CN108424917B - Maize C-type cytoplasmic male sterile nuclear restoring gene and application thereof - Google Patents

Maize C-type cytoplasmic male sterile nuclear restoring gene and application thereof Download PDF

Info

Publication number
CN108424917B
CN108424917B CN201810182640.7A CN201810182640A CN108424917B CN 108424917 B CN108424917 B CN 108424917B CN 201810182640 A CN201810182640 A CN 201810182640A CN 108424917 B CN108424917 B CN 108424917B
Authority
CN
China
Prior art keywords
leu
ser
arg
ala
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810182640.7A
Other languages
Chinese (zh)
Other versions
CN108424917A (en
Inventor
薛亚东
汤继华
丁冬
付志远
李卫华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Agricultural University
Original Assignee
Henan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Agricultural University filed Critical Henan Agricultural University
Priority to CN201810182640.7A priority Critical patent/CN108424917B/en
Publication of CN108424917A publication Critical patent/CN108424917A/en
Application granted granted Critical
Publication of CN108424917B publication Critical patent/CN108424917B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention belongs to the technical field of genetic engineering, and particularly relates to a maize C-type cytoplasmic male sterile nuclear restoring gene, which comprises the following components: a nucleotide sequence shown in any one of SEQ ID No. 1-4, or a nucleotide sequence complementary or identical with the nucleotide sequence, an active fragment and the like. The invention also relates to a promoter, an expression polypeptide, a recombinant construct, a host cell of the restoring gene and application of the restoring gene in crop improvement. The maize C-type cytoplasmic male sterile nuclear restoring gene can not only solve the limitation of artificial factors, but also effectively make up for the defects of low accuracy and poor timeliness of the traditional maize breeding selection technology and accelerate the breeding process.

