CN103316711A - 一种类石墨烯氮化碳光催化材料的制备方法 - Google Patents
一种类石墨烯氮化碳光催化材料的制备方法 Download PDFInfo
- Publication number
- CN103316711A CN103316711A CN2013102401115A CN201310240111A CN103316711A CN 103316711 A CN103316711 A CN 103316711A CN 2013102401115 A CN2013102401115 A CN 2013102401115A CN 201310240111 A CN201310240111 A CN 201310240111A CN 103316711 A CN103316711 A CN 103316711A
- Authority
- CN
- China
- Prior art keywords
- preparation
- graphene
- carbon nitride
- carbonitride
- catalysis material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 37
- 239000000463 material Substances 0.000 title claims abstract description 15
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 title abstract description 7
- 230000001699 photocatalysis Effects 0.000 title abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 8
- 239000010439 graphite Substances 0.000 claims abstract description 8
- 239000007787 solid Substances 0.000 claims abstract description 7
- 229910021389 graphene Inorganic materials 0.000 claims description 52
- 239000000839 emulsion Substances 0.000 claims description 11
- 238000006555 catalytic reaction Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 7
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 abstract description 6
- 230000004044 response Effects 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 3
- 238000005119 centrifugation Methods 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000002904 solvent Substances 0.000 abstract description 2
- 239000002135 nanosheet Substances 0.000 abstract 2
- 239000011941 photocatalyst Substances 0.000 abstract 2
- 239000000725 suspension Substances 0.000 abstract 2
- 238000010923 batch production Methods 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 235000019437 butane-1,3-diol Nutrition 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 abstract 1
- 239000002243 precursor Substances 0.000 abstract 1
- 238000001179 sorption measurement Methods 0.000 abstract 1
- 238000003786 synthesis reaction Methods 0.000 abstract 1
- 238000009210 therapy by ultrasound Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 238000007146 photocatalysis Methods 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- 229910017488 Cu K Inorganic materials 0.000 description 1
- 229910017541 Cu-K Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 230000005260 alpha ray Effects 0.000 description 1
- 238000000627 alternating current impedance spectroscopy Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- SDLBJIZEEMKQKY-UHFFFAOYSA-M silver chlorate Chemical compound [Ag+].[O-]Cl(=O)=O SDLBJIZEEMKQKY-UHFFFAOYSA-M 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Abstract
本发明涉及一种类石墨烯氮化碳光催化剂的制备方法,属于光催化材料的制备方法技术领域。该方法包括如下步骤:(1)将石墨型氮化碳分散于1,3-丁二醇中进行超声处理;(2)将得到的悬乳液进行离心处理以去除前驱体;(3)离心得到的悬乳液进行蒸干后得到的固体即为所述类石墨烯氮化碳光催化剂。利用本发明的方法制备出的超薄类石墨烯氮化碳纳米片具有良好的光催化性能及光电流响应,同时类石墨烯氮化碳纳米片表现出较强的吸附能力。本发明提供的制备方法中,原料廉价,工艺简单,反应温和,且溶剂原料工业上可实现循环使用,从而使整个合成过程绿色环保,有效的降低了产品成本,适合于工业化大批量生产,具有很高的应用前景和使用价值。
Description
技术领域
本发明涉及一种类石墨烯氮化碳光催化剂的制备方法,属于光催化材料的制备方法技术领域。
背景技术
石墨型氮化碳(g-C3N4)和石墨一样具有层状结构,存在共轭大π键,并且具有良好的化学稳定性,由于其被报道在可见光下能光解水制取氢气,同时具有光催化降解环境污染物能力,从而迅速成为光催化领域研究热点;g-C3N4作为一种耐高温的、非金属的、无毒的的催化剂具有良好的应用前景,但是研究其性质发现,单体g-C3N4对光的利用率较低,在光照条件下,电子空穴的复合率较高,研究人员运用修饰改性的方法来提高g-C3N4的光催化活性,如过渡金属掺杂、半导体复合、染料敏化等;受到石墨烯研究的启发,单层的石墨烯具有卓越的光电性能,由于石墨型氮化碳和石墨一样具有层状结构,且层与层之间以范德华力连接,因此如果能像制取石墨烯一样,对g-C3N4进行处理,剥离得到单层或者少层的类石墨烯结构氮化碳二维材料,其性质可能会表现出不同于石墨型氮化碳的特征。
发明内容
本发明的目的是提供一种类石墨烯氮化碳光催化剂的制备方法,本发明制备的类石墨烯氮化碳具有良好的光催化性能和光电性能。
本发明所提供的一种类石墨烯氮化碳光催化剂的制备方法,包括如下步骤:
(1) 将石墨型氮化碳分散于1,3-丁二醇中进行超声处理;1,3-丁二醇可以进入g-C3N4层间,其结构中的双羟基结构可以和g-C3N4相互作用,使得g-C3N4层与层之间的距离变大,在强烈超声作用,其层间的范德华力破坏,实现剥离。
(2) 将得到的悬乳液进行离心处理以去除前驱体;
(3) 离心得到的悬乳液进行蒸干后得到的固体即为所述类石墨烯氮化碳光催化材料。
上述的制备方法中,所述的1,3-丁二醇的质量百分含量为30-99%,超声功率为100-800 W,如1,3-丁二醇的质量百分含量为95%,超声功率为400W。
上述的制备方法中,所述的氮化碳用量为0.1 g时,其所述的1,3-丁二醇的用量为10-60 ml,如0.1 g所述的氮化碳需要40 ml质量百分含量为95%的1,3-丁二醇。
上述的制备方法中,步骤(1)中,所述的超声处理的时间为5-30小时,如20小时。
上述的制备方法中,所述的离心处理时,离心机的转速为1000-17000转/分钟,并且离心的时间为1-20分钟,如离心速度为5000转/分钟,离心时间为10分钟。
上述的制备方法中,步骤(3)中,蒸干产品的温度为90-300℃,如200℃。
本发明还提供了由上述方法制备的类石墨烯氮化碳光催化材料。
利用本发明方法制备出的类石墨烯氮化碳具有良好的光催化降解环境污染物及光电流响应性能;本发明提供的制备方法中,,原料廉价,工艺简单,反应温和,且溶剂原料工业上可实现循环使用,从而使整个工艺基本没有污染,有效的降低了产品成本,适合于工业化大批量生产,具有很高的应用前景和使用价值。
附图说明
图1为g-C3N4单体和本发明制备的类石墨烯氮化碳的XRD图;1- g-C3N4,2、类石墨烯氮化碳;
图2为本发明制备的类石墨烯氮化碳的TEM和HRTEM图;(a)TEM,(b)HRTEM;
图3为本发明制备的类石墨烯氮化碳的AFM图;
图4为g-C3N4单体和本发明制备的类石墨烯氮化碳在可见光下光催化降解MB的活性对比图和循环试验图;(a)活性对比图,(b)循环试验图;
图5为g-C3N4单体和本发明制备的类石墨烯氮化碳在可见光下的电化学阻抗图;
图6为g-C3N4单体和本发明制备的类石墨烯氮化碳在可见光下的光电流响应的性能对比图; 1- g-C3N4;2、类石墨烯氮化碳。
具体实施方式
下述实施例中使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
煅烧制备g-C3N4:分别称取三份2.0 g二氰二胺置于三个坩埚内,外加一个空着的坩埚(四个坩埚全部加盖),将四个坩埚置于两个方舟上放在管式炉正中间,在氮气气氛下进行煅烧;加热参数如下:设置从室温、在90分钟内匀速升温到350℃,并保持350℃两小时;然后在90分钟内匀速升温到600℃,并在600℃保持2 h;然后自然冷却,获得的黄色固体即为g-C3N4,研磨待用。
实施例1:剥离制备的类石墨烯C3N4
称取0.06g g-C3N4置于50 ml烧杯中,再加入25 ml 99%的1,3-丁二醇,然后将其放入100W的超声波中进行超声处理30小时后,将其悬乳液在13000转/分钟下离心5分钟,将得到的悬乳液转移到表面皿中,放入恒温烘箱,160℃蒸干,最终获得的淡黄色固体粉末即为类石墨烯氮化碳。
实施例2:剥离制备的类石墨烯C3N4
称取0.08 g g-C3N4置于50 ml烧杯中,再加入40ml 40%的1,3-丁二醇,然后将其放入800W的超声波中进行超声处理7小时后,将其悬乳液在1500转/分钟下离心20分钟,将得到的悬乳液转移到表面皿中,放入恒温烘箱,100℃蒸干,最终获得的淡黄色固体粉末即为类石墨烯氮化碳。
实施例3:剥离制备的类石墨烯C3N4
称取0.1g g-C3N4置于50 ml烧杯中,再加入30 ml 70%的1,3-丁二醇,然后将其放入400 W的超声波中进行超声处理15小时后,将其悬乳液在9000转/分钟下离心10分钟,将得到的悬乳液转移到表面皿中,放入恒温烘箱,300℃蒸干,最终获得的淡黄色固体粉末即为类石墨烯氮化碳。
制备的类石墨烯氮化碳的结构测试是在德国 Bruker D8 型射线衍射仪(XRD)上进行的(Cu-Kα射线,λ=1.5418Å,范围是10°-80°),其XRD图如图1所示。由图1可知,g-C3N4在13.1°和27.4°出现衍射峰。和g-C3N4相比,类石墨烯氮化碳在13.1°和27.4°的衍射峰的强度明显减弱,说明了类石墨烯氮化碳依然保留着g-C3N4的结构,此外也说明了合成材料的层数减少。
制备的类石墨烯氮化碳的形貌和尺寸采用日本JEOL-JEM-2010型透射电镜进行测定,样品分析时所采用的电子束加速电压为200 kV,结果如图2所示;从中可知g-C3N4发现,合成的类石墨烯材料明显变薄。
利用原子力显微镜(AFM)在相位模式下对制备的类石墨烯氮化碳进行了厚度的分析,测试样是将离心出来的悬乳液滴在云母片表面,干燥后制成的;结果如图3所示,从该图可知,类石墨烯氮化碳成片状,其中厚度约为0.6 nm左右。具有2-3层的厚度。
实施例4类石墨烯氮化碳的光催化、光电性能测试
(1) 制备类石墨烯氮化碳膜电极
将2.5 mg样品溶于0.5 ml乙醇中,用超声分散均匀后将其铺展在0.5cm*1cm的ITO导电玻璃上,然后在红外灯下烘干。
(2) 类石墨烯氮化碳的光催化、光电性能评价
用亚甲基蓝染料(MB)作为目标降解物,50 ml起始浓度为10 mg/L的MB溶液中加入25 mg类石墨烯氮化碳光催化剂,在可见光照射下考察类石墨烯氮化碳光催化剂的催化活性;其中可见光采用300 W的氙灯为光源,加400 nm滤光片,MB的浓度变化由紫外可见分光光度计测得。
图4为g-C3N4和类石墨烯氮化碳在可见光下催化降解MB的性能对比图和循环实验图;从图4中可以看出,类石墨烯氮化碳的活性比g-C3N4提高约40%,说明类石墨烯氮化碳具有优异的可见光催化性能;循环实验图显示,前三次循环后其活性基本没有降低,之后便开始有稍微的降低,这可能是由于催化剂的损失造成。从循环实验可以发现,类石墨烯氮化碳的稳定性较好,并可以重复多次使用。
采用CHI 660B型电化学工作站对膜电极进行光电化学测试,可见光光源为500 W的氙灯,采用三电极体系,在光电解池中进行测量,以铂丝为对电极,以银/氯化银作为参比电极,光催化剂膜电极作为工作电极,电解液为0.1mol/L Na2SO4溶液,光电流响应使用电流-时间(i-t)测定模式,交流阻抗谱(ESI)频率范围0.1~10000 Hz,振幅5 mV。
图6为g-C3N4和类石墨烯氮化碳在可见光下光电流响应的性能对比图;光电流实验表明,类石墨烯氮化碳的光电流远大于g-C3N4的光电流;在可见光的照射下,类石墨烯氮化碳的光电流约为g-C3N4的7.5倍;这充分说明了类石墨烯氮化碳可以产生优异的可见光电流响应性能;同时,图5的电化学阻抗图也说明了类石墨烯氮化碳的阻抗小于g-C3N4阻抗,减小了约一倍。充分说明了类石墨烯氮化碳可以有着优异的可见光电流响应性能。
Claims (5)
1.一种类石墨烯氮化碳光催化材料的制备方法,其特征在于包括如下步骤:
(1) 将石墨型氮化碳分散于1,3-丁二醇中进行超声处理;
(2) 将得到的悬乳液进行离心处理以去除前驱体;
(3) 离心得到的悬乳液进行蒸干后得到的固体即为所述类石墨烯氮化碳光催化材料。
2.如权利要求1所述的一种类石墨烯氮化碳光催化材料的制备方法,其特征在于:所述的1,3-丁二醇的质量百分含量为30-99%,超声功率为100-800 W,超声处理的时间为5-30小时。
3.如权利要求1所述的一种类石墨烯氮化碳光催化材料的制备方法,其特征在于:所述的氮化碳用量为每0.1 g时,其所述的1,3-丁二醇的用量为10-60 ml。
4.如权利要求1所述的一种类石墨烯氮化碳光催化材料的制备方法,其特征在于:所述的离心处理时,离心机的转速为1000-17000转/分钟,并且离心的时间为1-20分钟。
5.如权利要求1所述的一种类石墨烯氮化碳光催化材料的制备方法,其特征在于:所述蒸干产品的温度为90-300℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310240111.5A CN103316711B (zh) | 2013-06-17 | 2013-06-17 | 一种类石墨烯氮化碳光催化材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310240111.5A CN103316711B (zh) | 2013-06-17 | 2013-06-17 | 一种类石墨烯氮化碳光催化材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103316711A true CN103316711A (zh) | 2013-09-25 |
CN103316711B CN103316711B (zh) | 2015-08-26 |
Family
ID=49185924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310240111.5A Expired - Fee Related CN103316711B (zh) | 2013-06-17 | 2013-06-17 | 一种类石墨烯氮化碳光催化材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103316711B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105056985A (zh) * | 2015-09-29 | 2015-11-18 | 李若然 | g-C3N4/氧化石墨烯/纳米铁可见光响应催化膜 |
CN105588823A (zh) * | 2016-01-19 | 2016-05-18 | 济南大学 | 一种检测生物硫醇类荧光开关型传感器的制备及应用 |
CN105879896A (zh) * | 2016-05-12 | 2016-08-24 | 湖南农业大学 | Cu3B2O6/g-C3N4异质结光催化剂的制备方法及其降解亚甲基蓝染料废水的方法 |
CN106563481A (zh) * | 2016-10-08 | 2017-04-19 | 武汉理工大学 | 一种氨化的超薄石墨相氮化碳光催化剂及其制备方法 |
CN109205580A (zh) * | 2018-11-12 | 2019-01-15 | 青岛科技大学 | 一种球磨剥离石墨相氮化碳的方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6428762B1 (en) * | 1999-07-27 | 2002-08-06 | William Marsh Rice University | Powder synthesis and characterization of amorphous carbon nitride, a-C3N4 |
CN102011103A (zh) * | 2010-11-26 | 2011-04-13 | 中国科学院微电子研究所 | 一种用于氮化碳薄膜制备的化学吸附方法 |
-
2013
- 2013-06-17 CN CN201310240111.5A patent/CN103316711B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6428762B1 (en) * | 1999-07-27 | 2002-08-06 | William Marsh Rice University | Powder synthesis and characterization of amorphous carbon nitride, a-C3N4 |
CN102011103A (zh) * | 2010-11-26 | 2011-04-13 | 中国科学院微电子研究所 | 一种用于氮化碳薄膜制备的化学吸附方法 |
Non-Patent Citations (2)
Title |
---|
SHUBIN YANG等: "Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light", 《ADV. MATER.》 * |
李雪飞等: "石墨相氮化碳的制备及表征", 《吉林大学学报(理学版)》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105056985A (zh) * | 2015-09-29 | 2015-11-18 | 李若然 | g-C3N4/氧化石墨烯/纳米铁可见光响应催化膜 |
CN105056985B (zh) * | 2015-09-29 | 2017-04-05 | 李若然 | g‑C3N4/氧化石墨烯/纳米铁可见光响应催化膜 |
CN105588823A (zh) * | 2016-01-19 | 2016-05-18 | 济南大学 | 一种检测生物硫醇类荧光开关型传感器的制备及应用 |
CN105588823B (zh) * | 2016-01-19 | 2018-05-11 | 济南大学 | 一种检测生物硫醇类荧光开关型传感器的制备与应用 |
CN105879896A (zh) * | 2016-05-12 | 2016-08-24 | 湖南农业大学 | Cu3B2O6/g-C3N4异质结光催化剂的制备方法及其降解亚甲基蓝染料废水的方法 |
CN106563481A (zh) * | 2016-10-08 | 2017-04-19 | 武汉理工大学 | 一种氨化的超薄石墨相氮化碳光催化剂及其制备方法 |
CN109205580A (zh) * | 2018-11-12 | 2019-01-15 | 青岛科技大学 | 一种球磨剥离石墨相氮化碳的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103316711B (zh) | 2015-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction | |
Lin et al. | Fish-scale structured g-C3N4 nanosheet with unusual spatial electron transfer property for high-efficiency photocatalytic hydrogen evolution | |
Chen et al. | Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution | |
Ma et al. | A novel noble-metal-free Mo2C-In2S3 heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H2 evolution under visible light | |
Miao et al. | Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photocatalyst with improved visible light photocatalytic activity and mechanism insight | |
Xing et al. | Incorporating a novel metal-free interlayer into g-C3N4 framework for efficiency enhanced photocatalytic H2 evolution activity | |
Hu et al. | Assembly of TiO2 ultrathin nanosheets with surface lattice distortion for solar-light-driven photocatalytic hydrogen evolution | |
CN106629724B (zh) | 一种氮掺杂多孔炭、制备方法及其作为超级电容器电极材料的应用 | |
Jiao et al. | Synthesis of Z-scheme g-C3N4/PPy/Bi2WO6 composite with enhanced visible-light photocatalytic performance | |
Shi et al. | Stable 1T-phase MoS 2 as an effective electron mediator promoting photocatalytic hydrogen production | |
Ou et al. | Improved photocatalytic performance of N-doped ZnO/graphene/ZnO sandwich composites | |
Yi et al. | Efficient visible-light-driven hydrogen generation from water splitting catalyzed by highly stable CdS@ Mo 2 C–C core–shell nanorods | |
CN104891479B (zh) | 植物基类石墨烯及其制备方法 | |
Li et al. | The facile synthesis of graphitic carbon nitride from amino acid and urea for photocatalytic H 2 production | |
CN104477887B (zh) | 由微晶石墨制备石墨烯的方法 | |
CN103316711A (zh) | 一种类石墨烯氮化碳光催化材料的制备方法 | |
CN105271217A (zh) | 一种氮掺杂的三维石墨烯的制备方法 | |
CN112007632B (zh) | 一种花状SnO2/g-C3N4异质结光催化剂的制备方法 | |
Wu et al. | Multiple ordered porous honeycombed gC 3 N 4 with carbon ring in-plane splicing for outstanding photocatalytic H 2 production | |
Tian et al. | Fabrication of alveolate g-C3N4 with nitrogen vacancies via cobalt introduction for efficient photocatalytic hydrogen evolution | |
Pan et al. | Metal-free SiOC/g-C3N4 heterojunction composites with efficient visible-light photocatalytic H2 production | |
Liu et al. | Nitrogen-doped graphene/graphitic carbon nitride with enhanced charge separation and two-electron-transferring reaction activity for boosting photocatalytic hydrogen peroxide production | |
Hussain et al. | Low-temperature synthesis of graphite flakes and carbon-based nanomaterials from banana peels using hydrothermal process for photoelectrochemical water-splitting | |
CN102974377B (zh) | 一种碳氮烯光催化剂及其制备方法 | |
Ma et al. | Synergetic effect of carbon self-doping and TiO2 deposition on boosting the visible-light photocatalytic hydrogen production efficiency of carbon nitride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150826 |
|
CF01 | Termination of patent right due to non-payment of annual fee |