CN108395556B - 一种具有优异热电性能的高规整度聚噻吩薄膜及其制备方法 - Google Patents

一种具有优异热电性能的高规整度聚噻吩薄膜及其制备方法 Download PDF

Info

Publication number
CN108395556B
CN108395556B CN201810256756.0A CN201810256756A CN108395556B CN 108395556 B CN108395556 B CN 108395556B CN 201810256756 A CN201810256756 A CN 201810256756A CN 108395556 B CN108395556 B CN 108395556B
Authority
CN
China
Prior art keywords
polythiophene
polythiophene film
electrolyte
current density
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810256756.0A
Other languages
English (en)
Other versions
CN108395556A (zh
Inventor
朱道本
张嘉佳
徐伟
孙祎萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
University of Chinese Academy of Sciences
Original Assignee
Institute of Chemistry CAS
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS, University of Chinese Academy of Sciences filed Critical Institute of Chemistry CAS
Priority to CN201810256756.0A priority Critical patent/CN108395556B/zh
Publication of CN108395556A publication Critical patent/CN108395556A/zh
Application granted granted Critical
Publication of CN108395556B publication Critical patent/CN108395556B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/44Electrochemical polymerisation, i.e. oxidative or reductive coupling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/55Physical properties thermoelectric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一种具有优异热电性能的高规整度聚噻吩薄膜及其制备方法。该方法为在BFEE/DTBP体系中恒电流电化学聚合制备聚噻吩的方法,聚噻吩薄膜内部结构的形貌可以通过电化学聚合过程中的电流密度大小来调控,随着电流密度增大,聚噻吩薄膜内部有纳米片层出现,在1mA cm‑2的电流密度条件下制备的聚噻吩薄膜具有很高的规整度,并且具有很好的热电性能,其功率因子可达98.8±4.7μW m‑1K‑2,ZT值可达0.09±0.01。

Description

一种具有优异热电性能的高规整度聚噻吩薄膜及其制备方法
技术领域
本发明属于有机导电高分子材料领域,具体涉及一种具有优异热电性能的高规整度聚噻吩薄膜及其制备方法。
背景技术
国民经济的快速发展和人民生活水平的日益提高,是中国能源需求不断增加的基本推动力。中国是一个能源生产和消费大国,拥有丰富的化石能源,但是人均能源资源拥有量较低,再加上能源利用技术落后,利用低下,我国能源的消耗速度比其他国家更快,能源枯竭的威胁可能来的更早、更严重。因而,日益增长的能源压力使得我们不得不寻找解决能源危机的突围之路。
根据美国能源部对初级能源消耗的估算,超过55%的能源最终以废热的形式被释放到环境中。如何将废热再次利用,提高能源的使用效率具有重要的意义。热电材料是一种能将热能和电能相互转换的功能材料,可以制造热电发电机或热电制冷器件。热电材料器件具有体积小,重量轻,无噪音,无污染,可以回收热能转变成电能等优点。热电材料性能主要由无量纲优值ZT来衡量,它与材料的Seebeck系数S、电导率σ、热导率k和温度T相关,即:ZT=S2σT/k。目前热电材料制成装置的效率仍然远低于传统的发电机或者冰箱。好的热电材料需要有高的ZT值。由于决定材料热电性能的三个重要参数S、σ、k之间是相互关联的,如何实现这些参数的独立调控使材料在很宽的温度范围内具有较高的ZT值是热电材料的研究核心。目前,无机材料(Bi2Te3,Sb2Te3,SnSe)仍然是最好的热电材料。但是,无机热电材料需要高真空的加工条件,并且在地壳中的含量较低。导电聚合物相对于无机材料具有明显的优势,质量轻,成本低,力学性能好,易大规模溶液加工,并且具有较大的Seebeck系数和较低的热导率,但是较低的电导率限制了其对热能的收集利用。目前,有机热电材料的研究主要包括导电聚合物,电荷转移复合物、有机无机复合物以及金属有机配位聚合物,如PEDOT:PSS,TTF-TCNQ、PEDOT/PbTe和Poly[Kx(Ni-ett)]等。(O.Bubnova,Z.U.Khan,A.Malti,S.Braun,M.Fahlman,M.Berggren,X.Crispin,Nature Materials,10(2011)
429-433;E.Tamayo,K.Hayashi,T.Shinano,Y.Miyazaki,T.Kajitani,AppliedSurface Science,256(2010)4554-4558;Y.Wang,K.Cai,X.Yao,Acs Applied Materials&Interfaces,3(2011)1163-1166;Y.M.Sun,P.Sheng,C.A.Di,F.Jiao,W.Xu,D.Qiu,andD.B.Zhu,Advanced Materials,24(2012)932-937;Y.H.Sun,F.J.Zhang,P.Yue,C.A.Di,W.Xu,D.B.Zhu,Advanced Materials,28(2016)3351-3358)。
发明内容
本发明的目的是提供一种具有优异热电性能的高规整度聚噻吩薄膜。
本发明提供的制备聚噻吩薄膜的方法,包括如下步骤:
以噻吩单体、质子清除剂和电解液为原料,利用恒电流法制备得到所述聚噻吩薄膜。
上述方法中,质子清除剂为2,6-二叔丁基吡啶(DTBP);质子清除剂可以捕获电化学聚合过程中,噻吩环上脱下的质子;
所述电解液为三氟化硼的乙醚(BFEE)溶液;同时,三氟化硼乙醚溶液自身也可作为导电的支撑电解质;所述三氟化硼的乙醚(BFEE)溶液中,BF3的质量分数≥46.5%;可购自Sigma-Aldrich;
所用工作电极和对电极为导电金属片,具体可为不锈钢片;更具体可为304型不锈钢片;
所用参比电极为Ag/AgCl电极;
所述单体、质子清除剂和电解液的体积用量比为1:2.5-3:200-300mL;具体为1:2.9:250。
所述恒电流法中,电流密度为0.25mA cm-2-2mA cm-2;具体可为1mA cm-2
时间为20-30分钟。
所述噻吩单体和组成电解液的化合物均进行除水氧处理。
所述除水氧处理的方法具体可为重蒸处理。
所用重蒸处理中,重蒸的方法均为常规方法。重蒸的目的是除去噻吩单体或组成电解液的化合物中的水氧。
具体的,重蒸噻吩单体的方法可为在氢化钙存在的条件下常压除水。噻吩与氢化钙的质量比为100:3-5;具体可为100:4;
重蒸组成电解液的化合物的方法具体可包括在氢化钙存在的条件下减压蒸馏;更具体可为先在50-70℃或60℃下加热搅拌3.5-4.5h或4h,再进行减压蒸馏;
另外,按照上述方法制备得到的聚噻吩薄膜,也属于本发明的保护范围。通过调控电化学聚合电流密度的大小,可以调控聚噻吩薄膜的结构形貌及其热电性能。研究发现,采用的电流密度为1mA cm-2时,具有最优的热电性能及近乎结晶的形貌。所制备的聚噻吩薄膜用红外、显微拉曼和固体核磁表征,规整度很高。用四探针法测试其电导率,电导率可达700S cm-1以上,Seebeck系数可达36μV K-1,功率因子为98.8±4.7μW m-1K-2;ZT值为0.09±0.01;电导率最高值为700S cm-1;Seebeck系数为36μV K-1;热导率为0.33W m-1K-1,具有很好的热电性能。。
另外,上述本发明提供的聚噻吩薄膜在制备热电器件中的应用,也属于本发明的保护范围。所述热电器件具体可为柔性热电器件。
本发明具有如下有益效果:
噻吩单体由于具有α和β两个活性位点,在电化学聚合过程中,往往会出现α-α,β-β,α-β三种链接方式,但是β-β,α-β这两种链接方式通常被认为是不太理想的,因为会降低噻吩链骨架的共轭程度和规整度。本发明用大位阻碱2,6-二叔丁基吡啶作为质子清除剂,严格控制电化学反应的水氧含量,利用恒电流法聚合噻吩单体,通过调控电流密度的大小,制得了α-α链接的高规整度聚噻吩,并具有近似结晶的纳米片层形貌,其ZT值接近0.1,是目前除了PEDOT之外p-型材料中热电性能最好的,具有很好的应用前景。
附图说明
图1为实施例1中1mA cm-2电流密度下制备的聚噻吩薄膜的固体核磁图谱。
图2为实施例中1mA cm-2电流密度下制备的聚噻吩薄膜的红外和拉曼图谱。
图3为实施例1中不同电流密度(a 0.25mAcm-2,b 0.5mA cm-2,c 1mA cm-2,d1.5mAcm-2,e 2mA cm-2)下的SEM和XRD图谱。
图4为实施例1中在1mA cm-2电流密度条件下制备的聚噻吩薄膜。
图5为实施例1中在不同电流密度下制备的聚噻吩薄膜的热电性能。
具体实施方式
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。
实施例1、电化学法制备优异热电性能的高规整度聚噻吩薄膜
将4x 5cm2尺寸的普通304不锈钢片依次用1500目和2000目的砂纸打磨光滑,然后用洗涤灵洗去附着的油污,接着分别用三次水,乙醇和丙酮溶液超声洗涤30分钟,用氮气枪吹干。
由于三氟化硼乙醚对水敏感,噻吩易被氧化,因此三氟化硼乙醚和噻吩用于电化学反应之前均需要进行重蒸处理。三氟化硼乙醚溶液(BF3≥46.5%,购自Sigma-Aldrich)加入氢化钙(比例为500ml三氟化硼乙醚溶液加入5g氢化钙),60℃下加热搅拌4h,然后进行减压重蒸纯化,除去三氟化硼乙醚溶液中的水氧,进行密封储存。
将噻吩溶液中直接加入氢化钙,噻吩与氢化钙的质量比为100:4;常压下重蒸除水,取中间馏分,以确保所用噻吩单体是未被氧化的。2,6-二叔丁基吡啶则不做进一步处理。
将处理干净的两片4x5cm2尺寸的304不锈钢片子作为工作电极和对电极固定在如图1所示的电解池中,Ag/AgCl作为参比电极,然后将电解池、三氟化硼乙醚溶液,噻吩和2,6-二叔丁基吡啶均传送进手套箱中,将400μL的噻吩单体和1.17mL的2,6-二叔丁基吡啶加入100mL的三氟化硼乙醚溶液中,搅拌均匀。然后,采用恒电流法聚合,施加电流为10mA,20mA,40mA,60mA,80mA,相应的电流密度依次为0.25mA cm-2、0.5mA cm-2、1mA cm-2、1.5mAcm-2和2mA cm-2,聚合时间控制为30分钟。
将聚合所得的聚噻吩薄膜取出,用丙酮浸泡10min洗去聚噻吩薄膜上的三氟化硼乙醚溶液,然后在真空干燥箱中干燥30分钟,然后取出在防潮柜中保存。该薄膜的厚度为8-10μm。
用固体核磁、红外、显微拉曼光谱对聚噻吩薄膜内部结构进行表征,发现其规整程度很高,然后用扫描电子显微镜(SEM)和X射线衍射(XRD)去观察其形貌与分子链的堆积,所得结果均见于图1至图4。结果发现随着聚合电流密度的增大,聚噻吩薄膜π-π堆集峰增强,并且有很多近乎结晶的区域出现,说明电化学聚合过程的电流密度对其形貌有一定的调控作用。
聚噻吩薄膜蒸镀300nm厚的条状金电极,金电极间距为1mm,电导率用四探针法测试;将聚噻吩薄膜裁成2x 5mm左右尺寸的条状,两端蒸镀300nm的金,进行塞贝克系数的测试。
将聚噻吩薄膜切成纤维状,悬空粘在四根铜丝电极上,用3ω法测试其热导率。
图5为实施例1中在不同电流密度下制备的聚噻吩薄膜的热电性能。
由图可知,电流密度为1mA cm-2时所得聚噻吩薄膜的热电性能最好,具体如表1所示,其ZT值接近0.1。
表1、聚噻吩薄膜的热电性能
Figure BDA0001609136900000041
由表1可知,在电流密度为1mA cm-2的聚合条件下,所制备的聚噻吩薄膜功率因子可达100μW m-1K-2左右,其ZT值接近0.1,是目前除PEDOT外的p-型热电材料中,热电性能最好的导电聚合物,具有很好的应用前景。

Claims (10)

1.一种制备聚噻吩薄膜的方法,包括如下步骤:
以噻吩单体、质子清除剂和电解液为原料,利用恒电流法制备得到所述聚噻吩薄膜;
所述质子清除剂为2,6-二叔丁基吡啶;
所述电解液为三氟化硼的乙醚溶液;
所用工作电极和对电极为导电金属片或不锈钢片;
所用参比电极为Ag/AgCl电极;
所述单体、质子清除剂和电解液的体积用量比为1:2.5-3:200-300mL;
所述恒电流法中,电流密度为0.25 mA cm-2-2mA cm-2
时间为20-30分钟。
2.根据权利要求1所述的方法,其特征在于:所述单体、质子清除剂和电解液的体积用量比为1:2.9:250。
3. 根据权利要求1所述的方法,其特征在于:所述恒电流法中,电流密度为1mA cm-2
时间为20-30分钟。
4.根据权利要求1-3中任一所述的方法,其特征在于:所述噻吩单体和组成电解液的化合物均进行除水氧处理。
5.根据权利要求4所述的方法,其特征在于:所述除水氧处理的方法为重蒸。
6.根据权利要求5所述的方法,其特征在于:重蒸噻吩单体的方法为在氢化钙存在的条件下常压除水;
重蒸组成电解液的化合物的方法包括在氢化钙存在的条件下减压蒸馏。
7.权利要求1-6中任一所述方法制备得到的聚噻吩薄膜。
8. 根据权利要求7所述的聚噻吩薄膜,其特征在于:在1 mA cm-2电流密度条件下,所述聚噻吩薄膜的功率因子为98.8±4.7 μW m-1 K-2ZT值为0.09±0.01;电导率最高值为700S cm-1;Seebeck系数为36 μV K-1;热导率为0.33 W m-1 K-1
所述聚噻吩薄膜的厚度为8-10μm。
9.权利要求7或8所述聚噻吩薄膜在制备热电器件中的应用。
10.根据权利要求9所述的应用,其特征在于:所述热电器件为柔性热电器件。
CN201810256756.0A 2018-03-27 2018-03-27 一种具有优异热电性能的高规整度聚噻吩薄膜及其制备方法 Active CN108395556B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810256756.0A CN108395556B (zh) 2018-03-27 2018-03-27 一种具有优异热电性能的高规整度聚噻吩薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810256756.0A CN108395556B (zh) 2018-03-27 2018-03-27 一种具有优异热电性能的高规整度聚噻吩薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN108395556A CN108395556A (zh) 2018-08-14
CN108395556B true CN108395556B (zh) 2020-11-24

Family

ID=63093213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810256756.0A Active CN108395556B (zh) 2018-03-27 2018-03-27 一种具有优异热电性能的高规整度聚噻吩薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN108395556B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880063B (zh) * 2019-02-21 2021-07-27 深圳大学 基于苯并二噻吩单元的共轭聚合物及制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006023699A2 (en) * 2004-08-19 2006-03-02 University Of Akron Photonic crystal, conjugated polymers suitable for photonic crystals, and a method for synthesizing conjugated polymers
CN101307134A (zh) * 2008-06-25 2008-11-19 南京大学 一种p型掺杂的聚(3,4-乙烯二氧噻吩)及其制法和用途
CN101603188A (zh) * 2009-06-22 2009-12-16 江西科技师范学院 在不锈钢表面直接制备导电聚噻吩及3-烷基取代聚噻吩自支撑薄膜的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006023699A2 (en) * 2004-08-19 2006-03-02 University Of Akron Photonic crystal, conjugated polymers suitable for photonic crystals, and a method for synthesizing conjugated polymers
CN101307134A (zh) * 2008-06-25 2008-11-19 南京大学 一种p型掺杂的聚(3,4-乙烯二氧噻吩)及其制法和用途
CN101603188A (zh) * 2009-06-22 2009-12-16 江西科技师范学院 在不锈钢表面直接制备导电聚噻吩及3-烷基取代聚噻吩自支撑薄膜的方法

Also Published As

Publication number Publication date
CN108395556A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
Lee et al. Annealed Mn–Fe binary oxides for supercapacitor applications
Bu et al. A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion
US11634332B2 (en) Selenium-doped MXene composite nano-material, and preparation method and use thereof
Lin et al. Solar-powered overall water splitting system combing metal-organic frameworks derived bimetallic nanohybrids based electrocatalysts and one organic solar cell
Sultan et al. Chemical sensing, thermal stability, electrochemistry and electrical conductivity of silver nanoparticles decorated and polypyrrole enwrapped boron nitride nanocomposite
CN110467162B (zh) 一种新型石墨相氮化碳聚合物材料及其制备方法和应用
Liu et al. Polyaniline/MnO2 composite with high performance as supercapacitor electrode via pulse electrodeposition
CN109279583B (zh) 一种二硒化钼/氮掺杂碳复合纳米材料及其制备方法与应用
CN108682791B (zh) 一种气相法制备层状结构无机钙钛矿负极材料的方法
CN113751047B (zh) 一种共价有机框架-氮化碳纳米片杂化光催化析氢材料及其制备方法和应用
CN109876869A (zh) 核壳结构的二硼化钛表面包覆功能膜材料及其制备方法与应用
CN108395556B (zh) 一种具有优异热电性能的高规整度聚噻吩薄膜及其制备方法
Yan et al. Naphthalene-diimide selenophene copolymers as efficient solution-processable electron-transporting material for perovskite solar cells
CN110504106A (zh) 一种基于傅-克反应的π-共轭多孔碳材料及其制备方法和应用
Cogal et al. RF plasma-enhanced graphene–polymer composites as hole transport materials for perovskite solar cells
Wang et al. A New (De) Intercalation MXene/Bi Cathode for Ultrastable Aqueous Zinc‐Ion Battery
CN110721658A (zh) 一种六方氮化硼-石墨相氮化碳插层复合材料的制备方法及其应用
CN110429248A (zh) 一种碳化硅陶瓷基纳米复合材料的制备方法及其应用
Al-Gamal et al. Promising nitrogen-doped graphene derivatives; a case study for preparations, fabrication mechanisms, and applications in perovskite solar cells
CN108511203B (zh) 一种氢氧化镍/二氧化锰/碳/镍分级多孔复合材料及其制备方法
Cogal et al. Plasma-based preparation of polyaniline/graphene and polypyrrole/graphene composites for dye-sensitized solar cells as counter electrodes
Abass et al. Novel preparation of Sb2O3: Ag/Si solar cell fabricated utilising thermal evaporation method: studies on structural, morphology microstructural, topographic imaging, optical, and electrical properties for photovoltaic cell based electronic device applications
CN103316711A (zh) 一种类石墨烯氮化碳光催化材料的制备方法
CN110227530B (zh) 一种碳/硫共掺杂介孔g-C3N4复合光催化材料的制备方法
Li et al. High Yield and Packing Density Activated Carbon by One-Step Molecular Level Activation of Hydrophilic Pomelo Peel for Supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant