CN108411265A - 一种低应力致密涂层的制备方法 - Google Patents

一种低应力致密涂层的制备方法 Download PDF

Info

Publication number
CN108411265A
CN108411265A CN201810261975.8A CN201810261975A CN108411265A CN 108411265 A CN108411265 A CN 108411265A CN 201810261975 A CN201810261975 A CN 201810261975A CN 108411265 A CN108411265 A CN 108411265A
Authority
CN
China
Prior art keywords
argon
coating
xenon
krypton
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810261975.8A
Other languages
English (en)
Inventor
张旭海
陈龙
郑云西
肖静才
曾宇乔
朱奎
季宝荣
卢倩文
杨志
李娟�
蒋建清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810261975.8A priority Critical patent/CN108411265A/zh
Publication of CN108411265A publication Critical patent/CN108411265A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种低应力致密涂层制备方法,步骤一.将工件清洗干净,放入真空室抽真空至6X10‑4Pa以上,通入惰性气体氩气,偏压为‑800V至‑1000V,刻蚀所述工件表面10分钟‑60分钟;步骤二.通入惰性气体氩气,溅射中间层Ti或Cr,厚度100nm‑500nm;步骤三.通入氩氪、氩氙、氪氙或氩氪氙惰性气体的混合气体,溅射所需沉积涂层。在溅射沉积过程,工作气体为氩氪、氩氙或氩氪氙的混合气体,同时控制合理沉积偏压,从而控制涂层应力水平。相对传统的涂层,在获得致密结构条件下,压应力更低,适用于涂层结合性能要求高,涂层厚度大的应用领域。

Description

一种低应力致密涂层的制备方法
技术领域
本发明属于真空沉积涂层制备工艺领域,具体涉及低应力致密涂层的制备方法,可用于厚/超厚涂层的制备。
背景技术
目前,磁控溅射法制备的致密硬质涂层厚度一般不超过10um,其主要原因是过高的压应力使厚涂层/基底结合性能劣化,也导致涂层本身在承载条件下断裂失效。沉积过程中离子轰击涂层,诱发涂层产生间隙插入型缺陷,这是压应力产生的主要原因。涂层厚度增加可以大幅提高使基体表面承载能力,同时显著提高抗磨损寿命,因此厚硬质涂层(厚度大于10um)具有更广泛的工业应用前景。为了获得厚涂层甚至超厚涂层(厚度大于50um),主要可以通过以下几种手段实现:(1)通过超低负偏压(小于20V)或正偏压来减小或抑制离子轰击涂层表面,从而抑制压应力产生;(2)通过退火方式消除应力,包括沉积过程中用低能离子轰击退火或热辐射退火,以及沉积后热处理等手段;(3)通过梯度成分或结构设计以及多层设计来减小压应力。然而,对于超低负偏压,离子轰击不足会导致涂层疏松,退火方式可能无法将应力及时消除或由于退火过高导致基体性能劣化,通过梯度或多层设计往往导致涂层力学性能不佳。
发明内容
技术问题:本发明的目的在于提供一种磁控溅射法来制备低应力致密硬质涂层的方法,该制备方法简单,能同时兼顾低应力和涂层致密的要求,适用于涂层结合性能要求高,涂层厚度大的应用领域。
技术方案:为实现上述发明目的,本发明的一种低应力致密涂层制备方法采用如下技术方案:
步骤一.将工件清洗干净,放入真空室抽真空至6X10-4Pa以上,通入惰性气体氩气,偏压为-800V至-1000V,刻蚀所述工件表面10分钟-60分钟;
步骤二.通入惰性气体氩气,溅射中间层Ti或Cr,厚度100nm-500nm;
步骤三.通入氩氪、氩氙、氪氙或氩氪氙惰性气体的混合气体,溅射所需沉积涂层。
其中,
所述的所需沉积涂层是氧化物、氮化物或碳化物的陶瓷类涂层,还需相应通入反应类气体,如氧气、氮气、甲烷等;
所述的所需沉积涂层成分含有Ti、Zn、Y、Ca、Sc、Sr或稀土元素的涂层溅射,氩气含量范围为0%-20%,氪气含量范围为0%-20%,氙气含量范围为60%-100%。
所述的所需沉积涂层成分含有Mg、V、Cr、Mn、Nb、Tc或Sn的溅射沉积过程,氩气含量范围为0%-20%,氪气含量范围为20%-100%,氙气含量范围为1%-100%。
所述的所需沉积涂层中无Ti、Zn、Y、Ca、Sc、Sr、Mg、V、Cr、Mn、Nb、Tc、Sn或稀土元素的涂层,氩气含量范围为60%-99%,氪气含量范围为1%-20%,氙气含量范围为0%-20%。
所述的在溅射沉积涂层过程中,气体离化率应大于10%,偏压范围为-10V至-50V。
有益效果:(1)与现有技术相比,本发明获得的涂层兼有低应力、致密特性和厚度大等特点。(2)不需要高温退火处理,适宜在对温度敏感基体上沉积。(3)对设备要求低,工艺简单易行。
具体实施方式
以下结合具体实施方式对本发明做进一步的说明。
实施例1:制备低应力致密TiAlN涂层
将Ti6Al4V样品(工件)清洗干净,放入真空室抽真空至6X10-4Pa。通入惰性气体氩,偏压为-800V至-1000V,刻蚀样品表面20分钟。通入惰性气体氩气,溅射中间层Ti等,厚度约200nm。通入氩气、氪气、氙气和氮气,氩气在惰性气体中的含量为1%,氪气在惰性气体中的含量为1%,氙气在惰性气体中的含量为98%,氮气在混合气体中的含量为7%,TiAl靶直流溅射功率密度为10W/cm2,电离率10%,偏压-50V,沉积时间10小时,所获TiAlN涂层厚度20um,致密度99%,应力-100MPa。
实施例2:制备低应力致密TiAlN涂层
将Ti6Al4V样品清洗干净,放入真空室抽真空至6X10-4Pa。通入惰性气体氩,偏压为-800V至-1000V,刻蚀样品表面20分钟。通入惰性气体氩气,溅射中间层Ti等,厚度约200nm。融入氩气、氪气、氙气和氮气,氩气在惰性气体中的含量为1%,氪气在惰性气体中的含量为20%,氙气在惰性气体中的含量为69%,氮气在混合气体中的含量为7%,TiAl靶直流溅射功率密度为10W/cm2,电离率10%,偏压-50V,沉积时间10小时,所获TiAlN涂层厚度20um,致密度98%,应力-800MPa。
实施例3:制备低应力致密TiAlN涂层
将Ti6Al4V基体样品清洗干净,放入真空室抽真空至6X10-4Pa。通入惰性气体氩,偏压为-800V至-1000V,刻蚀样品表面20分钟。通入惰性气体氩气,溅射中间层Ti等,厚度约200nm。融入氩气、氪气、氙气和氮气,氩气在惰性气体中的含量为20%,氪气在惰性气体中的含量为1%,氙气在惰性气体中的含量为69%,氮气在混合气体中的含量为7%,TiAl靶直流溅射功率密度为10W/cm2,电离率10%,偏压-50V,沉积时间10小时,所获TiAlN涂层厚度20um,致密度99%,应力-500MPa。
实施例4:制备低应力致密TiAlN涂层
将Ti6Al4V样品清洗干净,放入真空室抽真空至6X10-4Pa。通入惰性气体氩,偏压为-800V至-1000V,刻蚀样品表面20分钟。通入惰性气体氩气,溅射中间层Ti等,厚度约200nm。融入氩气、氪气、氙气和氮气,氩气在惰性气体中的含量为20%,氪气在惰性气体中的含量为20%,氙气在惰性气体中的含量为60%,氮气在混合气体中的含量为7%,TiAl靶直流溅射功率密度为10W/cm2,电离率10%,偏压-50V,沉积时间10小时,所获TiAlN涂层厚度20um,致密度99%,应力-1GPa。
实施例5:制备低应力致密Cr涂层
将GCr15模具钢样品清洗干净,放入真空室抽真空至6X10-4Pa。通入惰性气体氩,偏压为-800V至-1000V,刻蚀样品表面20分钟。通入氩气、氪气和氙气,氩气在惰性气体中的含量为1%,氪气在惰性气体中的含量为98%,氙气在惰性气体中的含量为1%,Cr靶直流溅射功率密度为10W/cm2,采用钨丝等离子增强工艺,电离率90%,偏压-10V,沉积时间10小时,所获Cr涂层厚度30um,致密度100%,应力-100MPa。
实施例6:制备低应力致密Cr涂层
将GCr15模具钢样品清洗干净,放入真空室抽真空至6X10-4Pa。通入惰性气体氩,偏压为-800V至-1000V,刻蚀样品表面20分钟。通入氩气、氪气和氙气,氩气在惰性气体中的含量为20%,氪气在惰性气体中的含量为78%,氙气在惰性气体中的含量为1%,Cr靶直流溅射功率密度为10W/cm2,采用钨丝等离子增强工艺,电离率90%,偏压-10V,沉积时间30小时,所获Cr涂层厚度100um,致密度100%,应力-200MPa。
实施例7:制备低应力致密Cr涂层
将GCr15模具钢样品清洗干净,放入真空室抽真空至6X10-4Pa。通入惰性气体氩,偏压为-800V至-1000V,刻蚀样品表面20分钟。通入氩气、氪气和氙气,氩气在惰性气体中的含量为20%,氪气在惰性气体中的含量为60%,氙气在惰性气体中的含量为20%,Cr靶直流溅射功率密度为10W/cm2,采用钨丝等离子增强工艺,电离率90%,偏压-10V,沉积时间30小时,所获Cr涂层厚度30um,致密度100%,应力-500MPa。
实施例8:制备低应力致密TaN涂层
将GCr15模具钢样品清洗干净,放入真空室抽真空至6X10-4Pa。通入惰性气体氩,偏压为-800V至-1000V,刻蚀样品表面20分钟。通入惰性气体氩气,溅射中间层Ti等,厚度约200nm。通入氩气、氪气、氙气和氮气,氩气在惰性气体中的含量为99%,氪气在惰性气体中的含量为1%,氙气在惰性气体中的含量为0%,氮气在混合气体中的含量为7%,Ta靶直流溅射功率密度为10W/cm2,电离率100%,偏压-50V,沉积时间10小时,所获TiAlN涂层厚度20um,致密度100%,应力-100MPa。
实施例9:制备低应力致密TaN涂层
将GCr15模具钢样品清洗干净,放入真空室抽真空至6X10-4Pa。通入惰性气体氩,偏压为-800V至-1000V,刻蚀样品表面20分钟。通入惰性气体氩气,溅射中间层Ti等,厚度约200nm。通入氩气、氪气、氙气和氮气,氩气在惰性气体中的含量为60%,氪气在惰性气体中的含量为20%,氙气在惰性气体中的含量为20%,氮气在混合气体中的含量为7%,Ta靶直流溅射功率密度为10W/cm2,电离率100%,偏压-50V,沉积时间10小时,所获TiAlN涂层厚度20um,致密度100%,应力-500MPa。

Claims (6)

1.一种低应力致密涂层制备方法,其特征在于,该制备方法包括以下步骤:
步骤一.将工件清洗干净,放入真空室抽真空至6X10-4Pa以上,通入惰性气体氩气,偏压为-800V至-1000V,刻蚀所述工件表面10分钟-60分钟;
步骤二.通入惰性气体氩气,溅射中间层Ti或Cr,厚度100nm-500nm;
步骤三.通入氩氪、氩氙、氪氙或氩氪氙惰性气体的混合气体,溅射所需沉积涂层。
2.根据权利要求1所述的一种低应力致密涂层制备方法,其特征在于,所述的所需沉积涂层是氧化物、氮化物或碳化物的陶瓷类涂层,还需相应通入反应类气体,如氧气、氮气、甲烷等。
3.根据权利要求1所述的一种低应力致密涂层制备方法,其特征在于,所述的所需沉积涂层成分含有Ti、Zn、Y、Ca、Sc、Sr或稀土元素的涂层溅射,氩气含量范围为0%-20%,氪气含量范围为0%-20%,氙气含量范围为60%-100%。
4.根据权利要求1所述的一种低应力致密涂层制备方法,其特征在于,所述的所需沉积涂层成分含有Mg、V、Cr、Mn、Nb、Tc或Sn的溅射沉积过程,氩气含量范围为0%-20%,氪气含量范围为20%-100%,氙气含量范围为1%-100%。
5.根据权利要求1所述的一种低应力致密涂层制备方法,其特征在于,所述的所需沉积涂层中无Ti、Zn、Y、Ca、Sc、Sr、Mg、V、Cr、Mn、Nb、Tc、Sn或稀土元素的涂层,氩气含量范围为60%-99%,氪气含量范围为1%-20%,氙气含量范围为0%-20%。
6.根据权利要求1所述的一种低应力致密涂层制备方法,其特征在于,所述的在溅射沉积涂层过程中,气体离化率应大于10%,偏压范围为-10V至-50V。
CN201810261975.8A 2018-03-28 2018-03-28 一种低应力致密涂层的制备方法 Withdrawn CN108411265A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810261975.8A CN108411265A (zh) 2018-03-28 2018-03-28 一种低应力致密涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810261975.8A CN108411265A (zh) 2018-03-28 2018-03-28 一种低应力致密涂层的制备方法

Publications (1)

Publication Number Publication Date
CN108411265A true CN108411265A (zh) 2018-08-17

Family

ID=63132652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810261975.8A Withdrawn CN108411265A (zh) 2018-03-28 2018-03-28 一种低应力致密涂层的制备方法

Country Status (1)

Country Link
CN (1) CN108411265A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896432A (zh) * 2021-10-18 2022-01-07 膜尚科技(上海)有限公司 一种镀膜汽车玻璃

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896432A (zh) * 2021-10-18 2022-01-07 膜尚科技(上海)有限公司 一种镀膜汽车玻璃

Similar Documents

Publication Publication Date Title
US8540786B2 (en) Method for producing PVD coatings
CN113151795A (zh) 一种NbMoTaWAl难熔高熵合金薄膜及其制备方法
CN109913771B (zh) 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用
CN113913751B (zh) 一种Cu-高熵合金薄膜及其制备方法
CN111485209A (zh) 高熵合金/wc硬质层纳米多层薄膜、其制备方法及应用
CN109628896A (zh) 一种梯度结构TiAlSiYN多元纳米涂层及其制备方法
Münz et al. Industrial applications of HIPIMS
CN114717516A (zh) 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法
CN114921757A (zh) 一种非晶态高熵合金厚膜制备设备及制备方法
CN108411265A (zh) 一种低应力致密涂层的制备方法
CN114182213A (zh) 一种钛合金耐磨抗氧化复合涂层及其制备方法
CN110923650B (zh) 一种dlc涂层及其制备方法
US11920234B2 (en) Yttrium oxide based coating composition
CN114672777B (zh) 一种抗氧化Cr/CrAl纳米多层涂层及其制备方法
Seino et al. Aluminum oxide films deposited in low pressure conditions by reactive pulsed dc magnetron sputtering
KR20130070433A (ko) Max 상 박막의 제조방법
CN114672778A (zh) 一种纳米晶NbMoTaWTi难熔高熵合金涂层及其制备方法
CN109898051B (zh) 一种抗磨损耐腐蚀的DLC/SiNx复合薄膜及其制备方法
CN111575664B (zh) 利用离化溅射技术在磁材表面实现冷镀的镀膜方法
WO2002070776A1 (en) Deposition process
CN111647859A (zh) 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺
CN111500990A (zh) 一种Zr-Ti-B-N纳米复合涂层及其制备方法
CN113235060B (zh) 一种全α相钽涂层的制备方法
CN109957757B (zh) 一种两步法PVD技术制备超厚Ti-Al-C三元涂层的方法
WO2024169350A1 (zh) 一种涂层及其制备方法、双极板和燃料电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180817

WW01 Invention patent application withdrawn after publication