Description

Maize C-type cytoplasmic male sterile nuclear restoring gene and application thereof
Technical Field
The invention belongs to the technical field of genetic engineering, and particularly relates to a maize C-type cytoplasmic male sterile nuclear restoring gene and application thereof.
Background
Corn is one of the most successful crops in utilizing heterosis worldwide, and the production of high-purity and high-quality hybrid corn seeds is an essential prerequisite for ensuring the utilization of heterosis. Because the corn has the biological characteristics of isofloria of hermaphrodite isofloria, the hybrid seed production can be carried out by adopting modes of manual emasculation or mechanical emasculation and the like, but with the continuous increase of labor cost, the manual emasculation cost becomes a key factor of the hybrid seed cost, and the international competitiveness of seed enterprises in China is restricted to a certain extent. In addition, due to untimely and incomplete artificial emasculation, the purity of hybrid seeds is often reduced, and the yield of the corn is influenced to a certain extent. Mechanical detasseling can save labor cost, but because the plants grow in the field inconsistently, the manual detasseling is also required to be checked manually whether the detasseling is complete, so that a part of labor cost is still required to be increased in production. Corn is the first large grain crop in China, the annual sowing area is about 5 hundred million mu, the annual seed demand is about 10 hundred million kilograms, and the annual seed production area is maintained at about 250 thousand mu. Because the local population is less, the labor shortage in the castration season becomes a limiting factor for further development of corn seed production.
The male sterility has the hereditary characteristics of pollen abortion and normal female gamete, and can be divided into two types of cytoplasmic male sterility and nuclear male sterility according to the hereditary characteristics. The abortion of the nuclear male sterility occurs in the meiosis period, and the method has the characteristics of complete abortion, stable sterility and the like, and needs to utilize an endosperm color gene or a yellow-green seedling gene linked with a nuclear sterile gene for early identification in the seed production by utilizing a sterile line, so that the method has higher application risk due to the linked tightness degree and the deviation of artificial identification. In order to utilize the nuclear sterile gene, pioneer in the United states constructs a vector containing gamete lethal, color display and other genes through ingenious design, and introduces the vector into a female parent through genetic transformation to form an SPT (seed Production technology) inbred line. The SPT inbred line is inbred to generate two filial generations of a non-transgenic sterile line and an SPT fertile line in a ratio of 1:1, and the propagation problem of the sterile line is solved and the diffusion of transgenic pollen is effectively avoided through fluorescent screening. Subsequently, the rice develops a corresponding SPT technology, and the technology has wide application prospect in future crossbreeding. However, the expensive large-scale sorting equipment still represents a small investment for many small and medium-sized seed enterprises. Related art development attempts have also been made in corn, and the application thereof has been limited due to relative difficulty in transformation and insufficient related patent reserves.
Corn is a crop which firstly utilizes cytoplasmic male sterile line to produce hybrid seeds, the T-type cytoplasmic male sterile line is utilized for producing the hybrid seeds in a large area in the American corn production in the 50 th century, the hybrid seeds utilized in the American corn production in the 70 th century almost all adopt sterility to produce the seeds, but the specific infection of T microspecium of corn causes the prevalence of microspecium, and the utilization of T-type cytoplasmic male sterility is forced to stop. Turning to research on the utilization of maize for type C and S sterile cytoplasm, maize geneticbreeders reported that 33.9% of sterile cytoplasm, 22.1% of type C and 11.5% of type S, were present in hybrid seeds sold in the last 90S of the united states. The corn C-type cytoplasm sterility has the outstanding characteristics of stable sterility, easy recovery and the like, and can be divided into three sterile cytoplasm types of CI, CII and CIII according to the difference of enzyme digestion polymorphism of mitochondria, wherein the CII and CIII sterile cytoplasm types do not have specific infection on the small blotch C, and become an important type for the production of corn hybrid seeds. Restoration of maize C-type cytoplasmic male sterility is controlled by two pairs of overlapping restorer genes, Rf4 and Rf5, located on chromosome 8 and chromosome 2, respectively, of maize, wherein the restorer gene Rf5 also presents a dominant suppressor gene, Rf-I, which is designated on chromosome 7.
The transformation of the traditional sterile line and the restorer line is mainly identified according to the field phenotype of the corn plant in the pollen scattering period, the transformation can be completed only by 6-8 generations, and the selected timeliness is limited to a certain extent.
Therefore, a new technology is urgently needed to be developed, which can not only solve the limitation of artificial factors, but also make up the defects of low accuracy and poor timeliness of the traditional selection technology, and accelerate the breeding process.
Disclosure of Invention
Aiming at the problems in the prior art, the invention provides a gene capable of recovering the C-type cytoplasm fertility of corn, which can not only solve the limitation of artificial factors, but also effectively make up the defects of low accuracy and poor timeliness of the traditional corn breeding selection technology and accelerate the breeding process.
In order to solve the technical problems, the invention is realized by the following technical scheme:
the invention provides a maize C-type cytoplasmic male sterile nuclear restoring gene, which comprises a nucleotide sequence of any one of the following:
(1) a nucleotide sequence shown as any one of SEQ ID Nos. 1-4;
(2) a nucleotide sequence that hybridizes under at least moderately stringent conditions to the complement of the nucleotide sequence of (1);
(3) a nucleotide sequence having at least 80% identity to the nucleotide sequence of (1);
(4) a nucleotide sequence encoding the same amino acid sequence as the nucleotide sequence of (1);
(5) a nucleotide sequence encoding one of the following amino acid sequences: an amino acid sequence as set forth in any one of SEQ ID Nos. 7 to 8, or an amino acid sequence which differs from SEQ ID Nos. 7 to 8 due to substitution, deletion and/or insertion of one or more amino acid residues, or an amino acid sequence which has at least 70% identity to an amino acid sequence as set forth in any one of SEQ ID Nos. 7 to 8;
(6) an active fragment of the nucleotide sequence of any one of (1) to (5);
(7) a nucleotide sequence complementary to any one of the nucleotide sequences (1) to (5);
(8) and other nucleotide sequences different from SEQ ID Nos. 3 to 4 are generated by selectively cutting and selecting different transcription start sites or transcription termination sites from SEQ ID Nos. 3 to 4.
Wherein, one cDNA sequence of Rf4 and Rf4 is shown as SEQ ID No. 1-2, the nucleotide sequence of the related promoter is shown as SEQ ID No. 5-6, and the amino acid sequence of the encoded protein is shown as SEQ ID No. 7-8. See table 1 below for details.
Table 1 SEQ ID No: 1-8 sequence names and sources thereof
Figure 918571DEST_PATH_IMAGE001
Preferably, the maize C-type cytoplasmic male sterile nuclear restorer gene of the invention is shown in SEQ ID No: 1 is shown.
The invention also provides a promoter of the maize C-type cytoplasmic male sterile nuclear restorer gene, which comprises a nucleotide sequence of any one of the following;
(1) SEQ ID No: 5-6 of any one of the nucleotide sequences shown in the specification;
(2) a nucleotide sequence that hybridizes under at least moderately stringent conditions to the complement of the nucleotide sequence of (1);
(3) a nucleotide sequence having at least 80% identity to the nucleotide sequence of (1);
(4) an active fragment of the nucleotide sequence of any one of (1) to (3);
(5) a nucleotide sequence complementary to the nucleotide sequence of any one of (1) to (4);
(6) consisting of SEQ ID No: 3. 4 different transcription initiation results in the amino acid sequence of SEQ ID No: 5. 6 correspondingly varied nucleotide sequences.
The invention also provides a construct comprising the promoter sequence and a cell comprising the construct, wherein the cell is a plant cell, preferably a maize cell.
The invention also provides a polypeptide encoded by the restorer gene of the invention, comprising an amino acid sequence of any one of:
(1) SEQ ID No: 7. 8, or a pharmaceutically acceptable salt thereof;
(2) a substitution, deletion and/or insertion with one or more amino acid disabilities as compared to SEQ ID No: 7. 8 different amino acid sequences;
(3) and SEQ ID No: 7. 8, an amino acid sequence having at least 70% identity to the amino acid sequence set forth in any one of seq id nos;
(4) an active fragment of the amino acid sequence of (1) or (2) or (3);
(5) the amino acid sequence encoded by the restorer gene of the present invention.
Preferably, the protein has two conserved domains of SBP and ANK; or SBP conserved domain alone.
The invention also relates to a recombinant construct comprising the restorer gene of the invention. Wherein the vector used for the construct is a cloning vector or an expression vector for expressing the restorer gene.
The invention also relates to a recombinant host cell comprising a recombinant construct according to the invention or having integrated in its genome a restorer gene according to the invention. The host cell may be selected from plant cells or microbial cells, such as e.coli cells or agrobacterium cells, preferably plant cells, most preferably corn cells. The cell may be isolated, ex vivo, cultured or part of a plant.
The invention also relates to methods of improving a trait (e.g., generating or knocking out restoration of cytoplasmic C male sterility in a plant) in a plant, the method comprising preparing a plant comprising a restorer gene of the invention, e.g., the method may comprise: transgenic crop plants are obtained by regenerating a transgenic plant from a recombinant plant cell containing a restorer gene of the present invention or crossing a plant containing a restorer gene of the present invention with another plant, or transfecting a crop plant with a recombinant agrobacterium cell containing a restorer gene of the present invention. The trait includes the production or knockout of crop plants for restoration of cytoplasmic male sterility type C. Wherein the plant is preferably a plant which is not negatively affected by other traits than restored function, wherein the crop is preferably a crop plant, such as maize.
The present invention also relates to a method of improving a crop, the method comprising: transfecting a crop plant with a recombinant agrobacterium cell containing a restoring gene to obtain a transgenic crop plant, or adjusting the expression level of the restoring gene in the crop plant in a proper amount, or changing the biological activity of the restoring protein in a proper amount, or crossing a plant containing the restoring gene of the invention with another plant; wherein the plant is preferably a plant which is not negatively affected by other traits than restored function, wherein the crop plant is preferably a crop plant, such as maize.
The method for breeding the maize inbred line having restored maize C-type cytoplasmic male sterility fertility can be performed by: crossing a maize plant containing the restorer gene and allelic variation thereof with another maize plant, and carrying out continuous backcross to obtain a maize inbred line plant containing the restorer gene; or transfecting a maize plant with a recombinant host cell (e.g., an agrobacterium cell) comprising the restorer gene to obtain a transgenic maize plant containing the restorer gene.
The invention has the following positive and beneficial effects:
through intensive research, the invention determines the nucleotide sequence of the maize C-type cytoplasmic male sterile nuclear restorer gene and the expressed amino acid sequence thereof. The sequence of the invention can facilitate the creation of three-line matching materials of corn hybrid, shorten the breeding period, reduce the breeding cost and improve the seed production efficiency.
Drawings
FIG. 1 shows the results of screening of primer X-26 in M1, M2, M3, M4, and M5 super pools, 87-1: and (4) positive control.
FIG. 2 results of primer X-26 screening in the BAC subpool.
FIG. 3 Single clones screened for primer X-26.
FIG. 4 shows that the selected single clones were verified by linkage markers.
FIG. 5 Gene prediction results.
FIG. 6 Gene prediction results (continuation).
FIG. 7 real-time analysis of the differences in expression of gene No. 9 (A, B, R denotes sterile, maintainer and restorer lines respectively; the same numbers following the letters denote the corresponding developmental stages).
FIG. 8 schematic representation of the pCUB-Rf4 vector.
FIG. 9 test cross result of positive plant transformed by pCUB-Rf4 vector and sterile line.
FIG. 10 schematic diagram of the pBLUE411-Rf4 vector.
FIG. 11 shows the result of editing site detection of CRISPR/Cas9 transformed test cross sterile plants.
FIG. 12 CRISPR/Cas9 vector transformation for the test cross sterile phenotype.
Detailed Description
The invention will be further illustrated with reference to the following specific examples. It is to be understood that the following examples are intended only to further illustrate the present invention and are not intended to limit the spirit and scope of the present invention.
It should be noted that, unless otherwise specified, the reagents, enzymes and the like used in the following examples are those commercially available from reagent companies as analytical grade reagents or enzymes.
The present inventors have determined, through intensive studies, a fertility restorer gene Rf4 for maize C-type cytoplasm, which is located at the end of the short arm of chromosome eight. In addition to differences in coding regions, the promoter regions of the genes differ by virtue of different transcription initiation. Embodiments of the invention are developed based on their restored function to the C-type cytoplasm of maize.
Plant transformation
In a particularly preferred embodiment, at least one protein of the invention that restores fertility to maize C-type cytoplasmic male sterility is expressed in a higher organism, such as a plant. The nucleotide sequence of the restorer gene Rf4 of the present invention may be inserted into an expression cassette, which is then preferably stably integrated into the plant genome. In another preferred embodiment, the nucleotide sequence of the restorer gene Rf4 is comprised in a non-pathogenic self-replicating virus. Plants transformed according to the present invention may be monocotyledonous or dicotyledonous plants including, but not limited to, maize, wheat, barley, rye, sweet potato, beans, peas, chicory, lettuce, cabbage, cauliflower, onion, garlic, squash, apple, pear, strawberry, pineapple, tomato, sorghum, sunflower, rapeseed rape, carrot, rice, eggplant, cucumber, arabidopsis. Particularly preferred are corn, rice, wheat, barley.
Once the desired nucleotide sequence has been transformed into a particular plant species, it may be propagated in that species or transferred into other varieties of the same species, including particularly commercial varieties, using conventional breeding techniques.
Preferably, the nucleotide sequences according to the invention are expressed in transgenic plants, which result in the biosynthesis of the corresponding restored functional proteins in the transgenic plants. In this way, transgenic plants with restored function can be produced. In order to express the nucleotide sequence of the present invention in transgenic plants, the nucleotide sequence of the present invention may need to be modified and optimized. All organisms have a particular codon usage preference, which is known in the art, and the codons can be changed to conform to plant preferences while maintaining the amino acids encoded by the nucleotide sequences of the present invention. Moreover, high levels of expression in plants can best be achieved from coding sequences having at least about 35%, preferably more than about 45%, more preferably more than 50%, and most preferably more than about 60% GC content.
Example 1: acquisition of maize C-type cytoplasmic male sterility restorer gene Rf4 sequence
The restorer gene Rf4 derived from A618 was selfed after 8 generations of continuous backcrossing, and finally the Rf4 gene was introduced into the background of selfed line Yu 87-1. And (3) constructing a BAC library by taking Cms-es87-1Rf4Rf4 as a material. The clone of the recovery region of Rf4 was selected from the maize inbred line 87-1BAC mixed pool by PCR (see Table 1 for reaction system and Table 2 for reaction program). The composition of the maize inbred line 87-1BAC pool is 1296 subpools and 16 super pools. Screening, obtaining a subpool where a positive target clone is located through two PCR reactions, taking 1 mu L of bacterial liquid in the subpool, diluting, coating a plate, selecting a monoclonal to be cultured in a 96-hole cell culture plate, then respectively taking part of the bacterial liquid of 96 monoclonal of each plate and merging the part of the bacterial liquid into a centrifugal tube, finding the plate where the positive clone is located through the PCR reaction, then respectively taking part of the bacterial liquid of each plate transversely crossing 12 holes and longitudinally crossing 8 holes and merging the part of the bacterial liquid into a centrifugal tube to obtain 20 in total, and then obtaining the target positive clone through one-time PCR reaction. Positive clones continued to be verified by closely linked markers (fig. 1-4). The final positive clone entrusted the company to test through the sequence. Sequencing result analysis shows that the physical distance between the two markers X-21-1 and X-33 which are closest to the target gene is about 45000Nt, 9 possible gene regions are shared between the two markers through gene function prediction, and 2, 5 and 8 have no functional annotation; 1. 3 is related to retrotransposon; 4 a protein kinase; 6 is a related protein that regulates the cytoskeleton; 7 is a histone like protein; 9 is a promoter binding protein (FIGS. 5, 6).
The 9 gene transcript was subjected to expression analysis by using real-time, and the 9 gene had significant difference between fertile sterile lines (fig. 7), and was determined to be a candidate gene of the restored gene Rf 4.
TABLE 2 PCR reaction System
Figure 635991DEST_PATH_IMAGE002
TABLE 3 PCR reaction procedure
Figure 968884DEST_PATH_IMAGE003
Labeling the primer sequence:
x-26F:5'-GGGATTTGAACGACTGGAGGT-3'
x-26R:5'-TCGTCTCCTCAGTGTTCCGC-3'
x-33F:5'-CACACACGAGGGGAGGAGGT-3'
x-33R:5'-AAGGTCTTTGTTGTCGGGCA-3'
x-21-1F:5'-TTTCTTCTCAGGGTGGTCTTGC-3'
x-21-1R:5'-CACCTTTCCACCTCGCCTATT-3'。
example 2: rf4 corn transgenic experiment and transgenic material fertility analysis
In this example, the restorer Cms-es87-1Rf4Rf4 binary anther was used as a material, and the full-length cDNA of Rf4 gene was obtained by reverse transcription and amplification.
(1) Construction and transformation of Rf4 overexpression transgenic vector
Primers related to the cDNA sequence of Rf4 Gene:
CUB-BamH1-F: 5’-CGCGGATCCATGGAAGCCGGTTTCCTGTG-3’
CUB-Sma1-R:5’-TCCCCCGGGTCACTTATCGTCGTCATCCTTGTAATCATTGGGGCCCCAACG-3’
the full-length cDNA of Rf4 gene was used as a template to amplify a full-length Rf4 sequence, and the PCR product was digested with SalI and Kpn to recover a target fragment, which was ligated to a pCUB vector recovered by digestion with the same two enzymes, to construct an overexpression vector pCUB-Rf4 (FIG. 8). The vector is introduced into a maize transformation receptor inbred line C01 by an agrobacterium-mediated transformation method. The transgenic positive plants are subjected to test crossing with a Cms-es87-1rf4rf4 sterile line, and the result shows that the transgenic positive plants containing the construct can restore the fertility of the maize C-type cytoplasmic male sterile line (figure 9).
(2) Construction and transformation of Rf4 editing vectors
Based on the amino acid sequence corresponding to the CDS sequence of Rf4 gene, SBP, ANK and TM are predicted to be present in the functional domain of Rf4 gene. Therefore, aiming at the nucleotide sequences corresponding to the two functional domains of SBP and ANK, the following target sequences are involved according to the requirements of constructing the CRISPR vector:
SBP1:5‘-CAGAGAGGGCGGAACACTGAGG-3’
SBP2:5‘-CACGTCTGGCACAACATAATGG-3’
ANK1: 5‘-AAATCTTGCAACAGGGAAGCGG-3’
ANK2: 5‘-TTGACAGTTCAGTCATCGCAGG-3’
synthesizing corresponding oligonucleotide primer sequence and the criprpr vector according to the target sequence for PCR amplification, purifying and recovering the amplification product, and establishing a BsaI-T4Ligase enzyme digestion link system.
TABLE 4 enzyme digestion linking System
Figure 783256DEST_PATH_IMAGE004
5 mu L of the ligation product was used to transform E.coli and screened on Kan plates. Positive clones were identified by colony PCR and confirmed by sequencing (fig. 10). The vector is introduced into a maize transformation receptor inbred line C01 by an agrobacterium-mediated transformation method. The transgenic positive plant and the Cms-es87-1Rf4Rf4 sterile line are subjected to test cross, and a positive sterile individual is screened for PCR sequencing detection, so that the SBP region of the target gene Rf4 is edited (figure 11), and the Rf4 recovery function is lost (figure 12).
The above examples show that the restorer gene of the present invention has a sequence which is the authentic sequence of the Rf4 gene and has fertility for restoring maize C-type cytoplasmic male sterility.
Sequence listing
<110> Henan university of agriculture
<120> maize C-type cytoplasmic male sterile nuclear restoring gene and application thereof
<160> 20
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3084
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
aacccacggt acccaatact tgactcggct ctctccatga gctactgttc catctccatt 60
tcttcaatca tttctcgcct ttcatgttca agggcgttgc ttgccaacca cggtatcgtt 120
ctagccgccg gggccgaacg aagtcgggga tgtaattgaa tccagcgatc tttggatgct 180
cgtcatacgt gccaacagca gggtcaattt ccctcgaaag agaagaccga ggaaatggaa 240
gccggtttcc tgtggaaaga gatcggtgac caagccggtg cggcgagaat gtccggtggg 300
aacaagaaca ggagcctcga ctgggatttg aacgactgga ggtgggacgc caacctgttc 360
ctggccacac cagcggccgc cgcgccatcc gagtccatca gcagggagct gagccgaggt 420
caggggagat cgatttcggc gtcgtcgttg acaagaggcg gcggctctca ccagaggagg 480
acggcagcgg cgggtgcagc aattctgcgg tagcagatgg agacaacaat cacgtggtgt 540
gtgttcagag agggcggaac actgaggaga cgagacccag gaaaggtgcc aattcgagca 600
ccactccttc ttgccaggtt gacggctgcc aagctgatct tagtggtgcc agggactacc 660
ataagaggca caaggtgtgt gaagcgcata ccaggacaac agtggtctgc atcaataatg 720
tagagcatcg gttctgtcag cagtgcagca ggtttcacct tcttcacgaa tttgatgatg 780
gtaagaagag ctgccgatca cgtctggcac aacataatgg aaggagaagg aaagttcaac 840
cgcaacctgc tgtgaacggg aattccatga atgaagatca gtctctaagt agcaccttat 900
tccttctgtt aaaacaactt tccgggctcg agtctggtag ctcttctgag caaatcaacc 960
atcctaattc tttggttaac cttttgaaga accttgctgc tattgctagc acacatgcat 1020
atcaagatgt tctaaagaat gcaacttcaa tatcatcaaa tgatggtaat aatgctgcaa 1080
atggctctat aatgcatgag caaaccatac ggtcaattcc tgtcaggaga gaatcattag 1140
cagaagagcc tgcggtgaaa agacgagtac aggactttga tttgaacgat tcatgcattg 1200
aagaagctga gagccgaaca gataaaattg tgttcaaact ctttggaaaa gagccaaaag 1260
attttcctgt agatctacgg gaacagatcc taaactggtt gtcgcattat ccaactgata 1320
tggaaagtta tattagacct ggttgtgtta ttctaactat ttaccttcac ctccctaatt 1380
ggatgtggga tgagtttaat gatgacccag cttcatggat agaaaatctt attagcttat 1440
ccaatgatgg attctggaga acaggatggt tgtatgctag ggtacaggac tgcctaacac 1500
tgagttgcaa tggtagtctt atgtttgcat ctccctggca accggtaatt ggtgacaagc 1560
atcagagact gtgtgtaact ccaattgcag ttgattgttc ttcgtcagta aaattctctg 1620
tgaaaggttt caatatagtt cagccaacca caaaattact ttgtgtgttt gatgaaaaat 1680
atttaattca agaagagaca caaatgctac ttgaagattc aactatgcag caaggccctc 1740
aatgcctgac cttctcttgt tcctttcctt gtacaagtgg aagaggattc atagagattg 1800
aagactatga tcaaagcagc ctttctgttc cctttgttgt cacggacaaa gatgtatgtt 1860
ctgagattcg gatgttggag catggattgg atttagtttc atttgatcaa acctccaaaa 1920
gaatagatga tctgatgatt tatcgcagtc gagcattaca ttttttgcat gaaatcggat 1980
ggcttcttca aaggagccat gtgcgagcta cgtctgagca gcgacaatat tgtcctgacc 2040
gcttccctgt tgcaagattt agatggctgc tatcctttgc agttgatcag gaatggtgtg 2100
ctgttctaag gaagcttctg aacaccatgt tccagggtga tattgatgta ttgtcaccaa 2160
ttgaatttgc cttgggagaa aatctattgc atactgcggt caaaaaacgc tcaaagcctt 2220
tagttgaatt tctattaaga tacaccacaa caaatattgc tccagtgggc ggtggagatg 2280
gtgctccagt tcagttcttg ttcactcctg cgatgactga actgtcaaat atcacacctc 2340
ttcatattgc agccacaatc agtgatgcta ttggtgtttt agatgcttta actgatgatc 2400
ctcagcagtt gggaatcaaa gcgtggaaga aagctcgtga cgccactggc tttactcctg 2460
aggaatatgc tgcaaagaga ggcaacatat cctatattca aatggtacag gacaaaattg 2520
acagaagggt gaccagagct catgtctcgg ttaccatgcc cagcacaatt gatactgtcg 2580
gaaagcatgc tagccgaatg aagcctgccg atcaaatcac atttggtgtt gagaaaaaac 2640
aactaagcat caaccaaaca ttgagctgca gacagtgtgt ccagcaggcc cagcagcttg 2700
cattccatcc ccgaacaaat aggtttctgt ctaataggac tgcgatgctt tccttggtct 2760
ccattgctgc cgtctgcgtc tgtgtgggat tgatcatgaa gagcctgcca caagttggtt 2820
gtatgaagcc tttcctctgg gacaatatac gttggggccc caattgatag actgcagaag 2880
agccagcccg attgtatcag tgtatgatga agatgtttgc gccgagcgaa gctagtttct 2940
tgtaatgtac atgtttctta tactaaatgt ctaacttatt tctgtttata gtaaaacctg 3000
tgaacttgcc tagcttgtaa ctccattgca tttgcatcct gactgaagta aagcttttac 3060
ttgttttggt tgagaggaag aaaa 3084
<210> 2
<211> 3078
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
aacccacggt acccaatact tgactcggct ctctccatga gctactgttc catctccatt 60
tcttcaatca tttctcgcct ttcatgttca agggcgttgc ttgccaacca cggtatcgtt 120
ctagccgccg gggccgaacg aagtcgggga tgtaattgaa tccagcgatc tttggatgct 180
cgtcatacgt gccaacagca gggtcaattt ccctcgaaag agaaggccga ggaaatggaa 240
gccggtttcc tgtggaaaga gatcggtgac caagccggtg cggcgagaat gtccggtggg 300
aacaagaaca ggagcctcga ctgggatttg aacgactgga ggtgggacgc caacctgttc 360
ctggccacac cagcggccgc cgcgccatcc gagtccatca gcagggagct gagccgaggt 420
cagggggaga tcgatttcgg cgtcgtcgtt gacaagaggc ggcggctctc accagaggag 480
gacggcagcg gtgggtgcag caattctgcg gtagcagatg gagacaacag tcacgtggtg 540
tgtgttcaga gagggcggaa cactgaggag acgagaccca ggaaaggtgc caattcgagc 600
accactcctt cttgccaggt tgacggctgc caagctgatc ttagtggtgc cagggactac 660
cataagaggc acaaggtgtg tgaagcgcat accaggacaa cagtggtctg catcaataat 720
gtagagcatc ggttctgtca gcagtgcagc aggtttcacc ttcttcacga atttgatgat 780
ggtaagaaga gctgccgatc acgtctggca caacataatg gaaggagaag gaaagttcaa 840
ccgcaacctg ctgtgaacgg gaattccatg aatgaagatc agtctctaag tagcacctta 900
ttccttctgt taaaacaact ttccgggctc gagtctggta gctcttctga gcaaatcaac 960
catcctaatt ctttggttaa ccttttgaag aaccttgctg ctattgctag cacacatgca 1020
tatcaagatg ttctaaagaa tgcaacttca atatcatcaa atgatggtaa taatgctgca 1080
aatggctcta taatgcatga gcaaaccata cggtcaattc ctgtcaggag agaatcatta 1140
gcagaagagc ctgcggtgaa aagacgagta caggactttg atttgaacga ttcatgcatt 1200
gaagaagccg agagccgaac agataaaatt gtgttcaaac tctttggaaa agagccaaaa 1260
gattttcctg tagatctacg ggaacagatc ctaaactggt tgtcgcatta tccaactgat 1320
atggaaagtt atattagacc tggttgtgtt attctaacta tttaccttca cctccctaat 1380
tggatgtggg atgagtttaa tgatgaccca gcttcatgga tagaaaatct tattagctta 1440
tccaatgatg gattctggag aacaggatgg ttgtatgcta gggtacagga ctgcctaaca 1500
ctgagttgca atggtagtct tatgtttgca tctccctggc aaccggtaat tggtgacaag 1560
catcagagac tgtgtgtaac tccaattgca gttgattgtt cttcgtcagt aaaattctct 1620
gtgaaaggtt tcaatatagt tcagccaacc acaaaattac tttgtgtgtt tgatgaaaaa 1680
tatttaattc aagaagagac acaaatgcta cttgaagatt caactatgca gcaaggccct 1740
caatgcctga ccttctcttg ttcctttcct tgtacaagtg gaagaggatt catagcagat 1800
tgaagactat gatcaaagca gcctttctgt tccctttgtt gtcacggaca aagatgtatg 1860
ttctgagatt cggatgttgg agcatggatt ggatttagtt tcatttgatc aaacctccaa 1920
aagaatagat gatctgatga tttatcgcag tcgagcatta cattttttgc atgaaatcgg 1980
atggcttctt caaaggagcc atgtgcgagc tacgtctgag cagcgacaat attgtcctga 2040
ccgcttccct gttgcaagat ttagatggct gctatccttt gcagttgatc aggaatggtg 2100
tgctgttcta aggaagcttc tgaacaccat gttccagggt gatattgatg tattgtcacc 2160
aattgaattt gccttgggag aaaatctatt gcatactgcg gtcaaaaaac gctcaaagcc 2220
tttagttgaa tttctattaa gatacaccac aacaaatatt gctccagtgg gcggtggaga 2280
tggtgctcca gttcagttct tgttcactcc tgcgatgact gaactgtcaa atatcacacc 2340
tcttcatatt gcagccacaa tcagtgatgc tattggtgtt ttagatgctt taactgatga 2400
tcctcagcag ttgggaatca aagcgtggaa gaatgctcgt gacgccactg gcttcactcc 2460
tgaggaatat gctgcaaaga gaggcaacat atcctatatt caaatggtac aggacaaaat 2520
tgacagaagg gtgaccagag ctcatgtctc ggttaccatc cccagcacaa ttgatactgt 2580
cggaaagcat ggtagccgaa tgaagcctgc cgatcaaatc acatttggtg ttgagaaaaa 2640
acaactaagc atcaaccaaa cattgagctg cagacagtgt gtccagcagg cccagcagct 2700
tgcattccat ccccggacaa ataggtttct gtctaatagg actgcgatgc tttccttggt 2760
ctccattgct gccgtctgcg tctgtgtggg attgatcatg aagagcctgc cacaagttgg 2820
ttgtatgaag cctttcctct gggacaatat acgttggggc cccaattgat agactgcaga 2880
agagccagcc cgattgtatc agtgtatgat gaagatgttt gcgccgagcg aagctagttt 2940
cttgtaatgt acatgtttct tatactaaat gtctaactta tttctgttta tagtaaaacc 3000
tgtgaacttg cctagcttgt aactccattg catttgcatc ctgactgaag taaagctttt 3060
acttgttttg gttgagag 3078
<210> 3
<211> 6273
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
aacccacggt acccaatact tgactcggct ctctccatga gctactgttc catctccatt 60
tcttcaatca tttctcgcct ttcatgttca agggcgttgc ttgccaacca cggtatcgtt 120
ctagccgccg gggccgaacg aaggtacttc ttggttcttg tactcttcat tagtttcagg 180
atttgtccca agtcccaacc cagggttggc aatccctttg tgttcgtgtt ggtgttcgta 240
tctaattccc tgtgtttgtt tcggctgtag tcggggatgt aattgaatcc agcgatcttt 300
ggatgctcgt catacgtgcc aacagcaggg tcaatttccc tcgaaagaga agaccgagga 360
aatggaagcc ggtttcctgt ggaaagagat cggtgaccaa gccggtgcgg cgagaatgtc 420
cggtgggaac aagaacagga gcctcgactg ggatttgaac gactggaggt gggacgccaa 480
cctgttcctg gccacaccag cggccgccgc gccatccgag tccatcagca gggagctgag 540
ccgaggtcag ggggagatcg atttcggcgt cgtcgttgac aagaggcggc ggctctcacc 600
agaggaggac ggcagcggcg ggtgcagcaa ttctgcggta gcagatggag acaacaatca 660
cgtggtgtgt gttcagagag ggcggaacac tgaggagacg agacccagga aaggtgccaa 720
ttcgagcacc actccttctt gccaggttga cggctgccaa gctgatctta gtggtgccag 780
ggactaccat aagaggcaca aggtgtgtga agcgcatacc aggacaacag tggtctgcat 840
caataatgta gagcatcggt tctgtcagca gtgcagcagg ttggtcacca atttcgttgt 900
gagattacag ctgctgaatt ttttttctcc agcaagagtc ctgtgcccta cctgtattgg 960
agaaagaaaa agaaacactt ctccggtaca aaacccaaag ggggaaataa aagagataaa 1020
aaggctcatt accttggtgt cacaggcaca caacacaaac gaattactga tcgttaacct 1080
tgagaaatgc tgaacacatt agtttttttt gctccatgat aggatccgtt cataaataag 1140
ttggtgtagg tcagagactc agagttgaaa cccaaccgaa agcacaagtc taaggttcaa 1200
ccacttggat agttgttttt catgcactct tatttaagac taaagcaaac tttatatatt 1260
ccatcctttc aagtcttttt tactgtttct ttttatgtca actttggtct tctcttgtct 1320
ctgttcccat tgctatcccc ttaggatccc actaggcact agtgccttta gaggtcttcg 1380
ttctacgtgt ctgaaccatc tcaaccggtg ttggacaagt ttttctttaa ttggtgccac 1440
ccctagccta tgacatcata gttataggct caatctcttc ttgttcgacc acaaattcat 1500
tatcgcatac atatttccgc aatagttatc tgttggacat gtcatatttt tgtaggccaa 1560
cattttgcat cgtacaacat agcagaagaa aaaaaaccaa acattgctct ttcttctaca 1620
tacatcttaa ctttagcagc ctatcatgat attgagttta gcataaaact tgaaattcat 1680
attttaatac accgagcatt ttttatgttt cctttcattt gctcatcagc tgaagaaagt 1740
aaataatttg tatgccattt taggtttcac cttcttcacg aatttgatga tggtaagaag 1800
agctgccgat cacgtctggc acaacataat ggaaggagaa ggaaagttca accgcaacct 1860
gctgtgaacg ggaattccat gaatgaagat cagtctctaa gtagcacctt attccttctg 1920
ttaaaacaac tttccgggct cgagtgtaag ttctatacaa aatttgatta ccaatttaaa 1980
atacaaatat ttcaaacgac atgcaatcca gacagcaatt ctaactgtgc gcttgtgtgg 2040
atgacagctg gtagctcttc tgagcaaatc aaccatccta attctttggt taaccttttg 2100
aagaaccttg ctgctattgc tagcacacat gcatatcaag atgttctaaa gaatgcaact 2160
tcaatatcat caaatgatgg taataatgct gcaaatggct ctataatgca tgagcaaacc 2220
atacggtcaa ttcctgtcag gagagaatca ttagcaggta aagcacttta tcgtttactt 2280
gattctattt agcatgtcaa atatcaaagg tataaataaa atgatttgaa taacttgtgt 2340
tctcagaaga gcctgcggtg aaaagacgag tacaggactt tgatttgaac gattcatgca 2400
ttgaagaagc tgaggtaaat gtttagtaaa tttcataaac tacaccaatc ttggacaaac 2460
tatcgcaaaa atacactttt tccaaaccaa tctaaaaaac tgtctcagct atattttgag 2520
aagcaacttc atggaattgc atttctattg tccagacaaa tcacagaaaa tacacaatta 2580
ttgccattca atatcacaaa actacacatt ttagctctta aaaactgttg tttttcgata 2640
caaattaacc acaaatgtgt agtctaatga tactatttga caatagaagt ataattttat 2700
ggaaatggtt tttaaaagtg tagctttgtg aaagtagttt gaagtgtagt ttttttttct 2760
cgaacaacac aggagatttg cgtgtcattt catttaagga gagaaaaaac aagaggtctg 2820
gcaaggccag accgattaca aaaggaacac aacaaaaccc acaactcaga cgagagtcct 2880
caaccacgac caacaaaaag aacaccctca agaaaactca aactaaacca tctagcgacc 2940
caaccaggaa ctcctgtagc tttgaagctc tagccatgca ccacattttg cattcttcta 3000
caatcttcct tagaagatca aatatacacg gtcttccatt atcgaaaaca cacagtgctt 3060
ccaaatttcc caggcagcaa gaatgatcag agagttcagc cccctatgcc ttccctttgg 3120
cgtcaaacga accaccttgc tccaccactt agggaaagaa taatcatcca gagcgggaga 3180
tagacgtgga atgtggagtg cctagaacat atgaaaccaa aaacacagtt atttcggtgc 3240
ttccaaattt cccaggcagc aaggatgatc agagagttca gccccctacg ccttcccttt 3300
ggcgtcaaac gaaccacctc gctccaccac ttagggaaag aataatcatc caaagtggga 3360
gatagacctg gaatgtggat gtgaagtgta gttactcagg ttttccaatc ttagtgtaat 3420
tttgtggaag ttactctaga atttgtagat agattctccc agatgtattt ctgatgtttg 3480
attccgactt aatatctctt atgcacaaca tttgcagagc cgaacagata aaattgtgtt 3540
caaactcttt ggaaaagagc caaaagattt tcctgtagat ctacgggaac aggtcagtta 3600
tcatgttaca aactggaatc atatttttct attaactttg tcaatgtgga tattttaata 3660
cgctaatgct aattctttta ttaaatggtt tgaatttaca gatcctaaac tggttgtcgc 3720
attatccaac tgatatggaa agttatatta gacctggttg tgttattcta actatttacc 3780
ttcacctccc taattggatg tgggatgagg tagtattgca ctacattaac agtgaattta 3840
gatctgtata tgttttcttt atagtatatg atgcagaagc aaagtgctta ctgttatttt 3900
tcttttctat tatagtttaa tgatgaccca gcttcatgga tagaaaatct tattagctta 3960
tccaatgatg gattctggag aacaggatgg ttgtatgcta gggtacagga ctgcctaaca 4020
ctgagttgca atggtccgtt catcttattt ggagtagtta ttcatatatt cgaggatcag 4080
cttcatttgt atttctttcc ttatttttgt taggtagtct tatgtttgca tctccctggc 4140
aaccggtaat tggtgacaag catcagagac tgtgtgtaac tccaattgca gttgattgtt 4200
cttcgtcagt aaaattctct gtgaaaggtt tcaatatagt tcagccaacc acaaagtatg 4260
tatctttttt cacatttaaa tgtctcctct aaacttactt ctttagttct tttaactgac 4320
acattctgtt tttgttatag attactttgt gtgtttgatg aaaaatattt aattcaagaa 4380
gagacacaaa tgctacttga agattcaact atgcagcaag gccctcaatg cctgaccttc 4440
tcttgttcct ttccttgtac aagtggaaga ggattcatag aggtacaatg tttgtatatt 4500
ttttatatcc tcattttttg tgtatattac agacttgact ccgttttcag attgaagact 4560
atgatcaaag cagcctttct gttccctttg ttgtcacgga caaagatgta tgttctgaga 4620
ttcggatgtt ggagcatgga ttggatttag tttcatttga tcaaacctcc aaaagaatag 4680
atgatctgat gatttatcgc agtcgagcat tacatttttt gcatgaaatc ggatggcttc 4740
ttcaaaggag ccatgtgcga gctacgtctg agcagcgaca atattgtcct gaccgcttcc 4800
ctgttgcaag atttagatgg ctgctatcct ttgcagttga tcaggaatgg tgtgctgttc 4860
taaggaagct tctgaacacc atgttccagg gtgatattga tgtattgtca ccaattgaat 4920
ttgccttggg agaaaatcta ttgcatactg cggtcaaaaa acgctcaaag cctttagttg 4980
aatttctatt aagatacacc acaacaaata ttgctccagt gggcggtgga gatggtgctc 5040
cagttcagtt cttgttcact cctgcgatga ctgaactgtc aaatatcaca cctcttcata 5100
ttgcagccac aatcagtgat gctattggtg ttttagatgc tttaactgat gatcctcagc 5160
aggtaactac tctaaattgc catgttctta cctgttgtag cctgctttaa ctaaaaaaaa 5220
gcacatctac attcaaattt caaagtagca gatttccgat tcttagtgta aaacagttaa 5280
aataaaaact aagaccacca tttattgtta gaacctaagt ctgcacctga aatattttca 5340
tctgaaatgc attatgtaca tatcaagaaa aagaaaggac ttccatcaaa acattggttt 5400
gtgtattaca ttgattgttg aatagatcgt gtagggtgta taatatcaca tcagagttcc 5460
gcatgaggtg tagtatgata aaaattcatt taccttaaaa acattttctt ttacttttga 5520
gaatttgtgc aagcactgaa acatttgctg tctggcttct ttctgcctaa atgtctcagt 5580
tgggaatcaa agcgtggaag aaagctcgtg acgccactgg ctttactcct gaggaatatg 5640
ctgcaaagag aggcaacata tcctatattc aaatggtaca ggacaaaatt gacagaaggg 5700
tgaccagagc tcatgtctcg gttaccatgc ccagcacaat tgatactgtc ggaaagcatg 5760
ctagccgaat gaagcctgcc gatcaaatca catttggtgt tgagaaaaaa caactaagca 5820
tcaaccaaac attgagctgc agacagtgtg tccagcaggc ccagcagctt gcattccatc 5880
cccgaacaaa taggtttctg tctaatagga ctgcgatgct ttccttggtc tccattgctg 5940
ccgtctgcgt ctgtgtggga ttgatcatga agagcctgcc acaagttggt tgtatgaagc 6000
ctttcctctg ggacaatata cgttggggcc ccaattgata gactgcagaa gagccagccc 6060
gattgtatca gtgtatgatg aagatgtttg cgccgagcga agctagtttc ttgtaatgta 6120
catgtttctt atactaaatg tctaacttat ttctgtttat agtaaaacct gtgaacttgc 6180
ctagcttgta actccattgc atttgcatcc tgactgaagt aaagctttta cttgttttgg 6240
ttgagaggaa gaaaaccttt tacttctaaa ttc 6273
<210> 4
<211> 6257
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
aacccacggt acccaatact tgactcggct ctctccatga gctactgttc catctccatt 60
tcttcaatca tttctcgcct ttcatgttca agggcgttgc ttgccaacca cggtatcgtt 120
ctagccgccg gggccgaacg aaggtacttc ttggttcttg tactcttcag tagtttcagg 180
attttgtccc aagtcccaac ccagggttgg cagtcccttt gtgttcgtgt tggtgttcgt 240
atctaattcc ctgtgtttgt ttcggctgta gtcggggatg taattgaatc cagcgatctt 300
tggatgctcg tcatacgtgc caacagcagg gtcaatttcc ctcgaaagag aaggccgagg 360
aaatggaagc cggtttcctg tggaaagaga tcggtgacca agccggtgcg gcgagaatgt 420
ccggtgggaa caagaacagg agcctcgact gggatttgaa cgactggagg tgggacgcca 480
acctgttcct ggccacacca gcggccgccg cgccatccga gtccatcagc agggagctga 540
gccgaggtca gggggagatc gatttcggcg tcgtcgttga caagaggcgg cggctctcac 600
cagaggagga cggcagcggt gggtgcagca attctgcggt agcagatgga gacaacagtc 660
acgtggtgtg tgttcagaga gggcggaaca ctgaggagac gagacccagg aaaggtgcca 720
attcgagcac cactccttct tgccaggttg acggctgcca agctgatctt agtggtgcca 780
gggactacca taagaggcac aaggtgtgtg aagcgcatac caggacaaca gtggtctgca 840
tcaataatgt agagcatcgg ttctgtcagc agtgcagcag gttggtcacc aatttcgttg 900
tgagattaca gctgctgaat tttttttctc cagcaagagt cctgtgccct acctgtattg 960
gagaaagaaa aagaaacact tctccggtac aaaacccaaa gggggaaata aaagagataa 1020
aaaggctcat taccttggtg tcacaggcac acaacacaaa cgaattactg atcgttaacc 1080
ttgagaaatg ctgaacacat tagttttttt tgctccatga taggatccgt tcataaataa 1140
gttggtgtag gtcagagact cagagttgaa acccaaccga aagcacaagt ctaaggttca 1200
accacttgga tagttgtttt tcatgcactc ttatttaaga ctaaagcaaa ctttatatat 1260
tccatccttt caagtctttt ttactgtttc tttttatgtc aactttggtc ttctcttgtc 1320
tctgttccca ttgctatccc cttaggatcc cactaggcac tagtgccttt agaggtcttc 1380
gttctacgtg tctgaaccat ctcaaccggt gttggacaag tttttcttta attggtgcta 1440
cccctagcct atgacatcat agttataggc tcaatctctt cttgttcgac cacaaattca 1500
ttatcgcata catatttccg caatagttat ctgttggaca tgtcatattt ttgtaggcca 1560
acattttgca tcgtacaaca tagcagaaga aaaaaaacca aacattgctc tttcttctac 1620
atacatctta actttagcag cctatcatga tattgagttt agcataaaac ttgaaattca 1680
tattttaata caccgagcat tttttatgtt tcctttcatt tgctcatcag ctgaagaaag 1740
taaataattt gtatgccatt ttaggtttca ccttcttcac gaatttgatg atggtaagaa 1800
gagctgccga tcacgtctgg cacaacataa tggaaggaga aggaaagttc aaccgcaacc 1860
tgctgtgaac gggaattcca tgaatgaaga tcagtctcta agtagcacct tattccttct 1920
gttaaaacaa ctttccgggc tcgagtgtaa gttctataca aaatttgatt accaatttaa 1980
aatacaaata tttcaaacga catgcaatcc agacagcaat tctaactgtg cgcttgtgtg 2040
gatgacagct ggtagctctt ctgagcaaat caaccatcct aattctttgg ttaacctttt 2100
gaagaacctt gctgctattg ctagcacaca tgcatatcaa gatgttctaa agaatgcaac 2160
ttcaatatca tcaaatgatg gtaataatgc tgcaaatggc tctataatgc atgagcaaac 2220
catacggtca attcctgtca ggagagaatc attagcaggt aaagcacttt atcgtttact 2280
tgattctatt tagcatgtca aatatcaaag gtataaataa aatgatttga ataacttgtg 2340
ttctcagaag agcctgcggt gaaaagacga gtacaggact ttgatttgaa cgattcatgc 2400
attgaagaag ccgaggtaaa tgtttagtaa atttcataaa ctacaccaat cttggacaaa 2460
ctatcgcaaa aatacacttt ttccaaacca atctaaaaaa ctgtctcagc tatattttga 2520
gaagcaactt catggaattg catttctatt gtccagacaa atcacagaaa atacacaatt 2580
attgccattc aatatcacaa aactacacat tttagctctt aaaaactgtt gtttttcgat 2640
acaaattaac cacaaatgtg tagtctaatg atactatttg acaatagaag tataatatta 2700
tggaaatggt ttttaaaagt gtagctttgt gaaagtagtt tgaagtgtag tttttttttt 2760
ctcgaacaac acaggagatt tgcgtgtcat ttcatttaag gagagaaaaa acaagaggtc 2820
tggcaaggcc agaccgatta caaaaggaac acaacaaaac ccacaactca gacgagagtc 2880
ctcaaccacg accaacaaaa agaacaccct caagaaaact caaactaaac catctagcga 2940
cccaaccagg aactcctgta gctttgaagc tctagccatg caccacattt tgcattcttc 3000
tacaatcttc cttagaagat caaatataca cggtcttcca ttatcgaaaa cacacagtgc 3060
ttccaaattt cccaggcagc aagaatgatc agagagttca gccccctatg ccttcccttt 3120
ggcgtcaaac gaaccacctt gctccaccac ttagggaaag aataatcatc cagagcggga 3180
gatagacgtg gaatgtggag tgcctagaac atatgaaacc aaaaacacag ttatttcggt 3240
gcttccaaat ttcccaggca gcaaggatga tcagagagtt cagcccccta cgccttccct 3300
ttggcgtcaa acgaaccacc tcgctccacc acttagggaa agaataatca tccaaagtgg 3360
gagatagacc tggaatgtgg atgtgaagtg tagttactca ggttttccaa tcttagtgta 3420
attttgtgga agttactcta gaatttgtag atagattctc ccagatgtat ttctgatgtt 3480
tgattccgac ttaatatctc ttatgcacaa catttgcaga gccgaacaga taaaattgtg 3540
ttcaaactct ttggaaaaga gccaaaagat tttcctgtag atctacggga acaggtcagt 3600
tatcatgtta caaactggaa tcatattttt ctattaactt tgtcaatgtg gatattttaa 3660
tacgctaatg ctaattcttt tattaaatgg tttgaattta cagatcctaa actggttgtc 3720
gcattatcca actgatatgg aaagttatat tagacctggt tgtgttattc taactattta 3780
ccttcacctc cctaattgga tgtgggatga ggtagtattg cactacatta acagtgaatt 3840
tagatctgta tatgttttct ttatagtata tgatgcagaa gcaaagtgct tactgttatt 3900
tttcttttct attatagttt aatgatgacc cagcttcatg gatagaaaat cttattagct 3960
tatccaatga tggattctgg agaacaggat ggttgtatgc tagggtacag gactgcctaa 4020
cactgagttg caatggtccg ttcatcttat ttggagtagt tattcatata ttcgaggatc 4080
agcttcattt gtatttcttt ccttattttt gttaggtagt cttatgtttg catctccctg 4140
gcaaccggta attggtgaca agcatcagag actgtgtgta actccaattg cagttgattg 4200
ttcttcgtca gtaaaattct ctgtgaaagg tttcaatata gttcagccaa ccacaaagta 4260
tgtatctttt ttcacattta aatgtctcct ctaaacttac ttctttagtt cttttaactg 4320
acacattctg attttgttat agattacttt gtgtgtttga tgaaaaatat ttaattcaag 4380
aagagacaca aatgctactt gaagattcaa ctatgcagca aggccctcaa tgcctgacct 4440
tctcttgttc ctttccttgt acaagtggaa gaggattcat agaggtacaa tgtttgtata 4500
ttttttatat cctcattttt tgtgtatatt acagacttga ctccgttttc agattgaaga 4560
ctatgatcaa agcagccttt ctgttccctt tgttgtcacg gacaaagatg tatgttctga 4620
gattcggatg ttggagcatg gattggattt agtttcattt gatcaaacct ccaaaagaat 4680
agatgatctg atgatttatc gcagtcgagc attacatttt ttgcatgaaa tcggatggct 4740
tcttcaaagg agccatgtgc gagctacgtc tgagcagcga caatattgtc ctgaccgctt 4800
ccctgttgca agatttagat ggctgctatc ctttgcagtt gatcaggaat ggtgtgctgt 4860
tctaaggaag cttctgaaca ccatgttcca gggtgatatt gatgtattgt caccaattga 4920
atttgccttg ggagaaaatc tattgcatac tgcggtcaaa aaacgctcaa agcctttagt 4980
tgaatttcta ttaagataca ccacaacaaa tattgctcca gtgggcggtg gagatggtgc 5040
tccagttcag ttcttgttca ctcctgcgat gactgaactg tcaaatatca cacctcttca 5100
tattgcagcc acaatcagtg atgctattgg tgttttagat gctttaactg atgatcctca 5160
gcaggtaact actctaaatt gccatgttct tacctgttgt agcctgcttt aactaaaaaa 5220
aagcacatct acattcaaat ttcaaagtag cagatttccg attcttagtg taaaacagtt 5280
aaaataaaaa ctaagaccac catttattgt tagaacctaa gtctgcacct gaaatatttt 5340
catctgaaat gcattatgta catatcaaga aaaagaaagg acttccatca aaacattggt 5400
ttgtgtatta cattgattgt tgaatagatc gtgtagggtg tataatatca catcagagtt 5460
ccgcatgagg tgtagtatga taaaaattca tttaccttaa aaacattttc ttttactttt 5520
gagaatttgt gcaagcactg aaacatttgc tgtctggctt ctttctgcct aaatgtctca 5580
gttgggaatc aaagcgtgga agaatgctcg tgacgccact ggcttcactc ctgaggaata 5640
tgctgcaaag agaggcaaca tatcctatat tcaaatggta caggacaaaa ttgacagaag 5700
ggtgaccaga gctcatgtct cggttaccat ccccagcaca attgatactg tcggaaagca 5760
tggtagccga atgaagcctg ccgatcaaat cacatttggt gttgagaaaa aacaactaag 5820
catcaaccaa acattgagct gcagacagtg tgtccagcag gcccagcagc ttgcattcca 5880
tccccggaca aataggtttc tgtctaatag gactgcgatg ctttccttgg tctccattgc 5940
tgccgtctgc gtctgtgtgg gattgatcat gaagagcctg ccacaagttg gttgtatgaa 6000
gcctttcctc tgggacaata tacgttgggg ccccaattga tagactgcag aagagccagc 6060
ccgattgtat cagtgtatga tgaagatgtt tgcgccgagc gaagctagtt tcttgtaatg 6120
tacatgtttc ttatactaaa tgtctaactt atttctgttt atagtaaaac ctgtgaactt 6180
gcctagcttg taactccatt gcatttgcat cctgactgaa gtaaagcttt tacttgtttt 6240
ggttgagagg aagaaaa 6257
<210> 5
<211> 2000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
atttttctgt tcaccaaacc agccctaaag gcgccgcggt cctgtttttt ttgtcctcag 60
gtgagtttgg gttgctggcg ctgcttcctt gctcatgcgg aatctgctct atttcttgtt 120
agttttagtt cgtaatatat ttcagactat tgactgatgg attcagttaa aatttggaga 180
tgttgtctct taacctttcc tagctagacc ctgcagcgtt tatgagacca tggctgattg 240
gttctccttg gatctggttt tgctatcctg gtgaaacatc cagttttctc tataaaacat 300
ccagttttct acgttttccc aaaaaaaggg gatatgttgg taatacgagc agaaatcatc 360
ctggaaagac ggacacatgt gaccggtttg cttttgcttc acatgtttaa cgagtccatt 420
gttcggatga actgaataac tgatctcatg tatcattgct acatgtacct ttgtctgaat 480
tgaaaatcat tatgttatat tattattaat ccaattaaca agactagcta ccttgcaagg 540
attatacact aatctctcca ttctgaacac cttgaatagc atgctgctgg ctttaatctc 600
gcgctgcacg ttctcaattt tcagatagtt ccttcaatct gatactactt ctagtttccc 660
tcacagattt gtgaactatg aaaccacctt tggagaggaa ccctactaag aagcgccatt 720
atttggtggg acagtcacat tagccctaag aactccgaaa aacatcaaag gttagcgaaa 780
ctatagccaa aatatttttt tacgtgctat ttttagatct aaatttgcta cacgtgttat 840
tcctattata attaaagtaa atttaagaat tttatagagc atacaaaaag ataattgtac 900
cctaaataaa acaccaattc aaattaatct agatccatcc aacaaataac ttctcaatgt 960
gttttctttg cgtacttttt ccatgtttct tctttctcat gcttcctctt actcactcac 1020
atcttctaac caaggacgtc cagatcattc cactcctcac gcacgtcccc accagcgccc 1080
tcacatgcaa acccccttcg tcgccgctcc tagtctctcc cccgttctct ttctcttgct 1140
atggtctctg ccaccgatcc tgatggacga gcaagacgac gactgaggtg ccgttcggtt 1200
ctttaggatt ggtgggtcgg aacgattcct aactggattg tttctctaat ttatataaac 1260
tttgattaac tggaatgatt ccggatgcaa tccgatacaa acgaacaagg ctgatgagga 1320
cgatggcacg acgagcacct cctcgctcgt ctgcttccgc caagcgacac caaggtcgat 1380
gaggcggctc agacagatgt aggtgagggg atgtgtcctg gacttagatg accattttac 1440
tagttttcta cattgagcat aaaaatcagg ggtttttggc ggtaaaccgg cgattttgac 1500
cagtttttcg ttgataaacc gacacaggaa gagcactgat aaatttgaat ttgccctgat 1560
cggttttacc ggaccgaaac cgatgaggga cggttttcgg ttgtaaaacg gatcggtgaa 1620
ccctgagtcc agcccccgga gcaagaggaa acggcctgcg gcgccgcgtc ggccgtgggg 1680
ccgaccgccc agcgagcgag tcgtcatgga aacgaggaat cgtcgcgccg ccctgcgtca 1740
tcaagtcacc tgctcttcca aaggtccaac cggcccttgg tcgtggcgtc gctgtccgag 1800
cgccagacaa gagacagggg agatgaaaaa gaggcggtgg tggttcgagt gtgaatatgc 1860
cggtggggag ggctctgcct ccccaggata cttcgccccc cgttccaccg cgagcccttc 1920
cggcttccgc ctctgttccg ccgctccagc ctccaggatc cgtgagaaga aaagtagtag 1980
ccccatcccc aaccggtcct 2000
<210> 6
<211> 1982
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
tcatggtagc cagggcctac aacaagaagg tcaaagcaaa attatttcaa ttaggggacc 60
tggtgtggaa gactattctg cctctaagga ataaagaccg taagttcgga aaatggtcgc 120
caaactggga gggtccttat aaagtaaaac aggtgatgtc tggcaacgcc tatttactac 180
aaacattaca aggcaaggat ttacctaagg ctttgaatgt gcgtttcctc aaatagtacc 240
atcctagtat gtggcaagat gcctaagaaa accgatgtaa tcacatcgag ttagttgctt 300
ttggtttgct cagctccacc gaaaggcagg gggcatatgt tgagcaccgt tttgagcctg 360
gcggacggtc cggccctgag gccggacgat ccgcggtccg gacagtccgc gcctgtgggc 420
cggacggtcc gcgcatgcgc agagcagttt agggttccga gttttgtgcc atgtttgttg 480
gttagatttg cgaaattagc tcggaatcca gtcgtgtaaa gggtctagcc cccctcctct 540
atataaagag aggtctacga ccgatttgta atcatcaatc gaatcaatac aacttctatt 600
cacatttatt tccagtacaa ttaggagtag ttctagtcta gttctagttt agcctctcaa 660
tccccaaatt cttcgcctct cttcgactct acgccgatta gaggagtcta ggtcggccgg 720
cccgagccta gaaaacccct aggatctctc ctccccgacg gggtccctcc cgggagcgag 780
atccaggcgc cgccggcaat cttccgccgc gcggaccgtc cggccgtcag gcaggaaacc 840
ctagcccctg cgccaagtcg cggaccgtcc gaccctaggc cgcggaccgt ccgcgcctga 900
ccagagagca ccgccgccgg tttttcttga gtatttggcg ctccgaaaaa gcgtcaacaa 960
tgggactgtc acattagccc taaaaactcc gaaaaacatc aaaggtgagc gaaactatag 1020
ccaaaatatt ttttacgtgc tatttttaga tctaaatttg ctacacgtgt tattcctatt 1080
ataattaaag taaatttaag aattttatag agcttacaaa aagataattg taccctaaat 1140
aaaacaccaa ttcaaattaa tctagatcca tccaacaaat aacgtctcaa tgcaaccccc 1200
ttcgtcgctg ctcccggtct ctcccccgtt ctctttctct tgctatggtc tctgccaccg 1260
atcctgatgg acgggcaaga cgacgactga gccttgctct ccaccgggga tgcacgagga 1320
cgatggcacg gcgagcacct cctccgacgg tgcgagcggt gctcgtcgct cgtctgcttc 1380
cgccaagcgg caccaaggtc gatgaggcgg ctcagacaac gatgtaggtg aggggatgtg 1440
tcctggactt aggactgttt gtttcagctt atagattata taatttaaat tatataatcc 1500
agattataat ctagatatat tataatctag atatattata atcggttgta ccggaccgaa 1560
accgatgagg gacggttttc ggttgtaaaa cggatcggtg aaccctgagt ccagcccccg 1620
gagcaagagg aaacggcctg cggcgccgcg tcggccgtgg ggccgaccgc ccagcgagcg 1680
agtcgtcatg gaaacgagga atcgtcgcgc cgccctgcgt catcaagtca cctgctcttc 1740
caaaggtcca accggccctt ggtcgtggcg tcgctgtccg agcgccagac aagagacagg 1800
ggagatgaaa aagaggcggt ggtggttcga gtgtgaatat gccggtgggg agggctctgc 1860
ctccccagga tacttcgccc cccgttccac cgcgagccct tccggcttcc gcctctgttc 1920
cgccgctcca gcctccagga tccgtgagag gaaaagtagt agccccatcc ccaaccggtc 1980
ct 1982
<210> 7
<211> 877
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 7
Met Glu Ala Gly Phe Leu Trp Lys Glu Ile Gly Asp Gln Ala Gly Ala
1 5 10 15
Ala Arg Met Ser Gly Gly Asn Lys Asn Arg Ser Leu Asp Trp Asp Leu
20 25 30
Asn Asp Trp Arg Trp Asp Ala Asn Leu Phe Leu Ala Thr Pro Ala Ala
35 40 45
Ala Ala Pro Ser Glu Ser Ile Ser Arg Glu Leu Ser Arg Gly Gln Gly
50 55 60
Glu Ile Asp Phe Gly Val Val Val Asp Lys Arg Arg Arg Leu Ser Pro
65 70 75 80
Glu Glu Asp Gly Ser Gly Gly Cys Ser Asn Ser Ala Val Ala Asp Gly
85 90 95
Asp Asn Asn His Val Val Cys Val Gln Arg Gly Arg Asn Thr Glu Glu
100 105 110
Thr Arg Pro Arg Lys Gly Ala Asn Ser Ser Thr Thr Pro Ser Cys Gln
115 120 125
Val Asp Gly Cys Gln Ala Asp Leu Ser Gly Ala Arg Asp Tyr His Lys
130 135 140
Arg His Lys Val Cys Glu Ala His Thr Arg Thr Thr Val Val Cys Ile
145 150 155 160
Asn Asn Val Glu His Arg Phe Cys Gln Gln Cys Ser Arg Phe His Leu
165 170 175
Leu His Glu Phe Asp Asp Gly Lys Lys Ser Cys Arg Ser Arg Leu Ala
180 185 190
Gln His Asn Gly Arg Arg Arg Lys Val Gln Pro Gln Pro Ala Val Asn
195 200 205
Gly Asn Ser Met Asn Glu Asp Gln Ser Leu Ser Ser Thr Leu Phe Leu
210 215 220
Leu Leu Lys Gln Leu Ser Gly Leu Glu Ser Gly Ser Ser Ser Glu Gln
225 230 235 240
Ile Asn His Pro Asn Ser Leu Val Asn Leu Leu Lys Asn Leu Ala Ala
245 250 255
Ile Ala Ser Thr His Ala Tyr Gln Asp Val Leu Lys Asn Ala Thr Ser
260 265 270
Ile Ser Ser Asn Asp Gly Asn Asn Ala Ala Asn Gly Ser Ile Met His
275 280 285
Glu Gln Thr Ile Arg Ser Ile Pro Val Arg Arg Glu Ser Leu Ala Glu
290 295 300
Glu Pro Ala Val Lys Arg Arg Val Gln Asp Phe Asp Leu Asn Asp Ser
305 310 315 320
Cys Ile Glu Glu Ala Glu Ser Arg Thr Asp Lys Ile Val Phe Lys Leu
325 330 335
Phe Gly Lys Glu Pro Lys Asp Phe Pro Val Asp Leu Arg Glu Gln Ile
340 345 350
Leu Asn Trp Leu Ser His Tyr Pro Thr Asp Met Glu Ser Tyr Ile Arg
355 360 365
Pro Gly Cys Val Ile Leu Thr Ile Tyr Leu His Leu Pro Asn Trp Met
370 375 380
Trp Asp Glu Phe Asn Asp Asp Pro Ala Ser Trp Ile Glu Asn Leu Ile
385 390 395 400
Ser Leu Ser Asn Asp Gly Phe Trp Arg Thr Gly Trp Leu Tyr Ala Arg
405 410 415
Val Gln Asp Cys Leu Thr Leu Ser Cys Asn Gly Ser Leu Met Phe Ala
420 425 430
Ser Pro Trp Gln Pro Val Ile Gly Asp Lys His Gln Arg Leu Cys Val
435 440 445
Thr Pro Ile Ala Val Asp Cys Ser Ser Ser Val Lys Phe Ser Val Lys
450 455 460
Gly Phe Asn Ile Val Gln Pro Thr Thr Lys Leu Leu Cys Val Phe Asp
465 470 475 480
Glu Lys Tyr Leu Ile Gln Glu Glu Thr Gln Met Leu Leu Glu Asp Ser
485 490 495
Thr Met Gln Gln Gly Pro Gln Cys Leu Thr Phe Ser Cys Ser Phe Pro
500 505 510
Cys Thr Ser Gly Arg Gly Phe Ile Glu Ile Glu Asp Tyr Asp Gln Ser
515 520 525
Ser Leu Ser Val Pro Phe Val Val Thr Asp Lys Asp Val Cys Ser Glu
530 535 540
Ile Arg Met Leu Glu His Gly Leu Asp Leu Val Ser Phe Asp Gln Thr
545 550 555 560
Ser Lys Arg Ile Asp Asp Leu Met Ile Tyr Arg Ser Arg Ala Leu His
565 570 575
Phe Leu His Glu Ile Gly Trp Leu Leu Gln Arg Ser His Val Arg Ala
580 585 590
Thr Ser Glu Gln Arg Gln Tyr Cys Pro Asp Arg Phe Pro Val Ala Arg
595 600 605
Phe Arg Trp Leu Leu Ser Phe Ala Val Asp Gln Glu Trp Cys Ala Val
610 615 620
Leu Arg Lys Leu Leu Asn Thr Met Phe Gln Gly Asp Ile Asp Val Leu
625 630 635 640
Ser Pro Ile Glu Phe Ala Leu Gly Glu Asn Leu Leu His Thr Ala Val
645 650 655
Lys Lys Arg Ser Lys Pro Leu Val Glu Phe Leu Leu Arg Tyr Thr Thr
660 665 670
Thr Asn Ile Ala Pro Val Gly Gly Gly Asp Gly Ala Pro Val Gln Phe
675 680 685
Leu Phe Thr Pro Ala Met Thr Glu Leu Ser Asn Ile Thr Pro Leu His
690 695 700
Ile Ala Ala Thr Ile Ser Asp Ala Ile Gly Val Leu Asp Ala Leu Thr
705 710 715 720
Asp Asp Pro Gln Gln Leu Gly Ile Lys Ala Trp Lys Lys Ala Arg Asp
725 730 735
Ala Thr Gly Phe Thr Pro Glu Glu Tyr Ala Ala Lys Arg Gly Asn Ile
740 745 750
Ser Tyr Ile Gln Met Val Gln Asp Lys Ile Asp Arg Arg Val Thr Arg
755 760 765
Ala His Val Ser Val Thr Met Pro Ser Thr Ile Asp Thr Val Gly Lys
770 775 780
His Ala Ser Arg Met Lys Pro Ala Asp Gln Ile Thr Phe Gly Val Glu
785 790 795 800
Lys Lys Gln Leu Ser Ile Asn Gln Thr Leu Ser Cys Arg Gln Cys Val
805 810 815
Gln Gln Ala Gln Gln Leu Ala Phe His Pro Arg Thr Asn Arg Phe Leu
820 825 830
Ser Asn Arg Thr Ala Met Leu Ser Leu Val Ser Ile Ala Ala Val Cys
835 840 845
Val Cys Val Gly Leu Ile Met Lys Ser Leu Pro Gln Val Gly Cys Met
850 855 860
Lys Pro Phe Leu Trp Asp Asn Ile Arg Trp Gly Pro Asn
865 870 875
<210> 8
<211> 877
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 8
Met Glu Ala Gly Phe Leu Trp Lys Glu Ile Gly Asp Gln Ala Gly Ala
1 5 10 15
Ala Arg Met Ser Gly Gly Asn Lys Asn Arg Ser Leu Asp Trp Asp Leu
20 25 30
Asn Asp Trp Arg Trp Asp Ala Asn Leu Phe Leu Ala Thr Pro Ala Ala
35 40 45
Ala Ala Pro Ser Glu Ser Ile Ser Arg Glu Leu Ser Arg Gly Gln Gly
50 55 60
Glu Ile Asp Phe Gly Val Val Val Asp Lys Arg Arg Arg Leu Ser Pro
65 70 75 80
Glu Glu Asp Gly Ser Gly Gly Cys Ser Asn Ser Ala Val Ala Asp Gly
85 90 95
Asp Asn Ser His Val Val Cys Val Gln Arg Gly Arg Asn Thr Glu Glu
100 105 110
Thr Arg Pro Arg Lys Gly Ala Asn Ser Ser Thr Thr Pro Ser Cys Gln
115 120 125
Val Asp Gly Cys Gln Ala Asp Leu Ser Gly Ala Arg Asp Tyr His Lys
130 135 140
Arg His Lys Val Cys Glu Ala His Thr Arg Thr Thr Val Val Cys Ile
145 150 155 160
Asn Asn Val Glu His Arg Phe Cys Gln Gln Cys Ser Arg Phe His Leu
165 170 175
Leu His Glu Phe Asp Asp Gly Lys Lys Ser Cys Arg Ser Arg Leu Ala
180 185 190
Gln His Asn Gly Arg Arg Arg Lys Val Gln Pro Gln Pro Ala Val Asn
195 200 205
Gly Asn Ser Met Asn Glu Asp Gln Ser Leu Ser Ser Thr Leu Phe Leu
210 215 220
Leu Leu Lys Gln Leu Ser Gly Leu Glu Ser Gly Ser Ser Ser Glu Gln
225 230 235 240
Ile Asn His Pro Asn Ser Leu Val Asn Leu Leu Lys Asn Leu Ala Ala
245 250 255
Ile Ala Ser Thr His Ala Tyr Gln Asp Val Leu Lys Asn Ala Thr Ser
260 265 270
Ile Ser Ser Asn Asp Gly Asn Asn Ala Ala Asn Gly Ser Ile Met His
275 280 285
Glu Gln Thr Ile Arg Ser Ile Pro Val Arg Arg Glu Ser Leu Ala Glu
290 295 300
Glu Pro Ala Val Lys Arg Arg Val Gln Asp Phe Asp Leu Asn Asp Ser
305 310 315 320
Cys Ile Glu Glu Ala Glu Ser Arg Thr Asp Lys Ile Val Phe Lys Leu
325 330 335
Phe Gly Lys Glu Pro Lys Asp Phe Pro Val Asp Leu Arg Glu Gln Ile
340 345 350
Leu Asn Trp Leu Ser His Tyr Pro Thr Asp Met Glu Ser Tyr Ile Arg
355 360 365
Pro Gly Cys Val Ile Leu Thr Ile Tyr Leu His Leu Pro Asn Trp Met
370 375 380
Trp Asp Glu Phe Asn Asp Asp Pro Ala Ser Trp Ile Glu Asn Leu Ile
385 390 395 400
Ser Leu Ser Asn Asp Gly Phe Trp Arg Thr Gly Trp Leu Tyr Ala Arg
405 410 415
Val Gln Asp Cys Leu Thr Leu Ser Cys Asn Gly Ser Leu Met Phe Ala
420 425 430
Ser Pro Trp Gln Pro Val Ile Gly Asp Lys His Gln Arg Leu Cys Val
435 440 445
Thr Pro Ile Ala Val Asp Cys Ser Ser Ser Val Lys Phe Ser Val Lys
450 455 460
Gly Phe Asn Ile Val Gln Pro Thr Thr Lys Leu Leu Cys Val Phe Asp
465 470 475 480
Glu Lys Tyr Leu Ile Gln Glu Glu Thr Gln Met Leu Leu Glu Asp Ser
485 490 495
Thr Met Gln Gln Gly Pro Gln Cys Leu Thr Phe Ser Cys Ser Phe Pro
500 505 510
Cys Thr Ser Gly Arg Gly Phe Ile Glu Ile Glu Asp Tyr Asp Gln Ser
515 520 525
Ser Leu Ser Val Pro Phe Val Val Thr Asp Lys Asp Val Cys Ser Glu
530 535 540
Ile Arg Met Leu Glu His Gly Leu Asp Leu Val Ser Phe Asp Gln Thr
545 550 555 560
Ser Lys Arg Ile Asp Asp Leu Met Ile Tyr Arg Ser Arg Ala Leu His
565 570 575
Phe Leu His Glu Ile Gly Trp Leu Leu Gln Arg Ser His Val Arg Ala
580 585 590
Thr Ser Glu Gln Arg Gln Tyr Cys Pro Asp Arg Phe Pro Val Ala Arg
595 600 605
Phe Arg Trp Leu Leu Ser Phe Ala Val Asp Gln Glu Trp Cys Ala Val
610 615 620
Leu Arg Lys Leu Leu Asn Thr Met Phe Gln Gly Asp Ile Asp Val Leu
625 630 635 640
Ser Pro Ile Glu Phe Ala Leu Gly Glu Asn Leu Leu His Thr Ala Val
645 650 655
Lys Lys Arg Ser Lys Pro Leu Val Glu Phe Leu Leu Arg Tyr Thr Thr
660 665 670
Thr Asn Ile Ala Pro Val Gly Gly Gly Asp Gly Ala Pro Val Gln Phe
675 680 685
Leu Phe Thr Pro Ala Met Thr Glu Leu Ser Asn Ile Thr Pro Leu His
690 695 700
Ile Ala Ala Thr Ile Ser Asp Ala Ile Gly Val Leu Asp Ala Leu Thr
705 710 715 720
Asp Asp Pro Gln Gln Leu Gly Ile Lys Ala Trp Lys Asn Ala Arg Asp
725 730 735
Ala Thr Gly Phe Thr Pro Glu Glu Tyr Ala Ala Lys Arg Gly Asn Ile
740 745 750
Ser Tyr Ile Gln Met Val Gln Asp Lys Ile Asp Arg Arg Val Thr Arg
755 760 765
Ala His Val Ser Val Thr Ile Pro Ser Thr Ile Asp Thr Val Gly Lys
770 775 780
His Gly Ser Arg Met Lys Pro Ala Asp Gln Ile Thr Phe Gly Val Glu
785 790 795 800
Lys Lys Gln Leu Ser Ile Asn Gln Thr Leu Ser Cys Arg Gln Cys Val
805 810 815
Gln Gln Ala Gln Gln Leu Ala Phe His Pro Arg Thr Asn Arg Phe Leu
820 825 830
Ser Asn Arg Thr Ala Met Leu Ser Leu Val Ser Ile Ala Ala Val Cys
835 840 845
Val Cys Val Gly Leu Ile Met Lys Ser Leu Pro Gln Val Gly Cys Met
850 855 860
Lys Pro Phe Leu Trp Asp Asn Ile Arg Trp Gly Pro Asn
865 870 875
<210> 9
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
gggatttgaa cgactggagg t 21
<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
tcgtctcctc agtgttccgc 20
<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
cacacacgag gggaggaggt 20
<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
aaggtctttg ttgtcgggca 20
<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
tttcttctca gggtggtctt gc 22
<210> 14
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
cacctttcca cctcgcctat t 21
<210> 15
<211> 29
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
cgcggatcca tggaagccgg tttcctgtg 29
<210> 16
<211> 51
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
tcccccgggt cacttatcgt cgtcatcctt gtaatcattg gggccccaac g 51
<210> 17
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
cagagagggc ggaacactga gg 22
<210> 18
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
cacgtctggc acaacataat gg 22
<210> 19
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
aaatcttgca acagggaagc gg 22
<210> 20
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
ttgacagttc agtcatcgca gg 22

Claims (4)

1. A maize C-type cytoplasmic male sterile nuclear restorer gene which is characterized in that: the nucleotide sequence of the gene is a nucleotide sequence coded by SEQ ID No: 7.
2. A polypeptide, characterized by: the amino acid sequence is SEQ ID No: 7.
3. a recombinant construct, characterized in that: the vector containing the restorer gene of claim 1, which is a cloning vector or an expression vector for expressing the restorer gene.
4. A method of improving a corn crop comprising: a transgenic maize plant obtained by transfecting a maize plant with a recombinant Agrobacterium cell comprising the restorer gene of claim 1, or a maize plant containing the restorer gene of claim 1 is crossed with another maize plant.
CN201810182640.7A 2018-03-06 2018-03-06 Maize C-type cytoplasmic male sterile nuclear restoring gene and application thereof Active CN108424917B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810182640.7A CN108424917B (en) 2018-03-06 2018-03-06 Maize C-type cytoplasmic male sterile nuclear restoring gene and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810182640.7A CN108424917B (en) 2018-03-06 2018-03-06 Maize C-type cytoplasmic male sterile nuclear restoring gene and application thereof

Publications (2)

Publication Number Publication Date
CN108424917A CN108424917A (en) 2018-08-21
CN108424917B true CN108424917B (en) 2021-08-17

Family

ID=63157943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810182640.7A Active CN108424917B (en) 2018-03-06 2018-03-06 Maize C-type cytoplasmic male sterile nuclear restoring gene and application thereof

Country Status (1)

Country Link
CN (1) CN108424917B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175970A (en) * 2020-10-26 2021-01-05 河南农业大学 Gene Rf5 for restoring C-type cytoplasmic fertility of corn and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2625291A2 (en) * 2010-10-06 2013-08-14 Dow AgroSciences LLC Maize cytoplasmic male sterility (cms) c-type restorer rf4 gene, molecular markers and their use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2625291A2 (en) * 2010-10-06 2013-08-14 Dow AgroSciences LLC Maize cytoplasmic male sterility (cms) c-type restorer rf4 gene, molecular markers and their use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PREDICTED: Zea mays squamosa promoter binding like protein 1 (LOC103634633),mRNA,Accession Number:XM_008657229.2;NCBI;《Genbank》;20171218;全文 *

Also Published As

Publication number Publication date
CN108424917A (en) 2018-08-21

Similar Documents

Publication Publication Date Title
CN107164347B (en) Ideal plant type gene NPT1 for controlling rice stem thickness, tillering number, spike grain number, thousand grain weight and yield and its application
CN108822194B (en) Plant starch synthesis related protein OsFLO10, and coding gene and application thereof
CN108291234A (en) Multiple sporinite forms gene
CN109912702B (en) Application of protein OsARE1 in regulation and control of low nitrogen resistance of plants
CN114369147B (en) Application of BFNE gene in tomato plant type improvement and biological yield improvement
US20210198682A1 (en) Application of sdg40 gene or encoded protein thereof
CN112126652B (en) Application of rice OsAUX3 gene in regulation of rice seed grain length
CN112011547B (en) Major gene for controlling rape leaf shape and application thereof
CN113832179A (en) Application of ZmELF3.1 protein and functional deletion mutant thereof in regulating and controlling branch number of tassel of crop
CN108424917B (en) Maize C-type cytoplasmic male sterile nuclear restoring gene and application thereof
CN113817033B (en) Application of ZmELF3.1 protein and its functional deletion mutant in regulating and controlling crop aerial root number or layer number
CN111826391A (en) Application of NHX2-GCD1 double genes or protein thereof
CN111304219B (en) GL1 gene separated from rice WZ1 and application thereof in increasing rice grain length
CN110407922B (en) Rice cold-resistant gene qSCT11 and application thereof
CN110452914B (en) Gene BnC04BIN2-like1 for regulating brassinolide signal transduction and application thereof
CN114958867A (en) Corn ear grain weight and yield regulation gene KWE2, and encoding protein, functional marker, expression vector and application thereof
CN114395580A (en) Gene for controlling plant height of corn
CN108841840B (en) Application of protein TaNADH-GoGAT in regulation and control of plant yield
CN115466747A (en) Glycosyltransferase ZmKOB1 gene and application thereof in regulating and controlling maize ear fructification character or development
CN108148846B (en) Rice leaf type mutant gene ZY103 and application thereof
CN109912703B (en) Application of protein OsARE1 in regulation and control of plant senescence
CN111575252A (en) Identification and application of rice fertility-related gene OsLysRS
CN113429467A (en) Application of NPF7.6 protein in regulation and control of nitrogen tolerance of leguminous plant root nodule
CN110627888A (en) Stiff1 gene for regulating and controlling stalk strength of corn and application of encoded protein thereof
CN114854712B (en) Application of corn ZmWAK02 gene in improving resistance of corn gray spot

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant