CN108405878A - 一种可控结构的纳米银线负载硫化银材料的制备方法 - Google Patents

一种可控结构的纳米银线负载硫化银材料的制备方法 Download PDF

Info

Publication number
CN108405878A
CN108405878A CN201810276133.XA CN201810276133A CN108405878A CN 108405878 A CN108405878 A CN 108405878A CN 201810276133 A CN201810276133 A CN 201810276133A CN 108405878 A CN108405878 A CN 108405878A
Authority
CN
China
Prior art keywords
nano
silver
silver thread
sulfide
vulcanization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810276133.XA
Other languages
English (en)
Other versions
CN108405878B (zh
Inventor
张寅清
祝凌燕
孙斌斌
许金良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201810276133.XA priority Critical patent/CN108405878B/zh
Publication of CN108405878A publication Critical patent/CN108405878A/zh
Application granted granted Critical
Publication of CN108405878B publication Critical patent/CN108405878B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种可控结构的纳米银线负载硫化银材料的制备方法。所述材料包括双层结构,内层为光滑、均匀的纳米银线,外层为紧密包裹在纳米银线表面的硫化银,且可以通过改变合成条件控制硫化银的负载形态,可以包括层状和纳米颗粒。所述材料的制备方法包括以下步骤:(1)采用改进的多元醇还原法制备合成纳米银线;(2)在硫化钠溶液中可控制备纳米银线负载硫化银材料。本发明所提供的纳米银线负载硫化银材料具有核壳结构,且可以调控硫化银的负载形态,具有制备工艺简单、容易实施且材料形貌可控等优点。本发明所制备的银纳米银线负载硫化银材料可用于光电子材料和光催化等领域。

Description

一种可控结构的纳米银线负载硫化银材料的制备方法
技术领域
本发明属于功能纳米材料制备技术领域,具体涉及一种硫化银-银复合结构纳米线的制备方法,并且通过改变合成条件能够制备多级结构的纳米材料。
背景技术
纳米线是在横向尺寸在100纳米以下的一维结构。纳米银线(AgNWs)是一类典型的一维纳米材料,除了具备银优良的导电性能外,还具有优异的透光性和抗弯折性,因此被视为是最有可能替代传统氧化铟锡透明电极的材料。纳米银线具有电阻低、价格便宜等优势,因此能够广泛应用于各种透明导电材料,如柔性太阳能电池、电容屏导电材料等,从而为实现柔性、可弯折LED显示、触摸屏等提供了可能性。
硫化银(Ag2S)是一种化学稳定性良好的无机半导体材料,而且具有较好的光电、热电、光吸收和光催化性能,在光催化、光伏电池、光电导元件、荧光成像、红外检测等领域具有重要的应用前景。硫化银还是典型的电子-离子混合导电型半导体材料,在室温下,它不仅能传导电子,还能传导银离子,使其在光学和电子等领域具有重要的应用价值。
金属-半导体复合材料能够有效地提高光电子利用效率,疏散半导体材料表面的电荷并且有效的阻碍电子与空穴的重组。硫化银纳米颗粒负载在纳米银线材料上能够制备高效太阳能电池光,毒性低,所制备的硫化银-纳米银线复合材料是一种绿色且环境友好的电子器件,同时由于硫化银具有合适的禁带宽度,获得了优异的电池光电性能,制备的电池具有优异的光伏性能,因此金属-半导体复合材料硫化银/银这类纳米材料得到广泛的关注。
目前,国内外文献已经报道了球壳结构Ag2S/Ag纳米颗粒的制备、性质和应用(“Synthesis,Morphological Control,and Antibacterial Properties of Hollow/Solid Ag2S/Ag Heterodimers”,J.Am.Chem.Soc.,2010,132,10771-10785)。但是硫化银的溶解度非常低(Ksp=6.31×10-50),所以硫化银的形成速率通常过快,这会导致其形貌比较难控制,特别是负载在纳米银线上形成纳米结构的硫化银。因此有必要开发一些温和而又方便的通用方法来制备纳米银线负载硫化银材料。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种简单制备纳米银线负载硫化银材料的方法,并且可以调控硫化银在纳米银线表面的形貌。
一种纳米银线负载硫化银材料,包括两层结构,内层为光滑、均匀的纳米银线,外层为紧密包裹在纳米银线表面的硫化银纳米颗粒或者薄层。
本发明的目的可以通过以下技术方案来实现:
(1)合成纳米银线,采用改进的多元醇还原法制备:
(1-1)氯化钠(NaCl)和聚乙烯吡咯烷酮(PVP)充分溶解于乙二醇(EG)中,得到PVP/NaCl/EG混合溶液;
(1-2)硝酸银(AgNO3)充分溶解于乙二醇(EG),得到AgNO3/EG混合溶液;
(1-3)将PVP/NaCl/EG溶液逐滴加入AgNO3/EG混合溶液中,并放在油浴锅里继续加热搅拌;
(1-4)产物分别用丙酮、去离子水分别清洗。
(2)制备纳米银线负载硫化银材料:
(2-1)将先前合成出的纳米银线加入到一定浓度的硫化钠溶液中搅拌;
(2-2)光照或者避光进行反应;
(2-3)产物用乙醇、去离子水分别清洗。
步骤(1-1)中,氯化钠的乙二醇溶液质量浓度为0.06-0.2mg/mL;
步骤(1-1)中,聚乙烯吡咯烷酮的乙二醇溶液质量浓度为0.06-0.2g/mL;
步骤(1-2)中,硝酸银的乙二醇溶液质量浓度为6-20mg/mL;
步骤(1-3)中,反应温度为120-180℃;
步骤(1-4)中,先用丙酮清洗3次,再用去离子水清洗3次。
步骤(2-1)中,采用0.02-0.5mM的硫化钠溶液,纳米银线在硫化钠溶液的浓度0.04-1mM;
步骤(2-2)中,反应在室温下进行4-48小时;
步骤(2-3)中,先用乙醇清洗3次,再用去离子水清洗3次。
与目前现有技术相比,本发明利用两步法合成了纳米银线负载硫化银材料的方法,并且可以调控硫化银在纳米银线表面的形貌。制备得到的纳米银线负载硫化银材料尺寸均匀,具有一维纳米结构,构建了一个新颖高效的光电化学传感器平台。纳米银线内层可以快速的转移电子,表面的硫化银纳米结构可以有效的阻碍电子与空穴的重组,拓宽了电极对可见光的吸收范围,提高光电流转化效率。此外,本申请所得的纳米银线负载硫化银还可以用于喷墨打印或喷涂等方式,用于大规模制备对电极。
附图说明
图1为实施例1制备的纳米银线负载硫化银材料的X射线衍射谱图;
图2为实施例1制备的纳米银线负载硫化银材料的透射电子显微镜照片;
图3为实施例2制备的纳米银线负载硫化银材料的X射线衍射谱图;
图4为实施例2制备的纳米银线负载硫化银材料的透射电子显微镜照片;
具体实施方式
以下结合实例对本发明进行进一步的详述。
实施例1
(1)分别称取一定质量的氯化钠和聚乙烯吡咯烷酮,充分溶解于乙二醇中,得到PVP/NaCl/EG混合溶液。氯化钠的乙二醇溶液质量浓度为0.06-0.1mg/mL;聚乙烯吡咯烷酮的乙二醇溶液质量浓度为0.06-0.1g/mL。
(2)称取一定质量硝酸银充分溶解于乙二醇(EG),得到AgNO3/EG混合溶液。硝酸银的乙二醇溶液质量浓度为6-12mg/mL。
(3)将PVP/NaCl/EG溶液逐滴加入AgNO3/EG混合溶液中,并放在油浴锅里继续加热搅拌,反应温度为120-160℃。
(4)先用丙酮清洗3次,再用去离子水清洗3次。
(5)将一定量的纳米银线加入到10mL一定浓度的硫化钠溶液中在避光条件下搅拌反应24h;
(6)产物先用乙醇清洗3次,再用去离子水清洗3次,最终得到纳米银线负载硫化银材料。
实例1所得的纳米银线负载硫化银材料的X射线衍射谱图如图1。从图中可以看出,所得到的材料含有纳米银线和硫化银,证实了合成反应确实成功制备了纳米银线负载硫化银材料。制备所得材料的透射电子显微镜照片如图2,材料的形貌仍为一维纳米线结构,形貌均匀,直径约为40nm,硫化银以层状形态成功负载在纳米银线表面。
实施例2
(1)分别称取一定质量的氯化钠和聚乙烯吡咯烷酮,充分溶解于乙二醇中,得到PVP/NaCl/EG混合溶液。氯化钠的乙二醇溶液质量浓度为0.1-0.2mg/mL;聚乙烯吡咯烷酮的乙二醇溶液质量浓度为0.1-0.2g/mL。
(2)称取一定质量硝酸银充分溶解于乙二醇(EG),得到AgNO3/EG混合溶液。硝酸银的乙二醇溶液质量浓度为10-20mg/mL。
(3)将PVP/NaCl/EG溶液逐滴加入AgNO3/EG混合溶液中,并放在油浴锅里继续加热搅拌,反应温度为140-180℃。
(4)先用丙酮清洗3次,再用去离子水清洗3次。
(5)将一定量的纳米银线加入到10mL一定浓度的硫化钠溶液中在500W氙灯照射条件下搅拌反应12h;
(6)产物先用乙醇清洗3次,再用去离子水清洗3次,最终得到纳米银线负载硫化银材料。
实例2所得的纳米银线负载硫化银材料的X射线衍射谱图如图3。从图中可以看出,所得到的材料含有纳米银线和硫化银,证实了合成反应确实成功制备了纳米银线负载硫化银材料。制备所得材料的透射电子显微镜照片如图4,材料的主体形貌仍为一维纳米线结构,形貌均匀,直径约为40nm,但是表面产生了球状颗粒,说明光照条件下硫化银能够以纳米颗粒负载在纳米银线表面。
实施例3
(1)分别称取一定质量的氯化钠和聚乙烯吡咯烷酮,充分溶解于乙二醇中,得到PVP/NaCl/EG混合溶液。氯化钠的乙二醇溶液质量浓度为0.1-0.2mg/mL;聚乙烯吡咯烷酮的乙二醇溶液质量浓度为0.1-0.2g/mL。
(2)称取一定质量硝酸银充分溶解于乙二醇(EG),得到AgNO3/EG混合溶液。硝酸银的乙二醇溶液质量浓度为10-20mg/mL。
(3)将PVP/NaCl/EG溶液逐滴加入AgNO3/EG混合溶液中,并放在油浴锅里继续加热搅拌,反应温度为130-160℃。
(4)先用丙酮清洗3次,再用去离子水清洗3次。
(5)将一定量的纳米银线加入到10mL一定浓度的硫化钾溶液中在紫外灯照射条件下搅拌反应8h;
(6)产物先用乙醇清洗3次,再用去离子水清洗3次,最终得到纳米银线负载硫化银材料。

Claims (5)

1.一种可控结构的纳米银线负载硫化银材料的制备方法,其特征在于,所述纳米银线负载硫化银材料包括双层结构,内层为光滑、均匀的纳米银线,外层为紧密包裹在纳米银线表面的硫化银,且可以通过改变合成条件控制硫化银的负载形态,可以包括层状和纳米颗粒;具体包括以下步骤:
(1)采用多元醇还原法制备合成纳米银线,包括:
(1-1)将氯化钠(NaCl)和聚乙烯吡咯烷酮(PVP)充分溶解于乙二醇(EG)中,得到PVP/NaCl/EG混合溶液,
(1-2)硝酸银(AgNO3)充分溶解于乙二醇(EG),得到AgNO3/EG混合溶液,
(1-3)将PVP/NaCl/EG溶液逐滴加入AgNO3/EG混合溶液中,并放在油浴锅里继续加热搅拌,
(1-4)产物先用丙酮清洗3次,再用去离子水清洗3次;
(2)制备纳米银线负载硫化银材料:
(2-1)将先前合成的纳米银线加入到一定浓度的硫化钠溶液中搅拌,
(2-2)产物先用丙酮清洗3次,再用去离子水清洗3次。
2.如权利要求1所述纳米银线负载硫化银材料的制备方法,其特征在于,步骤(1)中,在合成纳米银线过程中,氯化钠的乙二醇溶液质量浓度为0.06-0.2mg/mL,聚乙烯吡咯烷酮的乙二醇溶液质量浓度为0.06-0.2g/mL,硝酸银的乙二醇溶液质量浓度为6-20mg/mL,反应温度为120-180℃。
3.如权利要求1所述纳米银线负载硫化银材料的制备方法,其特征在于,步骤(2)中,将先前合成的纳米银线加入到硫化钠溶液中,硫化钠浓度为0.02-0.5mM,纳米银线的浓度是0.04-1mM,反应时间是4-48小时。
4.如权利要求1所述纳米银线负载硫化银材料的制备方法,其特征在于,步骤(2)中,将先前合成的纳米银线加入到硫化钠溶液中,硫化钠也可以是硫化钾、硫化铵、硫氢化钠等可溶性硫化物。
5.如权利要求1所述纳米银线负载硫化银材料的制备方法,其特征在于,步骤(2)中,将先前合成的纳米银线加入到硫化钠溶液中,通过光照或者避光条件控制纳米银线上硫化银的负载形态,包括层状和纳米颗粒,光照可以采用氙灯、紫外灯等光源。
CN201810276133.XA 2018-03-30 2018-03-30 一种可控结构的纳米银线负载硫化银材料的制备方法 Active CN108405878B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810276133.XA CN108405878B (zh) 2018-03-30 2018-03-30 一种可控结构的纳米银线负载硫化银材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810276133.XA CN108405878B (zh) 2018-03-30 2018-03-30 一种可控结构的纳米银线负载硫化银材料的制备方法

Publications (2)

Publication Number Publication Date
CN108405878A true CN108405878A (zh) 2018-08-17
CN108405878B CN108405878B (zh) 2021-10-15

Family

ID=63134058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810276133.XA Active CN108405878B (zh) 2018-03-30 2018-03-30 一种可控结构的纳米银线负载硫化银材料的制备方法

Country Status (1)

Country Link
CN (1) CN108405878B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109248693A (zh) * 2018-10-25 2019-01-22 中南大学 一种改性硫化锌纳米线光催化材料及其制备方法
CN110752066A (zh) * 2019-11-25 2020-02-04 四川浩宇华东科技有限公司 基于银类纳米线的高透屏蔽薄膜的制备方法
CN114373569A (zh) * 2022-01-26 2022-04-19 苏州诺菲纳米科技有限公司 一种纳米银线柔性膜黑化处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009172A (zh) * 2010-09-27 2011-04-13 山东大学 一种Ag/Ag2S核/壳纳米结构电阻开关材料及其制备方法
CN102744417A (zh) * 2011-06-16 2012-10-24 浙江科创新材料科技有限公司 一种高长径比纳米银线的制备方法
KR20140012298A (ko) * 2012-07-19 2014-02-03 한국과학기술원 핵-껍질 나노구조체의 조성 변화를 통한 표면 플라즈몬 공명의 다양한 색 구현 방법
CN104828773A (zh) * 2015-03-28 2015-08-12 安徽师范大学 一种聚吡咯/银@硫化银核壳结构纳米线及其用途和制备方法
CN104889388A (zh) * 2015-05-18 2015-09-09 华东理工大学 一种核壳结构银@硫化银纳米线的制备方法
CN107159881A (zh) * 2017-06-12 2017-09-15 青岛科技大学 一种银@硫化银核壳结构光热转换纳米材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009172A (zh) * 2010-09-27 2011-04-13 山东大学 一种Ag/Ag2S核/壳纳米结构电阻开关材料及其制备方法
CN102744417A (zh) * 2011-06-16 2012-10-24 浙江科创新材料科技有限公司 一种高长径比纳米银线的制备方法
KR20140012298A (ko) * 2012-07-19 2014-02-03 한국과학기술원 핵-껍질 나노구조체의 조성 변화를 통한 표면 플라즈몬 공명의 다양한 색 구현 방법
CN104828773A (zh) * 2015-03-28 2015-08-12 安徽师范大学 一种聚吡咯/银@硫化银核壳结构纳米线及其用途和制备方法
CN104889388A (zh) * 2015-05-18 2015-09-09 华东理工大学 一种核壳结构银@硫化银纳米线的制备方法
CN107159881A (zh) * 2017-06-12 2017-09-15 青岛科技大学 一种银@硫化银核壳结构光热转换纳米材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG,YINQING等: "Impacts of Morphology, Natural Organic Matter, Cations, and Ionic Strength on Sulfidation of Silver Nanowires", 《ENVIRONMENTAL SCIENCE & TECHNOLOGY》 *
丁瑞强等: "一种链状多面体银-硫化银复合纳米结构的制备", 《现代化工》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109248693A (zh) * 2018-10-25 2019-01-22 中南大学 一种改性硫化锌纳米线光催化材料及其制备方法
CN110752066A (zh) * 2019-11-25 2020-02-04 四川浩宇华东科技有限公司 基于银类纳米线的高透屏蔽薄膜的制备方法
CN110752066B (zh) * 2019-11-25 2020-10-02 四川浩宇华东科技有限公司 基于银类纳米线的高透屏蔽薄膜的制备方法
CN114373569A (zh) * 2022-01-26 2022-04-19 苏州诺菲纳米科技有限公司 一种纳米银线柔性膜黑化处理方法

Also Published As

Publication number Publication date
CN108405878B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
Zarezadeh et al. Synthesis of novel pnp BiOBr/ZnO/BiOI heterostructures and their efficient photocatalytic performances in removals of dye pollutants under visible light
Xi et al. In-situ fabrication of MoO3 nanobelts decorated with MoO2 nanoparticles and their enhanced photocatalytic performance
Li et al. SnSe@ SnO 2 core–shell nanocomposite for synchronous photothermal–photocatalytic production of clean water
CN108405878A (zh) 一种可控结构的纳米银线负载硫化银材料的制备方法
Karan et al. Controlled surface trap state photoluminescence from CdS QDs impregnated in poly (methyl methacrylate)
Liu et al. Simple synthesis of BiOAc/BiOBr heterojunction composites for the efficient photocatalytic removal of organic pollutants
Oseni et al. Bimetallic nanocomposites and the performance of inverted organic solar cell
Zhang et al. Zn-Ag-In-S quantum dot sensitized solar cells with enhanced efficiency by tuning defects
CN108273521A (zh) 一种由纳米片构成的硫化铜锌花状微米球超结构可见光催化剂的制备方法
Fu et al. ZnO@ Au@ Cu2O nanotube arrays as efficient visible-light-driven photoelectrod
Qi et al. Enhanced photocatalytic degradation of phenol over Ag3PO4-BiOCl1− xBrx composites
Zhang et al. UV-Vis-NIR-light-driven Ag2O/Ag2S/CuBi2O4 double Z-scheme configuration for enhanced photocatalytic applications
Cui et al. Facile synthesis and photocatalytic activity of Ag3PO4 decorated MoS2 nanoflakes on carbon fiber cloth
Zhou et al. Preparation of 3D urchin-like RGO/ZnO and its photocatalytic activity
Kanimozhi et al. A novel electrospun cobalt-doped zinc oxide nanofibers as photoanode for dye-sensitized solar cell
Cheng et al. In-situ construction of high-efficiency phase-transition induced m-Bi2O4/Bi4O7 surface heterojunction photocatalysts and mechanism investigation
Lu et al. Highly efficient tandem Z-scheme heterojunctions for visible light-based photocatalytic oxygen evolution reaction
CN108511198A (zh) 一种Ni掺杂的BiVO4薄膜光电阳极、其制备方法与用途
Boda et al. Facile synthesis of hybrid ZnO nanostructures by combined electrodeposition and chemical bath deposition for improved performance of dye-sensitized solar cell
Hamed et al. Plasmonic nano-particles mediated energy harvesting in thin-film organic solar cells
CN107694589A (zh) 一种用于光电催化产氢的薄膜复合材料的制备方法
Hou et al. Fabrication and photocatalytic activity of core@ shell Ag3PO4@ Cu2O heterojunction
Fan Flexible dye-sensitized solar cells assisted with lead-free perovskite halide
CN105602567B (zh) 碲汞镉量子点与碳纳米管纳米复合材料在提高光转换效率中的应用
Yong et al. Incorporating photocatalytic fuel cell with dual S-scheme CuBi2O4/Bi2WO6/ZnO NRA photoanode for energy recuperation from municipal wastewater treatment under sunlight

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant