面上。
图2是本发明制备的复合磁性催化剂的X-射线衍射图。从图2可知,制得的磁性纳米颗粒Fe3O4具有很好的立体尖晶石结构,衍射谱图较尖锐,且没有其他杂峰,说明产物的纯度高,结晶度好。磁性磺酸(MSA)从2θ= 20°到30°的宽峰显示了无定形二氧化硅相的典型性质,证实了SiO2成功包裹在Fe3O4颗粒上。
图3是本发明制备的复合磁性催化剂的磁滞回归曲线图。由图3可知磁性磺酸(MSA)的磁化曲线没有磁滞环的存在,这说明磁性磺酸(MSA)在室温下具有超顺磁性。当有外加磁场时,磁性磺酸才表现出小磁体的性质,当无外加磁场时,磁性磺酸的磁性立即消失,磁性磺酸颗粒不因磁性互相吸引而发生团聚,能够很好地均相分散在反应中。饱和磁强度为0.5 emu g-1,但可以实现有效的磁吸分离,这是由于磁性纳米颗粒Fe3O4 (MNP)表面包裹了SiO2材料和巯基的原因。
图4是本发明制备的复合磁性催化剂的循环使用效果图。图4的结果表明,本发明制备的复合催化剂可以连续的被重复使用10次,所得产物产率基本保持不变。因此,此催化剂催化活性高,易回收且循环利用能力很好,为流动化学提供了良好的基础。
我们用元素分析仪检测了磁性固体磺酸的C、H、S 元素的量。元素分析得出C:11.3,H :2.8,S:1.64,因此可以得出磁性固体磺酸的质子酸负载量为0.5 mol·g-1
三、复合磁性催化剂的催化应用
本发明制备的磁性磺酸负载有胺基催化剂用于催化C-C键的形成反应,例如:Knoevenagel缩合反应:以本发明制备的复合催化剂催化Knoevenagel缩合反应过程如下:在反应器中加入溶剂(甲醇、乙醇)和复合催化剂,电磁搅拌下使催化剂分散均匀,然后加入底物,室温下反应,TLC检测反应进程,在反应完全后或者规定反应时间停止反应,使用外置磁铁吸引分离磁性催化剂,倾倒出产物,催化剂用二氯甲烷洗涤后用于下次循环反应。
实验结果表明,本发明制备的磁性磺酸负载有胺基催化剂用于Knoevenagel缩合反应,催化效率高(70~120分钟),产物产率高(88%以上),因此是一种催化活性高,而且还可回收循环利用。
综上所述,本发明利用磁性四氧化三铁纳米颗粒特有的性质,采用“一锅法”制备了巯基包覆的球四氧化三铁Fe3O4@SiO2-SH,再采用双氧水将Fe3O4@SiO2-SH中的硫醇基团(-SH)氧化,得到磁性磺酸MSA,然后以磁性固体磺酸作为载体,通过酸碱作用非共价负载有机小分子胺基催化剂,制备了磁性固体磺酸负载二元胺的复合催化剂。由于该复合催化剂的磁性固体磺酸不仅可以作为载体,还通过酸碱作用直接参与和影响催化过程,从而有效提高了复合催化剂的催化Knoevenagel缩合反应的活性;同时可通过外置磁铁直接吸引分离,多次循环利用,有效地解决了催化剂的固载、分离回收及重复利用的问题。
附图说明
图1是本发明制备的复合磁性催化剂的红外光谱图。
图2是本发明制备的复合磁性催化剂的X-射线衍射图。
图3是本发明制备的复合磁性催化剂的磁滞回归曲线图。
图4是本发明制备的复合磁性催化剂的循环使用效果图。
具体实施方式
下面通过具体实施例对本发明磁性固体磺酸负载胺基复合磁性催化剂的之额比、应用作进一步说明。
实施例1、复合催化剂MSA/A1的制备和应用
Fe3O4磁性微粒的制备:取2.6 g FeCl3•6H2O 溶于50 mL 乙二醇溶液中剧烈搅拌形成澄清溶液,再加入5.75 g NaAc和1.0 g 聚乙二醇。将此混合物磁力搅拌30 min,得到深棕黄色黏性液体。之后将该液体转入50 mL的聚四氟乙烯内衬的不锈钢反应釜中,在恒温鼓风干燥箱中升温至200℃,反应8 h后自然冷却至室温。将釜内溶液取出后,用无水乙醇和去离子水洗涤数次后,60℃下真空干燥,得到黑色粉末即可。参考文献(Li Y D, Deng H, Li XL, Peng Q, Wang X, Chen J P. Angew. Chem. Int. Ed, 2005, 44, 2782- 2785.)制备Fe3O4磁性微粒。
巯基包覆的球四氧化三铁Fe3O4@SiO2-SH的制备:将0.3g十六烷基三甲基溴化铵(CTAB)分散于70mL无水乙醇和1.1mL浓氨水溶液(28%)的混合溶液中;再加入0.5g前体Fe3O4磁性微粒,在搅拌下超声15分钟,然后加入70mL去离子水,接着在剧烈搅拌下加入3.2gTEOS和0.9g(3-巯基丙基)-三甲氧基硅烷(MPTS),搅拌6小时后,通过外置磁铁分离收集产物,反复用乙醇和去离子水洗涤以除去溶解的杂质;随后在56℃用丙酮回流除去CTAB,产品在60℃下真空干燥过夜,得经硅胶层和硫基层包覆的Fe3O4微粒——Fe3O4@SiO2-SH。使用前置于干燥器中。反应式如下:
磁性磺酸MSA的制备:将3.0g Fe3O4@SiO2-SH分散于10g 30w%H2O2水溶液中,常温下氧化24h,然后于50mL 0.2M H2SO4中进一步搅拌2h,分离并干燥过夜,得到磁性磺酸MSA。反应式如下:
复合催化剂MSA/A1的制备:将磁性磺酸MSA1(1.0 g,0.5 mmol)悬浮于CH2Cl2(20mL)中,并将反应混合物在室温下搅拌15分钟。然后加入胺基催化剂N,N'-二甲基-1,2-乙二胺(A1)(53mg,0.6 mmol),并在室温下搅拌0.5小时。用外置磁铁吸引分离催化剂,并用CH2Cl2洗涤,所得固体在室温下真空干燥过夜,得到复合催化剂MSA/A1,收率为98%。反应式如下:
Knoevenagel缩合反应:将对氯苯甲醛(0.5mmol),氰乙酸乙酯(0.6mmol),CH3CH2OH(0.5mL)和MSA/A1(10mg,1mol%)的混合物在室温下搅拌。反应完成后(通过TLC监测需要70min),用磁铁将催化剂与反应溶液分离,用CH2Cl2(0.5ml×3)洗涤,减压蒸馏除去溶剂的到粗产物。将得到的粗产物进一步用乙醇重结晶,得到纯净的最终产物111 mg,产率约100%。1H NMR (400 MHz, CDCl3) δ 8.20 (s, 1H), 7.98 – 7.91 (m, 2H), 7.53 – 7.46 (m,2H), 4.39 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H); 13C NMR (151 MHz,CDCl3) δ: 162.21, δ 153.36, 139.58, 132.17, 129.85, 129.66, 115.24, 103.49,62.86, 14.13。
同样的操作选择不同醛与氰乙酸乙酯进行Knoevenagel缩合反应,实验结果见表1:
同样的操作,选择不同的醛与丙二腈进行Knoevenagel缩合反应,实验结果见表2:
催化剂MSA/A1的回收循环实验:将对氯苯甲醛(0.5mmol),丙二腈(0.6mmol),CH3CH2OH(0.5mL)和MSA/A1(10mg,1mol%)的混合物在室温下搅拌。反应完成后(通过TLC监测),用磁铁将催化剂与反应溶液分离,用CH2Cl2(0.5mL×3)洗涤,减压蒸馏除去溶剂的到粗产物。将得到的粗产物进一步用乙醇重结晶,得到纯净的最终产物,产率97%。催化剂常温真空干燥后,直接投入到下一个反应。催化剂回收所得结果见图4。结果表明催化剂可以连续的被重复使用10次,所得产物产率基本保持不变。
实施例2、复合催化剂MSA/A2的制备和应用
Fe3O4磁性微粒的制备:同实施例1;
巯基包覆的球四氧化三铁Fe3O4@SiO2-SH的制备:同实施例1
磁性磺酸MSA的制备:同实施例1;
复合催化剂MSA/A2的制备:将磁性磺酸MSA(1.0 g, 0.5 mmol)悬浮于CH2Cl2(20mL)中,并将反应混合物在室温下搅拌15分钟。然后加入N1,N1,N2,N2-四甲基乙烷-1,2-二胺(A2)(70 mg, 0.6 mmol),并将所得混合物在室温下搅拌0.5小时。用外置磁铁吸引分离催化剂,并用CH2Cl2洗涤。将所得固体在室温下真空干燥过夜,得到MSA/A2,收率为97%。其反应式如下:
Knoevenagel缩合反应:将对氯苯甲醛(0.5mmol),氰乙酸乙酯(0.6mmol),CH3CH2OH(0.5mL)和MSA/A2(10mg,1mol%)的混合物在室温下搅拌。反应完成后(通过TLC监测需要30min),用磁铁将催化剂与反应溶液分离,用CH2Cl2(0.5mL×3)洗涤,减压蒸馏除去溶剂的到粗产物。将得到的粗产物进一步用乙醇重结晶,得到纯净的最终产物,产率约88%。
实施例3、复合催化剂MSA/A3的制备
Fe3O4磁性微粒的制备:同实施例1;
巯基包覆的球四氧化三铁Fe3O4@SiO2-SH的制备:同实施例1
磁性磺酸MSA的制备:同实施例1;
复合催化剂MSA/A3的制备:将磁性磺酸MSA(1.0 g, 0.5 mmol)悬浮于CH2Cl2(20mL)中,并将反应混合物在室温下搅拌15分钟。然后加入4-二甲基氨基吡啶(A3)。(73 mg, 0.6mmol),并将所得混合物在室温下搅拌0.5小时。用外置磁铁吸引分离催化剂,并用CH2Cl2洗涤。将所得固体在室温下真空干燥过夜,得到MSA/A3,收率收率为98%。其反应式如下:
Knoevenagel缩合反应:将对氯苯甲醛(0.5mmol),氰乙酸乙酯(0.6mmol),CH3CH2OH(0.5mL)和MSA/A3(10mg,1mol%)的混合物在室温下搅拌。反应完成后(通过TLC监测需要2h),用磁铁将催化剂与反应溶液分离,用CH2Cl2(0.5ml×3)洗涤,减压蒸馏除去溶剂的到粗产物。将得到的粗产物进一步用乙醇重结晶,得到纯净的最终产物98 mg,产率约89%。
实施例4、复合催化剂MSA/A4的制备和应用
Fe3O4磁性微粒的制备:同实施例1;
巯基包覆的球四氧化三铁Fe3O4@SiO2-SH的制备:同实施例1;
磁性磺酸MSA的制备:同实施例1;
复合催化剂MSA/A4的制备:将磁性磺酸MSA(1.0 g, 0.5 mmol)悬浮于CH2Cl2(20mL)中,并将反应混合物在室温下搅拌15分钟。然后加入、三乙胺(A4)(61mg,0.6 mmol),并将所得混合物在室温下搅拌0.5小时。用外置磁铁吸引分离催化剂,并用CH2Cl2洗涤。将所得固体在室温下真空干燥过夜,得到MSA/A4。收率收率为96%。其反应式如下:
Knoevenagel缩合反应:将对氯苯甲醛(0.5mmol),氰乙酸乙酯(0.6mmol),CH3CH2OH(0.5mL)和MSA/A4(10mg,1mol%)的混合物在室温下搅拌。反应完成后(通过TLC监测需要70min),用磁铁将催化剂与反应溶液分离,用CH2Cl2(0.5mL×3)洗涤,减压蒸馏除去溶剂的到粗产物。将得到的粗产物进一步用乙醇重结晶,得到纯净的最终产物,产率约70%。

Claims (10)

1.一种磁性固体磺酸负载二元胺的复合磁性催化剂的制备方法,包括以下工艺步骤:
(1)巯基修饰的四氧化三铁Fe3O4@SiO2-SH的制备:先将结构导向剂十六烷基三甲基溴化铵分散于水乙醇-浓氨水的混合溶液中,再加入Fe3O4磁性微粒,超声10~15分钟,然后加入去离子水,在剧烈搅拌下加入正硅酸乙酯和(3-巯基丙基)-三甲氧基硅烷,剧烈搅拌4~6小时,通过外置磁铁分离收集产物,反复用乙醇和去离子水洗涤以除去溶解的杂质,最后用丙酮回流除去结构导向剂,真空干燥,得经硅胶层和硫基层包覆的Fe3O4微粒—Fe3O4@SiO2-SH;
(2)磁性固体磺酸Fe3O4@SiO2-SO3H的制备:将上述制备的巯基修饰的四氧化三铁Fe3O4@SiO2-SH分散于27~30wt.%双氧水中,在常温下氧化20~24h,再于0.1~0.2MH2SO4溶液中进一步氧化1~2h,分离,干燥,得到磁性磺酸磁性固体磺酸Fe3O4@SiO2-SO3H;
(3)复合磁性催化剂MSA/A的制备:将磁性固体磺酸Fe3O4@SiO2-SO3H分散在二氯甲烷中,加入胺基催化剂,在室温下搅拌0.5~1h后分离出固体,干燥,得到复合磁性催化剂MSA/A。
2.如权利要求1所述磁性固体磺酸负载二元胺的复合磁性催化剂的制备方法,其特征在于:步骤(1)中,无水乙醇-浓氨水的混合溶液中,无水乙醇与浓氨水的体积比为65:1~70:1。
3.如权利要求1所述磁性固体磺酸负载二元胺的复合磁性催化剂的制备方法,其特征在于:步骤(1)中,Fe3O4磁性微粒与结构导向剂十六烷基三甲基溴化铵的质量比为1: 0.5~1:1。
4.如权利要求1所述磁性固体磺酸负载二元胺的复合磁性催化剂的制备方法,其特征在于:步骤(1)中,无水乙醇-浓氨水的混合溶液与去离子水的体积比为1:1~1:1.5。
5.如权利要求1所述磁性固体磺酸负载二元胺的复合磁性催化剂的制备方法,其特征在于:步骤(1)中,Fe3O4磁性微粒与正硅酸四乙酯的质量比为1: 6~1:8。
6.如权利要求1所述磁性固体磺酸负载二元胺的复合磁性催化剂的制备方法,其特征在于:步骤(1)中,Fe3O4磁性微粒与(3-巯基丙基)-三甲氧基硅烷的质量比为1: 1.5~1:2。
7.如权利要求1所述磁性固体磺酸负载二元胺的复合磁性催化剂的制备方法,其特征在于:步骤(3)中,胺类催化剂为二元胺类催化剂。
8.如权利要求7所述磁性固体磺酸负载二元胺的复合磁性催化剂的制备方法,其特征在于:所述二元胺类催化剂为N,N'-二甲基-1,2-乙二胺、N1,N1,N2,N2-四甲基乙烷-1,2-二胺、4-二甲基氨基吡啶、三乙胺。
9.如权利要求1所述磁性固体磺酸负载二元胺的复合磁性催化剂的制备方法,其特征在于:步骤(3)中,胺基催化剂与性固体磺酸的摩尔比为1:1~1:1.2。
10.如权利要求1所述方法制备的磁性固体磺酸负载二元胺的复合磁性催化剂在催化剂醛与亚甲基的Knoevenagel缩合反应体系中。
CN201810204038.9A 2018-03-13 2018-03-13 一种磁性固体磺酸负载胺基催化剂的复合磁性催化剂的制备和应用 Active CN108435248B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810204038.9A CN108435248B (zh) 2018-03-13 2018-03-13 一种磁性固体磺酸负载胺基催化剂的复合磁性催化剂的制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810204038.9A CN108435248B (zh) 2018-03-13 2018-03-13 一种磁性固体磺酸负载胺基催化剂的复合磁性催化剂的制备和应用

Publications (2)

Publication Number Publication Date
CN108435248A true CN108435248A (zh) 2018-08-24
CN108435248B CN108435248B (zh) 2021-03-23

Family

ID=63194890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810204038.9A Active CN108435248B (zh) 2018-03-13 2018-03-13 一种磁性固体磺酸负载胺基催化剂的复合磁性催化剂的制备和应用

Country Status (1)

Country Link
CN (1) CN108435248B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109365004A (zh) * 2018-11-28 2019-02-22 武汉工程大学 一种磁性固体酸催化剂及其提取皂素的应用
CN110773227A (zh) * 2019-10-23 2020-02-11 华侨大学 一种核桃壳粉酸碱功能化的催化剂、制备方法及应用
CN111013665A (zh) * 2019-12-25 2020-04-17 武汉工程大学 一种基于Fe3O4的磁性固体酸催化剂及其制备方法、应用
CN111151296A (zh) * 2020-01-09 2020-05-15 临沂大学 一种磁性材料负载罗丹明b催化剂及其制备方法以及其在苯酚合成中的催化应用
CN115007111A (zh) * 2022-05-27 2022-09-06 昆明理工大学 一种用于吸附硫代硫酸盐体系中的金的核壳材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100009375A1 (en) * 2007-02-01 2010-01-14 Siemens Healthcare Diagnostics Inc. Silica Magnetic Particles with a High Nucleic Acid Binding Capacity
CN102188957A (zh) * 2011-04-26 2011-09-21 湖南大学 聚乙烯亚胺修饰的磁性多孔吸附剂及其制备方法和应用
CN104492493A (zh) * 2014-11-26 2015-04-08 绍兴文理学院 一种磁性固体酸材料催化剂及其制备方法
CN105797780A (zh) * 2016-04-05 2016-07-27 河南工业大学 固载二甲基双胍的磁性固体碱催化剂的制备方法
CN105817267A (zh) * 2015-01-04 2016-08-03 广东工业大学 一种氨丙基型固体碱复合微球及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100009375A1 (en) * 2007-02-01 2010-01-14 Siemens Healthcare Diagnostics Inc. Silica Magnetic Particles with a High Nucleic Acid Binding Capacity
CN102188957A (zh) * 2011-04-26 2011-09-21 湖南大学 聚乙烯亚胺修饰的磁性多孔吸附剂及其制备方法和应用
CN104492493A (zh) * 2014-11-26 2015-04-08 绍兴文理学院 一种磁性固体酸材料催化剂及其制备方法
CN105817267A (zh) * 2015-01-04 2016-08-03 广东工业大学 一种氨丙基型固体碱复合微球及其制备方法
CN105797780A (zh) * 2016-04-05 2016-07-27 河南工业大学 固载二甲基双胍的磁性固体碱催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUO SZ ET AL.: "Noncovalently supported heterogeneous chiral amine catalysts for asymmetric direct aldol and Michael addition reactions", 《CHEMISTRY-A EUROPEAN JOURNAL》 *
ZAMANI FARZAD ET AL.: "Polyvinyl amine coated Fe3O4@SiO2 magnetic microspheres for Knoevenagel condensation", 《CHINESE JOURNAL OF CATALYSIS》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109365004A (zh) * 2018-11-28 2019-02-22 武汉工程大学 一种磁性固体酸催化剂及其提取皂素的应用
CN109365004B (zh) * 2018-11-28 2022-03-18 武汉工程大学 一种磁性固体酸催化剂及其提取皂素的应用
CN110773227A (zh) * 2019-10-23 2020-02-11 华侨大学 一种核桃壳粉酸碱功能化的催化剂、制备方法及应用
CN111013665A (zh) * 2019-12-25 2020-04-17 武汉工程大学 一种基于Fe3O4的磁性固体酸催化剂及其制备方法、应用
CN111013665B (zh) * 2019-12-25 2023-03-24 武汉工程大学 一种基于Fe3O4的磁性固体酸催化剂及其制备方法、应用
CN111151296A (zh) * 2020-01-09 2020-05-15 临沂大学 一种磁性材料负载罗丹明b催化剂及其制备方法以及其在苯酚合成中的催化应用
CN115007111A (zh) * 2022-05-27 2022-09-06 昆明理工大学 一种用于吸附硫代硫酸盐体系中的金的核壳材料的制备方法
CN115007111B (zh) * 2022-05-27 2024-03-19 昆明理工大学 一种用于吸附硫代硫酸盐体系中的金的核壳材料的制备方法

Also Published As

Publication number Publication date
CN108435248B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
CN108435248A (zh) 一种磁性固体磺酸负载胺基催化剂的复合磁性催化剂的制备和应用
Kong et al. L-Proline supported on ionic liquid-modified magnetic nanoparticles as a highly efficient and reusable organocatalyst for direct asymmetric aldol reaction in water
Safari et al. Chitosan decorated Fe 3 O 4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives
Dadhania et al. Magnetically retrievable magnetite (Fe 3 O 4) immobilized ionic liquid: an efficient catalyst for the preparation of 1-carbamatoalkyl-2-naphthols
Kaboudin et al. Fe 3 O 4 nanoparticle-supported Cu (II)-β-cyclodextrin complex as a magnetically recoverable and reusable catalyst for the synthesis of symmetrical biaryls and 1, 2, 3-triazoles from aryl boronic acids
Kooti et al. Phosphotungstic acid supported on magnetic nanoparticles as an efficient reusable catalyst for epoxidation of alkenes
Zamani et al. Synthesis and characterization of sulfonated-phenylacetic acid coated Fe3O4 nanoparticles as a novel acid magnetic catalyst for Biginelli reaction
Atashkar et al. Magnetic nanoparticle-supported guanidine as a highly recyclable and efficient nanocatalyst for the cyanosilylation of carbonyl compounds
Safari et al. Immobilized ionic liquid on superparamagnetic nanoparticles as an effective catalyst for the synthesis of tetrasubstituted imidazoles under solvent-free conditions and microwave irradiation
Rajabzadeh et al. Generation of Cu nanoparticles on novel designed Fe 3 O 4@ SiO 2/EP. EN. EG as reusable nanocatalyst for the reduction of nitro compounds
Azizi et al. Direct oxidative amidation of benzyl alcohols using EDTA@ Cu (II) functionalized superparamagnetic nanoparticles
Zhu et al. Synthesis of novel magnetic chitosan supported protonated peroxotungstate and its catalytic performance for oxidation
Shakourian-Fard et al. Synthesis of α-aminophosphonates in the presence of a magnetic recyclable Fe3O4@ SiO2-2mimSO3H nanocatalyst
Safari et al. A magnetic nanoparticle supported Ni 2+-containing ionic liquid as an efficient nanocatalyst for the synthesis of Hantzsch 1, 4-dihydropyridines in a solvent-free dry-system
Rakhtshah et al. Catalytic application of new manganese Schiff-base complex immobilized on chitosan-coated magnetic nanoparticles for one-pot synthesis of 3-iminoaryl-imidazo [1, 2-a] pyridines
Zolfigol et al. Application of silica vanadic acid as a heterogeneous, selective and highly reusable catalyst for oxidation of sulfides at room temperature
Wang et al. An efficient and recyclable acid–base bifunctional core–shell nano-catalyst for the one-pot deacetalization–Knoevenagel tandem reaction
Azizi et al. Imidazolium chloride immobilized on copper acetylacetonate-grafted magnetic chitosan as a new metal/ionic liquid bifunctional catalyst for selective oxidation of benzyl alcohols in water
Safari et al. Magnetic Fe3O4 nanoparticles as a highly efficient catalyst for the synthesis of imidazoles under ultrasound irradiation
CN106749417A (zh) 一种三核钌nnn配合物及其制备方法
Khoshnavazi et al. Organic–inorganic hybrid polyoxometalate and its graphene oxide–Fe 3 O 4 nanocomposite, synthesis, characterization and their applications as nanocatalysts for the Knoevenagel condensation and the synthesis of 2, 3-dihydroquinazolin-4 (1 H)-ones
CN109467714A (zh) 一种磁性复合金属-有机骨架材料及其应用
Aghavandi et al. ZnFe2O4@ l-Arginine-Ni: A novel, green, recyclable, and highly versatile catalyst for the synthesis of 1H-tetrazoles and oxidation of sulfides to the sulfoxides
Liu et al. Nano‐Fe3O4 Encapsulated‐Silica Particles Bearing 3‐Aminopropyl Group as a Magnetically Separable Catalyst for Efficient Knoevenagel Condensation of Aromatic Aldehydes with Active Methylene Compounds
Tan et al. Suzuki cross-coupling reactions on the surface of carbon-coated cobalt: expanding the applicability of core–shell nano-magnets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant