CN108430607A - 一种用于减少氮氧化物的催化剂床和方法 - Google Patents

一种用于减少氮氧化物的催化剂床和方法 Download PDF

Info

Publication number
CN108430607A
CN108430607A CN201680075248.1A CN201680075248A CN108430607A CN 108430607 A CN108430607 A CN 108430607A CN 201680075248 A CN201680075248 A CN 201680075248A CN 108430607 A CN108430607 A CN 108430607A
Authority
CN
China
Prior art keywords
catalyst bed
flow
air
catalyst
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680075248.1A
Other languages
English (en)
Inventor
W·克林克
G·森
张文忠
A·克勒姆特
P·B·希梅尔法布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN108430607A publication Critical patent/CN108430607A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

描述了一种包含陶瓷或金属泡沫体的催化剂床,所述陶瓷或金属泡沫体包含一种或多种NOx还原催化剂。还描述了一种用于降低含粉尘气流中NOx浓度的方法,包含:a)将含有NOx的第一气流送入接触区;b)使第一气流与陶瓷或金属泡沫体催化剂床接触,所述陶瓷或金属泡沫体催化剂床具有一个或多个穿过所述催化剂床的流动路径,其中陶瓷或金属泡沫体包含NOx还原催化剂以产生NOx浓度降低的第二气流;和c)使第二气流离开接触区,其中第一气流具有至少5mg/Nm3的粉尘浓度,并且在于相同条件下测量的情况下,由于粉尘积聚,泡沫体催化剂床的压降相对于泡沫体催化剂床的初始压降增加300%或更少。

Description

一种用于减少氮氧化物的催化剂床和方法
相关申请的参考
本申请要求2015年12月22日提交的美国临时专利申请序列号62/270859的权益。
技术领域
本发明涉及一种包含陶瓷或金属泡沫体的催化剂床,所述陶瓷或金属泡沫体包含一种或多种NOx还原催化剂,以及一种用于降低气流中NOx浓度的方法。
背景技术
氮的氧化物是许多工业过程中常见的副产物和/或期望的中间体,所述工业过程包括化学品(如硝酸)的制造或空气中的燃烧过程。化学式NO和NO2的氮氧化物通常统称为NOx。NOx是大规模的污染物,并且已经为在来自产生其的工艺的废气流中减少NOx做出了相当大的努力。从气流中除去NOx的工艺在本领域中通常被称为DeNOx工艺,并且其中使用的催化剂被称为DeNOx催化剂。
现有技术描述了这样的工艺,其中将待处理的含有NOx的气流中的粉尘捕获在催化剂上,并且接着通过清洁或其他手段从催化剂中除去。举例来说,美国专利4044102描述了一种反应器,其有效地减少来自烟气流的氮氧化物和粉尘。催化剂在移动床中通过以使其与气体接触并夹带粉尘。接着使催化剂通过出口,在那里使其再生并除去粉尘。所述专利教导了在除去NOx之前,优选从气体中除去粉尘以防止粉尘积聚在催化剂床的表面上和催化剂颗粒之间的空隙中。
作为另一个实例,美国专利5413699描述了一种反应器,其中使含有粉尘和NOx的气体以足够的速度通过催化剂床以使催化剂床流化。将沉积在催化剂上的微粒通过流化磨去或淘去以防止NOx催化剂结垢。所述专利教导了10-50mg/Nm3的粉尘含量太高而不允许市售deNOx催化剂的使用寿命长。
另外,许多专利和公开申请涉及陶瓷泡沫体用于处理柴油发动机废气的用途。举例来说,美国专利5536477描述了一种泡沫体陶瓷过滤器,其具有捕集存在于废气流中基本全部烟灰的能力。
固定床催化剂系统由于其优异的活性可以在较低的温度下从工艺流中除去NOx;然而,它们也倾向于捕集气流中的大部分微粒,并因此经历快速的压降增加。另一方面,虽然蜂窝状催化剂体系允许微粒物质容易通过,但它们的活性低得多,因此需要高得多的操作温度。优选的是提供一种催化剂和一种工艺,所述催化剂和过程允许在低温下有效地从含微粒气流中除去NOx,同时允许大部分粉尘通过催化剂床并且不被捕集在催化剂上。
发明内容
本发明提供了一种包含陶瓷或金属泡沫体的催化剂床,所述陶瓷或金属泡沫体包含一种或多种NOx还原催化剂。
本发明还提供了一种用于降低含粉尘气流中NOx浓度的方法,包含:a)将含有NOx的第一气流送入接触区;b)使第一气流与陶瓷或金属泡沫体催化剂床接触,所述陶瓷或金属泡沫体催化剂床具有一个或多个穿过所述催化剂床的流动路径,其中陶瓷或金属泡沫体包含NOx还原催化剂以产生NOx浓度降低的第二气流;和c)使第二气流离开接触区,其中第一气流具有至少5mg/Nm3的粉尘浓度,并且在于相同条件下测量的情况下,由于粉尘积聚,泡沫体催化剂床的压降相对于泡沫体催化剂床的初始压降增加300%或更少。
附图说明
图1显示了实例1的结果
图2显示了实例2的结果
具体实施方式
本发明的陶瓷或金属泡沫体催化剂床允许气流中的粉尘通过,同时处理气体以减少NOx。此催化剂适用于处理来自工业综合体的废气。已经描述的用于汽车发动机排放控制的陶瓷泡沫体具有高的每英寸孔隙以捕集烟灰和微粒。本发明的泡沫体具有较低的每英寸孔隙。如本文所用的术语“粉尘”包含在气流通过时可能会留在催化剂床上的任何小微粒。
本发明的泡沫体允许粉尘通过而不堵塞催化剂床,同时处理废气以除去NOx。本发明的催化剂床特别适用于处理来自工业过程和静止涡轮机的废气。
催化剂床被设计成使得气流中的相当一部分粉尘通过催化剂床并与第二气流一起离开。现有技术教导在催化剂上捕获粉尘并提供多种用于从催化剂中除去粉尘的方法。在本发明中,相当一部分粉尘未被捕集在催化剂上,因此给予了催化剂床更长的使用寿命,并且消除了频繁除尘、催化剂流化或其他复杂操作的需要。
陶瓷泡沫体可以包含任何能够提供足够的强度并且为NOx还原催化剂提供合适载体(carrier)的陶瓷材料。陶瓷泡沫体优选包含堇青石、氧化钛、氧化铝或其混合物。
金属泡沫体同样可以包含任何能够提供足够的强度并且也是NOx还原催化剂的合适载体的金属材料。金属泡沫体优选包含镍、铁、铝、铬或其合金。
在一个实施例中,陶瓷泡沫体可以通过用陶瓷(举例来说,Al2O3、ZrO2)的含水浆料填充发泡聚合物(举例来说,聚氨酯)的孔隙来制备。在适量的润湿剂、分散稳定剂和粘度调节剂存在下,浆料可以在水中含有0.1至10μm直径的颗粒。将湿泡沫体在高于1000℃的温度下在空气中干燥并煅烧。聚合物蒸发或燃烧,而陶瓷颗粒烧结。在另一个实施例中,浆料的粘度可以通过加入增稠剂来提高。此方法进一步描述于J.T.Richardson,陶瓷泡沫体催化剂载体的性能:压降(Properties of ceramic foam catalyst supports:pressuredrop),《应用催化A:一般(Applied Catalysis A:General)》204(2000)19-32,其通过引用并入本文。
在一个实施例中,金属泡沫体可以通过将镍泡沫体或铁泡沫体转化成高温稳定合金的粉末冶金工艺制备。在此工艺中,将镍或铁泡沫体不断地展开,首先用粘合剂溶液采用喷涂技术涂覆,并且接着用高合金粉末涂覆。之后,将泡沫体切成所需尺寸的片材。此方法进一步描述于G.Walther等人,制造用于高温应用的合金泡沫体的新PM工艺(A New PMProcess for Manufacturing of Alloyed Foams for High TemperatureApplications),《PM2010世界大会—泡沫体和多孔材料(PM 2010World Congress–Foamsand Porous Materials)》,其通过引用并入本文。
泡沫体具有至少60%,优选至少70%,并且更优选至少80%的空隙空间。空隙空间定义为开放结构的体积除以结构的总体积(开口和陶瓷或金属)乘以100。
陶瓷和金属泡沫体具有互连的内部曲折孔隙结构。这也可以被称为具有网状结构。此结构产生穿过泡沫体的湍流气体流,与蜂窝通道内的层流相比,引起与催化剂的接触改善。
陶瓷或金属泡沫体的曲折度优选大于1.0,更优选大于1.5,并且最优选大于2.0。曲折度可以计算为气体穿过陶瓷或金属泡沫体的流动路径长度除以从陶瓷或金属泡沫体的入口到出口的最短直线路径的长度的比值。直线通道路径的曲折度为1.0。
陶瓷或金属泡沫体具有每英寸约5至约50个孔隙,优选每英寸约10至约30个孔隙。泡沫体的每英寸孔隙影响泡沫体允许粉尘通过催化剂床的能力。
在一个实施例中,金属泡沫体的密度在0.4至0.75g/cm3范围内。这提供了可用于处理这些气体的轻质泡沫体。
任何NOx还原催化剂均可适用于本发明的工艺中,举例来说美国专利6419889中所描述的那些催化剂。来自美国专利6419889的示例性催化剂包含二氧化钛载体和选自由钒、钼和钨组成的群组中的一种或多种金属化合物。在一个实施例中,NOx还原催化剂是二氧化钛催化剂上的钒。在另一个实施例中,NOx还原催化剂是二氧化钛催化剂上的钒和钨。
其他合适的催化剂包括金属,如铝、铜、铁、钴、锡、铬、镍、锰、钛、银、铂、铑、钯或其混合物的氧化物。金属氧化物可以负载在任何常规载体或其他材料上,举例来说,氧化铝、硅-氧化铝、氧化镁-氧化铝、二氧化钛、氧化铝、氧化钙-氧化铝、氧化铬-氧化铝或二氧化硅-氧化铬-氧化铝。
另外,含有铜或铁的沸石催化剂可用于NOx还原。一个优选的实例是铁交换的沸石β。沸石催化剂可以包含其他金属,如铂、钌、钯、锇、铑或其混合物。
催化剂通过氮吸附测量的表面积可以在约70m2/g与约150m2/g之间。催化剂可以具有双峰孔隙分布,并且超过90%的孔隙体积存在于直径为至多约100nm的孔隙中,其中孔隙体积被认为是存在于直径在约1nm与约104nm之间的孔隙中的孔隙体积。
催化剂可以通过以下来制备:在干燥和煅烧载体之后或在挤出之后用(一种或多种)金属化合物浸渍或沉积载体,接着干燥,并且接着煅烧所述载体。浸渍可以通过使载体与(一种或多种)金属化合物的水溶液接触来进行。在一个实施例中,金属草酸盐溶液可以用于浸渍。催化剂也可以通过将载体与金属化合物共同研磨以形成固体混合物来制备。根据这些方法形成的催化剂可以在通过涂覆而施用在陶瓷或金属泡沫体上之前,在浆料中被研磨或碾磨至特定的粒径分布。
用于将催化剂添加至泡沫体中的另一种方法是催化剂沉积,其通过对载体进行孔隙体积浸渍,并且接着将经过浸渍的载体沉积在泡沫体上来进行。另一种方法包含制备金属(举例来说,钛和钒)的涂层浆料,并且接着将其沉积在泡沫体上。
NOx还原催化剂还可以包含有助于将催化剂粘合到载体(support)和/或陶瓷或金属泡沫体上的粘合剂材料。
用于降低含微粒气流中NOx浓度的方法包含使含有NOx的第一气流进入接触区。气流可能来自多个来源,包括发电厂、热裂解炉、焚化炉、冶金厂、化肥厂和化工厂。气流包含相当大量的粉尘。
气流包含至少5mg/Nm3的粉尘。本发明的方法可以处理具有至少10mg/Nm3的粉尘的气流。所述方法能够处理具有至少20mg/Nm3的粉尘,优选至少30mg/Nm3的粉尘,并且更优选至少70mg/Nm3的粉尘的气流。
使气流与陶瓷或金属泡沫体催化剂床接触,其中所述催化剂床包含NOx还原催化剂以产生第二气流。催化剂床具有一个或多个穿过所述催化剂床的流动路径,其允许气流与NOx还原催化剂之间的接触。
气流中NOx的还原可以在0kPa至1200kPa范围内的压力和100℃至400℃范围内的温度下进行。温度优选在100℃至350℃的范围内,更优选在100℃至250℃的范围内,并且最优选在140℃至220℃的范围内。
许多催化剂需要更高的温度以实现NOx的高转化率。优选使用在上述温度下具有高活性和选择性的催化剂,从而可以使用较低的温度。在接触条件下,NOx还原催化剂可以通过化学转化除去至少大部分的NOx。第二气流含有至多40%存在于进料气流中的NOx。此第二气流含有至多25%存在于第一气流中的NOx,优选至多5%存在于第一气流中的NOx,并且更优选至多1%存在于第一气流中的NOx
第二气流含有至少50%存在于进料至催化剂床的第一气流中的粉尘。第二气流优选包含至少60%存在于第一气流中的粉尘,并且更优选包含至少80%存在于第一气流中的粉尘。即使在包含高含量粉尘的气流通过泡沫体持续一段时间后,整个陶瓷或金属泡沫体上的压降也不会显著增加。整个泡沫体催化剂上的压降可能在操作过程中增加,但不足以影响deNOx系统的操作。在气流含有至少5mg/Nm3粉尘的条件下,在整个操作过程中,在于相同条件下测量的情况下,泡沫体催化剂床的压降相对于初始压降增加300%或更少。优选地,在整个操作过程中,泡沫体催化剂床的压降相对于初始压降增加200%或更少。由于泡沫体催化剂床中积聚了一些粉尘,压降增加。
实例
实例1
在此实例中,测试deNOx催化剂粒料(A)的固定催化剂床和泡沫体陶瓷deNOx催化剂(B)的固定催化剂床以测定使具有高粉尘含量的气流通过催化剂床的效果。催化剂粒料为3.2mm三叶形粒料。陶瓷泡沫体deNOx催化剂具有每英寸18个孔隙。测试在粉尘过滤实验室中进行,并且包含使含有浓度为70mg/Nm3的粉尘的空气通过催化剂床。粉尘的平均粒径为1微米。使用相同的颗粒和浓度以比较两种类型的催化剂床。测量环境温度和压力下整个催化剂床的压降。此测试的结果展示在图1中,其中在含有粉尘的气流通过催化剂床的时间期间,绘制背压随所述时间(以分钟为单位)的变化。
如从图中可见,陶瓷泡沫体催化剂最初的背压比催化剂粒料更低。此外,当粉尘通过催化剂床时,陶瓷泡沫体的背压仅轻微增加,而粒料催化剂的背压迅速增加至最大系统设计压力。此时,催化剂粒料必须在可以继续使用之前进行清洁。
除测量背压之外,还测量了通过泡沫体陶瓷催化剂床的粉尘的量。最初,当测试开始时,60%的进入陶瓷泡沫体的粉尘通过催化剂床。在气流通过陶瓷泡沫体催化剂床达给定时间之后,通过泡沫体的粉尘的量被测定为64%。此实例展示,陶瓷泡沫体催化剂床可以在高粉尘条件下操作,并且催化剂粒料在高粉尘条件下不能有效操作。
实例2
在此实例中,测试了三种催化剂以测定它们对NOx转化的活性。第一测试(C)使用具有每英寸30个孔隙的陶瓷泡沫体催化剂。第二测试(D)使用具有每英寸18个孔隙的陶瓷泡沫体催化剂。第三测试(E)使用3.2mm三叶形催化剂粒料。测试在固定床反应器中进行,并且所有三个试验的催化剂负载量相同。所有三个测试的空速维持在恒定的22,000hr-1,并且测试在环境压力下进行。入口气体组成为300ppm NH3、200ppm NO、10%H2O、7.5%O2,其余为氮气。使用FTIR仪器分别监测催化剂床前后的NO浓度。实例的结果显示在图2中。如从图中可见,陶瓷泡沫体的活性与催化剂粒料相当,并且在较高温度下的活性比催化剂粒料更高。
这些实例展示,陶瓷泡沫体催化剂可以用于有效地降低气流中的NOx含量,并且此外陶瓷泡沫体催化剂床可以在高粉尘条件下使用。

Claims (37)

1.一种包含陶瓷或金属泡沫体的催化剂床,所述陶瓷或金属泡沫体包含一种或多种NOx还原催化剂。
2.根据权利要求1所述的催化剂床,其中所述陶瓷或金属泡沫体具有至少60%的空隙空间。
3.根据权利要求1所述的催化剂床,其中所述陶瓷或金属泡沫体具有至少70%的空隙空间。
4.根据权利要求1所述的催化剂床,其中所述陶瓷或金属泡沫体具有至少80%的空隙空间。
5.根据权利要求1到4中任一项所述的催化剂床,其中所述陶瓷或金属泡沫体具有互连的内部曲折孔隙结构。
6.根据权利要求1到5中任一项所述的催化剂床,包含曲折度大于1.0的穿过所述催化剂床的流动路径。
7.根据权利要求1到6中任一项所述的催化剂床,其中所述催化剂床具有每英寸约5至约50个孔隙。
8.根据权利要求1到6中任一项所述的催化剂床,其中所述催化剂床具有每英寸约10至约30个孔隙。
9.根据权利要求1到8中任一项所述的催化剂床,其中所述陶瓷泡沫体包含堇青石、氧化钛或氧化铝。
10.根据权利要求1到8中任一项所述的催化剂床,其中所述金属泡沫体包含镍、铁或其合金。
11.根据权利要求1到10中任一项所述的催化剂床,其中所述NOx还原催化剂包含钒、钼、钨或其混合物。
12.根据权利要求1到11中任一项所述的催化剂床,其中所述催化剂床进一步包含粘合剂材料。
13.一种用于降低含粉尘气流中NOx浓度的方法,包含:
a.使含有NOx的第一气流进入接触区;
b.使所述第一气流与陶瓷或金属泡沫体催化剂床接触,所述陶瓷或金属泡沫体催化剂床具有一个或多个穿过所述催化剂床的流动路径,其中所述陶瓷或金属泡沫体包含NOx还原催化剂以产生NOx浓度降低的第二气流;以及
c.使所述第二气流离开所述接触区
其中所述第一气流具有至少5mg/Nm3的粉尘浓度,并且在于相同条件下测量的情况下,由于粉尘积聚,所述泡沫体催化剂床的压降相对于所述泡沫体催化剂床的初始压降增加300%或更少。
14.根据权利要求13所述的方法,其中所述第一气流具有至少10mg/Nm3的粉尘浓度。
15.根据权利要求13所述的方法,其中所述第一气流具有至少20mg/Nm3的粉尘浓度。
16.根据权利要求13所述的方法,其中所述第一气流具有至少30mg/Nm3的粉尘浓度。
17.根据权利要求13所述的方法,其中所述第一气流具有至少70mg/Nm3的粉尘浓度。
18.根据权利要求13到17中任一项所述的方法,其中在于相同条件下测量的情况下,由于粉尘积聚,所述泡沫体催化剂床的压降相对于所述泡沫体催化剂床的初始压降增加200%或更少。
19.根据权利要求13到18中任一项所述的方法,其中所述第二气流含有至多40%存在于所述第一气流中的所述NOx
20.根据权利要求13到19中任一项所述的方法,其中所述第二气流含有至多25%存在于所述第一气流中的所述NOx
21.根据权利要求13到20中任一项所述的方法,其中所述第二气流含有至多5%存在于所述第一气流中的所述NOx
22.根据权利要求13到21中任一项所述的方法,其中所述第二气流含有至多1%存在于所述第一气流中的所述NOx
23.根据权利要求13到22中任一项所述的方法,其中所述接触在100至250℃的温度下进行。
24.根据权利要求13到23中任一项所述的方法,其中所述接触在140至220℃的温度下进行。
25.根据权利要求13到24中任一项所述的方法,其中所述催化剂床具有每英寸约5至约50个范围内的孔隙。
26.根据权利要求13到24中任一项所述的方法,其中所述催化剂床具有每英寸约10至约30个范围内的孔隙。
27.根据权利要求13到26中任一项所述的方法,其中所述陶瓷或金属泡沫体具有至少60%的空隙空间。
28.根据权利要求13到26中任一项所述的方法,其中所述陶瓷或金属泡沫体具有至少70%的空隙空间。
29.根据权利要求13到26中任一项所述的方法,其中所述陶瓷或金属泡沫体具有至少80%的空隙空间。
30.根据权利要求13到29中任一项所述的方法,其中所述陶瓷或金属泡沫体具有互连的内部曲折孔隙结构。
31.根据权利要求13到30中任一项所述的方法,其中所述催化剂床包含曲折度大于1.0的穿过所述催化剂床的流动路径。
32.根据权利要求13到31中任一项所述的方法,其中所述催化剂床具有每英寸约5至约50个孔隙。
33.根据权利要求13到31中任一项所述的方法,其中所述催化剂床具有每英寸约10至约30个孔隙。
34.根据权利要求13到33中任一项所述的方法,其中所述陶瓷泡沫体包含堇青石、氧化钛或氧化铝。
35.根据权利要求13到34中任一项所述的方法,其中所述金属泡沫体包含镍、铁或其合金。
36.根据权利要求13到35中任一项所述的方法,其中所述NOx还原催化剂包含钒、钼、钨或其混合物。
37.根据权利要求13到36中任一项所述的方法,其中所述催化剂床进一步包含粘合剂材料。
CN201680075248.1A 2015-12-22 2016-12-20 一种用于减少氮氧化物的催化剂床和方法 Pending CN108430607A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562270859P 2015-12-22 2015-12-22
US62/270,859 2015-12-22
PCT/US2016/067651 WO2017112615A1 (en) 2015-12-22 2016-12-20 A catalyst bed and method for reducing nitrogen oxides

Publications (1)

Publication Number Publication Date
CN108430607A true CN108430607A (zh) 2018-08-21

Family

ID=57915065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680075248.1A Pending CN108430607A (zh) 2015-12-22 2016-12-20 一种用于减少氮氧化物的催化剂床和方法

Country Status (5)

Country Link
US (1) US11020732B2 (zh)
EP (1) EP3393630A1 (zh)
JP (1) JP7041062B2 (zh)
CN (1) CN108430607A (zh)
WO (1) WO2017112615A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3393629B1 (en) 2015-12-22 2021-01-20 Shell Internationale Research Maatschappij B.V. A catalyst bed and method for reducing nitrogen oxides
EP3393630A1 (en) 2015-12-22 2018-10-31 Shell Internationale Research Maatschappij B.V. A catalyst bed and method for reducing nitrogen oxides
EP3393631A1 (en) 2015-12-22 2018-10-31 Shell Internationale Research Maatschappij B.V. A reactor for reducing nitrogen oxides
EP3840859B1 (en) 2018-08-22 2022-05-11 Shell Internationale Research Maatschappij B.V. A process for selective catalytic reduction process and for regenerating deactivated scr catalyst of a parallel flue gas treating system
CN112638504A (zh) 2018-08-22 2021-04-09 国际壳牌研究有限公司 选择性催化还原方法和使方法的失活的催化剂再生的方法
CN112601598A (zh) 2018-08-22 2021-04-02 国际壳牌研究有限公司 选择性催化还原方法和使方法的失活的催化剂离线再生
TWI786954B (zh) * 2021-11-22 2022-12-11 財團法人工業技術研究院 同時去除易燃氣體與一氧化二氮的裝置與方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774285A (zh) * 2003-04-14 2006-05-17 Sk株式会社 从柴油机废气中去除烟灰颗粒的催化过滤器及其制造方法
US7255848B2 (en) * 2002-10-01 2007-08-14 Regents Of The Univeristy Of Minnesota Production of hydrogen from alcohols
CN101172257A (zh) * 2006-11-01 2008-05-07 张世臣 应用于尾气过滤及催化剂载体的泡沫铁铬铝及其制作工艺
CN202270481U (zh) * 2011-09-02 2012-06-13 中国第一汽车股份有限公司 出口端组合的scr后处理器结构
CN103585825A (zh) * 2012-08-17 2014-02-19 帕尔公司 催化剂过滤模块和包括催化剂过滤模块的催化剂过滤系统

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111396A (en) 1960-12-14 1963-11-19 Gen Electric Method of making a porous material
US4027476A (en) * 1973-10-15 1977-06-07 Rocket Research Corporation Composite catalyst bed and method for making the same
JPS536099B2 (zh) 1974-12-28 1978-03-04
US4031185A (en) 1975-02-03 1977-06-21 Hitachi, Ltd. Process for making nitrogen oxides contained in flue gas harmless
JPS6052856B2 (ja) 1975-09-05 1985-11-21 株式会社神戸製鋼所 固定燃焼装置よりの排ガス中に含まれる窒素酸化物の除去法
FR2450784A1 (fr) * 1979-03-05 1980-10-03 Rhone Poulenc Ind Catalyseur d'elimination des oxydes d'azote contenus dans un courant gazeux
JPS5710319A (en) 1980-06-23 1982-01-19 Toyota Motor Corp Exhaust gas filter for internal combustion engine
JPS57174145A (en) 1981-04-20 1982-10-26 Kawasaki Heavy Ind Ltd Platelike catalytic body for denitration
US4617289A (en) 1984-08-08 1986-10-14 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying diesel engine exhaust gases
US4663300A (en) 1985-12-23 1987-05-05 Uop Inc. Pollution control catalyst
CN1025157C (zh) 1989-04-21 1994-06-29 中国科学院大连化学物理研究所 具有双层孔结构氧化铝涂层的催化剂
JPH084714B2 (ja) 1992-04-02 1996-01-24 三菱重工業株式会社 排ガス処理方法
US5413699A (en) 1993-10-14 1995-05-09 Mobil Oil Corporation FCC process with fines tolerant SCR reactor
US5536477A (en) 1995-03-15 1996-07-16 Chang Yul Cha Pollution arrestor
EP0768110B1 (en) 1995-10-09 2002-02-20 Shell Internationale Researchmaatschappij B.V. Catalyst and process for converting nitrogen oxide compounds
ZA969861B (en) * 1995-11-27 1997-05-27 Shell Int Research Process for the preparation of a catalyst or catalyst precursor
ATE201331T1 (de) * 1997-09-09 2001-06-15 Aea Technology Plc Behandlung von abgasen
US6125629A (en) * 1998-11-13 2000-10-03 Engelhard Corporation Staged reductant injection for improved NOx reduction
US20040118747A1 (en) * 2002-12-18 2004-06-24 Cutler Willard A. Structured adsorbents for desulfurizing fuels
FR2860993B1 (fr) * 2003-10-16 2006-06-16 Sicat Filtre catalytique a base de carbure de silicium (b-sic) pour la combustion des suies issues des gaz d'echappement d'un moteur a combustion
JP2006205091A (ja) 2005-01-28 2006-08-10 Takuma Co Ltd 脱硝触媒および排ガス処理方法
JP2006212515A (ja) 2005-02-02 2006-08-17 Takuma Co Ltd 脱硝触媒およびその製造方法、並びに排ガス処理方法
US7062904B1 (en) 2005-02-16 2006-06-20 Eaton Corporation Integrated NOx and PM reduction devices for the treatment of emissions from internal combustion engines
AT501463B8 (de) 2005-05-04 2007-02-15 Pankl Emission Control Systems Hybridvorrichtung zum entfernen von russpartikeln aus dieselabgasen
KR20080046650A (ko) 2005-08-05 2008-05-27 바스프 카탈리스트 엘엘씨 디젤 배기가스 처리 장치 및 이것을 위한 촉매 조성물
US7506504B2 (en) 2005-12-21 2009-03-24 Basf Catalysts Llc DOC and particulate control system for diesel engines
US7527774B2 (en) 2005-12-22 2009-05-05 Basf Catalysts Llc Inlet metallic foam support coupled to precious metal catalyst for application on 4 stroke platforms
US7736608B2 (en) * 2007-11-29 2010-06-15 General Electric Company Methods and systems for reducing the emissions from combustion gases
WO2009083593A1 (en) 2008-01-02 2009-07-09 Shell Internationale Research Maatschappij B.V. Reactor and process for the decomposition of nitrogen oxides in gases
US9475002B2 (en) * 2009-04-22 2016-10-25 Basf Corporation Partial filter substrates containing SCR catalysts and methods and emissions treatment systems
US8178064B2 (en) * 2009-05-11 2012-05-15 Basf Corporation Treatment of power utilities exhaust
JP6370713B2 (ja) * 2012-02-06 2018-08-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 窒素酸化物を含有するガスストリームを処理する方法および装置
CN103697487B (zh) * 2013-12-30 2016-05-11 上海克莱德贝尔格曼机械有限公司 一种烟气处理装置
US9579603B2 (en) * 2014-08-15 2017-02-28 Johnson Matthey Public Limited Company Zoned catalyst for treating exhaust gas
CN105289676B (zh) 2015-10-27 2017-10-31 展宗城 一种泡沫状低温scr催化剂及其制备方法
EP3393629B1 (en) 2015-12-22 2021-01-20 Shell Internationale Research Maatschappij B.V. A catalyst bed and method for reducing nitrogen oxides
EP3393630A1 (en) 2015-12-22 2018-10-31 Shell Internationale Research Maatschappij B.V. A catalyst bed and method for reducing nitrogen oxides
EP3393631A1 (en) 2015-12-22 2018-10-31 Shell Internationale Research Maatschappij B.V. A reactor for reducing nitrogen oxides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255848B2 (en) * 2002-10-01 2007-08-14 Regents Of The Univeristy Of Minnesota Production of hydrogen from alcohols
CN1774285A (zh) * 2003-04-14 2006-05-17 Sk株式会社 从柴油机废气中去除烟灰颗粒的催化过滤器及其制造方法
CN101172257A (zh) * 2006-11-01 2008-05-07 张世臣 应用于尾气过滤及催化剂载体的泡沫铁铬铝及其制作工艺
CN202270481U (zh) * 2011-09-02 2012-06-13 中国第一汽车股份有限公司 出口端组合的scr后处理器结构
CN103585825A (zh) * 2012-08-17 2014-02-19 帕尔公司 催化剂过滤模块和包括催化剂过滤模块的催化剂过滤系统

Also Published As

Publication number Publication date
US11020732B2 (en) 2021-06-01
WO2017112615A1 (en) 2017-06-29
JP2019505370A (ja) 2019-02-28
EP3393630A1 (en) 2018-10-31
US20180369800A1 (en) 2018-12-27
JP7041062B2 (ja) 2022-03-23

Similar Documents

Publication Publication Date Title
CN108430607A (zh) 一种用于减少氮氧化物的催化剂床和方法
CN105247179B (zh) 用于处理废气的经催化的过滤器
EP3004578B1 (en) Catalyzed filter for treating exhaust gas
US11911728B2 (en) Reactor for reducing nitrogen oxides
CN101528343B (zh) 金属汞的氧化催化剂
JP2016531736A (ja) タングステン/チタニア酸化触媒
CN101069849A (zh) 一氧化碳和挥发性有机化合物氧化分解催化剂
CN107427771A (zh) 催化的陶瓷烛式过滤器和清洁尾气或废气的方法
JP6315194B2 (ja) 排ガス浄化用触媒、その製造方法、及び、それを用いた排ガス浄化方法
US10960352B2 (en) Catalyst bed and method for reducing nitrogen oxides
CN109789395A (zh) 包含硫化合物的氧化催化剂
CN106061586A (zh) 改进的催化烟灰过滤器
TW202103768A (zh) 用於處理來自固定排放源之含微粒排氣的催化過濾系統
CN107427772A (zh) 催化的陶瓷烛式过滤器和清洁工艺尾气或废气的方法
JP2022530639A (ja) 超低NOxとコールドスタートのための排気ガス処理システム
US20160332118A1 (en) Non noble metal based diesel oxidation catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination