CN108385132A - 一种Co掺杂MoS2阵列原位电极的CVD制备方法 - Google Patents

一种Co掺杂MoS2阵列原位电极的CVD制备方法 Download PDF

Info

Publication number
CN108385132A
CN108385132A CN201810196376.2A CN201810196376A CN108385132A CN 108385132 A CN108385132 A CN 108385132A CN 201810196376 A CN201810196376 A CN 201810196376A CN 108385132 A CN108385132 A CN 108385132A
Authority
CN
China
Prior art keywords
mos
electrode
original position
cvd
preparation methods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810196376.2A
Other languages
English (en)
Other versions
CN108385132B (zh
Inventor
黄妞
彭荣诚
黄华
孙小华
孙盼盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201810196376.2A priority Critical patent/CN108385132B/zh
Publication of CN108385132A publication Critical patent/CN108385132A/zh
Application granted granted Critical
Publication of CN108385132B publication Critical patent/CN108385132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明提供一种Co掺杂MoS2阵列原位电极的CVD制备方法,具体制备方法为:钴盐和氯化钼溶于挥发非水溶剂中,获得Co‑Mo前躯液;上述前躯液涂布到基底上,干燥后在Ar+S气氛中或N2+S气氛中,CVD硫化。硫化反应温度为600~800℃,反应时间为10 min~2 h。本发明的技术方案可用于电解水制氢和染料敏化太阳能电池,对于原位电极的批量生产有重大意义。

Description

一种Co掺杂MoS2阵列原位电极的CVD制备方法
技术领域
本发明涉及原位电极及其制备方法,属于能量存储和转换新型材料领域。
背景技术
二硫化钼MoS2作为一种类石墨新型材料,被广泛用于加氢脱硫、锂离子电池、超级电容器、电解水制氢和染料敏化太阳能电池等诸多领域。MoS2层内S-Mo-S以共价键结合,层间以分子键结合,因而层内的电导率是层间的上千倍。此外,二硫化钼层边缘Mo、S原子因配位不饱和而具有高的催化活性,而层内配位饱和的S原子基本是惰性的。因此,制备S-Mo-S层垂直于基底生长的硫化钼片层将极大地提高二硫化钼的电催化性能,、其一,经基底传输过来的电子将沿MoS2的S-Mo-S层内方向传输,电荷传输加快;其二,定向生长MoS2能缩短电催化反应需要电子的传输路径;其三,绝大部分边缘Mo、S原子将直接暴露于反应体系,使得二硫化钼的活性位点能被充分高效地利用。斯坦福大学的崔毅课题组于2015年报道了垂直于基底生长的二硫化钼,所制备的二硫化钼几乎90°垂直于基底,结构非常完整致密。然而,这样二硫化钼电极的制备工艺较复杂,首先用物理方法沉积一层约20nm的Mo金属膜,再气氛硫化。
此外,这种垂直生长MoS2的催化性能较Pt仍有十分的差距,如何进一步提高二硫化钼的电催化活性仍是一个研究热难点。2017年,中科院包信和院士课题组发现单金属原子掺杂能将惰性的基面硫原子变得具有高的催化活性,例如:钴、金、铂等。其中钴掺杂相比于金和铂,更廉价,因而更具优势。然而,这种Co掺杂MoS2是粉末,仍需制成浆料或墨水状再涂覆成膜,这在增加了工艺复杂性和成本的同时也无法实现二硫化钼片层的垂直生长。
发明内容
有鉴于此,本发明的目的是提供一种原位制备垂直生长Co掺杂MoS2阵列的方法,该方法具有设备要求低、所需原料成本低廉、反应条件易于控制、生产工艺简单、所形成的产品一致性好,环境污染小等优点,可用于电解水制氢和染料敏化太阳能电池,对于原位电极的批量生产有重大意义。
为此,本发明提供了一种Co-Mo前躯液成均匀膜后再气氛硫化,制备出垂直于基底生长的Co掺杂MoS2阵列的化学气相沉积方法,包括如下步骤:
第一步、在室温搅拌条件下,将钴盐和氯化钼溶于乙醇等极性易挥发溶剂,获得Co-Mo前躯液,其中Co、Mo原子的浓度之和为200~700mM。该步骤的意义在于:前驱液内几乎无水分子,防止氯化钼水解;反应试剂均匀分散,获得均匀无沉淀的Co元素与Mo元素在原子尺度均匀混合的前躯液为制备均匀Co掺杂MoS2阵列打下良好基础。
第二步、将上述前躯液滴涂或旋涂到基底上,如导电玻璃、石墨纸、碳布、铜或镍箔,于干燥空气中干燥,或于热台上70~100℃快速干燥,该步骤的意义在于:乙醇快速挥发后留下由钴盐和氯化钼均匀混合的前驱膜层,且该前驱膜厚度均匀,保证后续化学气相沉积反应后仍获得均匀的Co掺杂MoS2膜。
第三步、将步骤二中前驱膜于Ar+S气氛中或N2+S气氛中,经600~800℃烧结10min~2h,随炉冷却取出即可得到垂直于基底生长的Co掺杂MoS2阵列原位电极。该步骤的意义在于:利用高温下Co源等较Mo源更易气化这一特点,它们被快速蒸发的蒸气流是垂直于基底的,这相当于模板或模具使得高温硫化新生长出的二硫化钼垂直于基底;利用Co-Mo-S之间强的原子相互作用,形成Co掺杂MoS2
附图说明
图1为实施例1所制备电极的SEM图。
图2为实施例2所制备电极的SEM图。
图3为实施例3所制备电极的SEM图,(a)2万放大倍率图,(b)5万放大高倍率图。
图4为实施例4所制备电极的(a)SEM图,(b)元素能谱EDS图,(c)元素分布EDS-mapping图。
图5为实施例4所制备电极的XRD图。
图6为实施例5所制备电极的SEM图,(a)2万放大倍率图,(b)5万放大高倍率图
图7为实施例6所制备电极的SEM图,(a)2万放大倍率图,(b)5万放大高倍率图
图8为实施例7所制备电极的SEM图,(a)2万放大倍率图,(b)5万放大高倍率图
图9为实施例2所制备电极(Co-doped MoS2-1)、实施例4所制备电极(Co-dopedMoS2-2)、二硫化钼电极(MoS2)、硫化钴电极(CoSx)、负载在掺氟二氧化锡透明导电玻璃基底上的铂电极(Pt)所组成对称电池的EIS图。
图10为实施例2所制备电极(Co-doped MoS2-1)、实施例4所制备电极(Co-dopedMoS2-2)、二硫化钼电极(MoS2)、硫化钴电极(CoSx)、负载在掺氟二氧化锡透明导电玻璃基底上的铂电极(Pt)的CV图。
图11为实施例2所制备电极(Co-doped MoS2-1)、实施例4所制备电极(Co-dopedMoS2-2)、二硫化钼电极(MoS2)、硫化钴电极(CoSx)、负载在掺氟二氧化锡透明导电玻璃基底上的铂电极(Pt)所组成染料敏化太阳能电池的JV图。
图12实施例2所制备电极(Co-doped MoS2-1)、实施例4所制备电极(Co-dopedMoS2-2)、二硫化钼电极(MoS2)、硫化钴电极(CoSx)、负载在掺氟二氧化锡透明导电玻璃基底上的铂电极(Pt)的LSV图。
实施例1:
在室温下,将氯化钴、氯化钼溶于乙醇溶液,其中氯化钴的浓度为10mM,氯化钼的浓度为290mM,钴原子与钴原子加钼原子数目之和的比为5%,通Ar气抽真空反复三次将管式炉内残余空气排出后,再通Ar,流量为5SCCM,管式炉上部放有0.2g硫粉,随着管式炉内温度升高,硫粉蒸发形成硫蒸气,。将该前躯液滴涂到平整的石墨纸基底表面,于热台上90℃干燥10min。将有涂层的基底放入管式炉,在Ar+S气氛下800℃反应30min,自然冷却后取出即可。图1示意了本实施例的SEM图,由图可知有少量的100nm左右的纳米片约垂直于基底生长。
实施例2:
在室温下,将氯化钴、氯化钼溶于乙醇溶液,其中氯化钼的浓度为290mM,钴原子与钴原子加钼原子数目之和的比为10%。将该前躯液滴涂到平整的石墨纸基底表面,于热台上90℃干燥10min。将有涂层的基底放入管式炉,通Ar气抽真空反复三次将管式炉内残余空气排出后,再通Ar,流量为2SCCM,管式炉上部放有1g硫粉,随着管式炉内温度升高,硫粉蒸发形成硫蒸气,在Ar+S气氛下800℃反应30min,自然冷却后取出即可。图2示意了本实施例的SEM图,由图可知许多的~100nm宽、~20nm厚的纳米片垂直于基底生长。图9示意了本实施例所制备样品(Co-doped MoS2-1)的交流阻抗EIS图,相对于同样制备工艺未添加钴源的纯的MoS2(MoS2),本实施例所制备样品的性能大幅提高,串联电阻(Rs)由5.22Ωcm-2下降为1.07Ωcm-2,界面电荷转移电阻(Rct)由4.09Ωcm-2下降为1.10Ωcm-2,如表1所示。图10示意了本实施例所制备样品(Co-doped MoS2-1)的循环伏安CV图,相对于同样制备工艺未添加钴源的纯的MoS2(MoS2,其未出现明显的氧化还原峰),本实施例所制备样品出现了与Pt类似的氧化还原峰,表明本实施例所制备样品已具备较好的电催化碘三负还原为碘负的能力,且可逆性较好。图11示意了本实施例所制备样品(Co-doped MoS2-1)的光电流-电压JV曲线图,如表1中所示,相对于同样制备工艺未添加钴源的纯的MoS2(MoS2)和Pt电极,本实施例所制备样品所组装的染料敏化太阳能电池的光电转化性能大幅提高,效率为8.06%,高于纯的MoS2(6.94%)和Pt(7.90%)。图12示意了本实施例所制备样品(Co-doped MoS2-1)的电催化产氢的线性伏安扫描LSV曲线图,如表1中所示,相对于同样制备工艺未添加钴源的纯的MoS2(MoS2)和同样制备工艺未添加钼源的纯的CoSx电极,本实施例所制备样品的催化产氢性能大幅提高,当电流密度为10mAcm-2,所需的过电位为245mV,低于MoS2(385mV)和CoSx(291mV)。
实施例3:
在室温下,将氯化钴、氯化钼溶于乙醇溶液,其中氯化钼的浓度为290mM,钴原子与钴原子加钼原子数目之和的比为15%。将该前躯液滴涂到平整的石墨纸基底表面,于热台上90℃干燥10min。将有涂层的基底放入管式炉中部,通Ar气抽真空反复三次将管式炉内残余空气排出后,再通Ar,流量为1SCCM,管式炉上部放有0.5g硫粉,随着管式炉内温度升高,硫粉蒸发形成硫蒸气,在Ar+S气氛下800℃反应30min,自然冷却后取出即可。图3(a)示意了本实施例的SEM图,由图可知许多的150~200nm宽、20~30nm厚的纳米片垂直于基底生长。
实施例4:
在室温下,将氯化钴、氯化钼溶于乙醇溶液,其中氯化钼的浓度为290mM,钴原子与钴原子加钼原子数目之和的比为20%。将该前躯液滴涂到平整的石墨纸基底表面,于热台上90℃干燥10min。将有涂层的基底放入管式炉,通Ar气抽真空反复三次将管式炉内残余空气排出后,再通Ar,流量为2SCCM,管式炉上部放有1g硫粉,随着管式炉内温度升高,硫粉蒸发形成硫蒸气,在Ar+S气氛下800℃反应30min,自然冷却后取出即可。图4(a)示意了本实施例的SEM图,由图可知大量的~150nm宽、~30nm厚的纳米片垂直于基底生长;图4(b)示意了本实施例的元素能谱EDS图,由图知本实施例所制备样品含有Co、Mo、S三种元素,其中C来自于石墨纸基底;图4(c)示意了本实施例的元素能谱EDS-mapping图,由图知本实施例所制备样品中Co、Mo、S三种元素均匀分布,说明Co均匀地掺入了MoS2,形成了Co掺杂MoS2阵列原位电极。图5示意了本实施例所制备电极的XRD图,说明该样品的物相为2H型的MoS2。图9示意了本实施例所制备样品(Co-doped MoS2-2)的交流阻抗EIS图,相对于同样制备工艺未添加钴源的纯的MoS2(MoS2),本实施例所制备样品的性能大幅提高,串联电阻(Rs)由5.22Ωcm-2下降为0.78Ωcm-2,界面电荷转移电阻(Rct)由4.09Ωcm-2下降为0.16Ωcm-2,甚至低于同样制备工艺未添加钼源的纯的CoSx电极(0.38),如表1所示。图10示意了本实施例所制备样品(Co-doped MoS2-2)的循环伏安CV图,相对于CoSx和Pt电极,本实施例所制备样品出现了与Pt类似的氧化还原峰且峰电流最大,表明本实施例所制备样品具备较CoSx和Pt电极更优异的电催化碘三负还原为碘负的能力。图11示意了本实施例所制备样品(Co-doped MoS2-2)的光电流-电压JV曲线图,如表1中所示,效率提高至8.99%,高于纯的CoSx(8.49%)和Pt(7.90%)。图12示意了本实施例所制备样品(Co-doped MoS2-2)的电催化产氢的线性伏安扫描LSV曲线图,如表1中所示,当电流密度为10mAcm-2,所需的过电位为185mV,与负载在掺氟二氧化锡透明导电玻璃基底上的铂电极(Pt)所需的过电位172mV很接近,且本实施例所制备样品在大电流密度下性能优于Pt电极。
实施例5:
在室温下,将氯化钴、氯化钼溶于乙醇溶液,其中氯化钼的浓度为330mM,钴原子与钴原子加钼原子数目之和的比为50%。将该前躯液滴涂到平整的石墨纸基底表面,于热台上90℃干燥10min。将有涂层的基底放入管式炉,通Ar气抽真空反复三次将管式炉内残余空气排出后,再通Ar,流量为10SCCM,管式炉上部放有1g硫粉,随着管式炉内温度升高,硫粉蒸发形成硫蒸气,在Ar+S气氛下800℃反应30min,自然冷却后取出即可。图6示意了本实施例所制备电极的SEM图,由图可知许多的~100nm宽、~20nm厚的纳米片垂直于基底生长。
实施例6:
在室温下,将氯化钴、氯化钼溶于乙醇溶液,其中氯化钼的浓度为330mM,钴原子与钴原子加钼原子数目之和的比为10%。将该前躯液滴涂到平整的石墨纸基底表面,于热台上90℃干燥10min。将有涂层的基底放入管式炉,在Ar+S气氛下600℃反应2h,自然冷却后取出即可。图7示意了本实施例所制备电极的SEM图,由图可知一些的~70nm宽、~15nm厚的纳米片垂直于基底生长。
实施例7:
在室温下,将氯化钴、氯化钼溶于乙醇溶液,其中氯化钼的浓度为330mM,钴原子与钴原子加钼原子数目之和的比为5%。将该前躯液滴涂到平整的石墨纸基底表面,于热台上90℃干燥10min。将有涂层的基底放入管式炉,通Ar气抽真空反复三次将管式炉内残余空气排出后,再通Ar,流量为2SCCM,管式炉上部放有1g硫粉,随着管式炉内温度升高,硫粉蒸发形成硫蒸气,在Ar+S气氛下700℃反应1h,自然冷却后取出即可。图8示意了本实施例所制备电极的SEM图,由图可知一些的~100nm宽、~15nm厚的纳米片垂直于基底生长。
表1为实施例2所制备电极(Co-doped MoS2-1)、实施例4所制备电极(Co-dopedMoS2-2)、二硫化钼电极(MoS2)、硫化钴电极(CoSx)、负载在掺氟二氧化锡透明导电玻璃基底上的铂电极(Pt)的染敏电池四大性能参数、电化学阻抗性能参数和催化产氢性能参数。*对应的电流密度为10mA cm-2
其它说明:
发明实施例中EIS的测试方法为:将相同的两片电极和电解质组成“三明治”结构的对称电池,电解质的组成为:0.1M 1-propy-3-methylimidazolium iodide(1-丙基-3-甲基咪唑碘),0.05M LiI,0.1M GNCS,0.03M I2,0.5M 4-tert-butylpridine(4-叔丁基吡啶),溶剂为碳酸丙烯脂与乙腈的混合溶液(体积比为1:1),再测试该“伪电池”开路条件下的交流阻抗性能,扫描范围:0.1Hz-1MHz,电位扰动:50mV。
发明实施例中CV的测试方法为:Co掺杂MoS2阵列原位电极为工作电极、以Pt片为对电极、以饱和Ag/AgCl电极为参比电极,所用电解质为:0.1M LiClO4,10mMLiI,1mM I2乙腈溶液,扫描速度为50mV s-1,扫描范围:-0.2V~0.57V。
发明实施例中J-V性能测试方法为:将从营口振越实验器材销售中心购买的TiO2光阳极用N719染料敏化,并在Co掺杂MoS2阵列原位电极上滴加氧化还原电解质,电解质的组成与测EIS的相同,将滴加了氧化还原电解质的对电极与敏化后的光阳极贴合在一起组成染料敏化太阳能电池,在辐照强度为100W/cm2的模拟太阳光下进行J-V性能测试。
发明实施例中晰氢性能LSV测试方法为:Co掺杂MoS2阵列原位电极为工作电极、以碳棒为对电极、以饱和Hg/Hg2SO4电极为参比电极,所用电解质为:0.5M H2SO4水溶液,扫描速度为5mV s-1,扫描范围:-0.6V~-1.2V。校正的可逆氢电极的电位相对于饱和Hg/Hg2SO4电极为-0.690V。

Claims (7)

1.一种Co掺杂MoS2阵列原位电极的CVD制备方法,其特征在于,具体制备方法为:
(1)钴盐和氯化钼溶于挥发非水溶剂中,获得Co-Mo前躯液;
(2)上述前躯液涂布到基底上,干燥后在Ar+S气氛中或N2+S气氛中,CVD硫化。
2.权利要求1 所述的Co掺杂MoS2阵列原位电极的CVD制备方法,其特征在于,挥发非水溶剂,包括:乙醇、N, N-二甲基甲酰胺。
3.权利要求1 所述的Co掺杂MoS2阵列原位电极的CVD制备方法,其特征在于,氯化钼溶于挥发非水溶剂,其中Co、Mo原子的浓度之和为200~700 mM,Co、Mo原子为任意浓度关系。
4.权利要求1 所述的Co掺杂MoS2阵列原位电极的CVD制备方法,其特征在于,步骤(2)中所述的干燥是在空气中干燥,或于热台上70~100℃快速干燥。
5.权利要求1 所述的Co掺杂MoS2阵列原位电极的CVD制备方法,其特征在于,所述的基底包括碳布、石墨纸、铜或镍箔中的任意一种。
6.权利要求1 所述的Co掺杂MoS2阵列原位电极的CVD制备方法,其特征在于,CVD硫化,反应温度为600~800℃,反应时间为10 min~2 h。
7.权利要求1 所述的Co掺杂MoS2阵列原位电极的CVD制备方法,其特征在于,Ar+S气氛或N2+S气氛中,Ar、N2为保护气体,气体流量1~10 SCCM;S气体为硫粉蒸发形成,硫粉的量远过量于钼原子。
CN201810196376.2A 2018-03-09 2018-03-09 一种Co掺杂MoS2阵列原位电极的CVD制备方法 Active CN108385132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810196376.2A CN108385132B (zh) 2018-03-09 2018-03-09 一种Co掺杂MoS2阵列原位电极的CVD制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810196376.2A CN108385132B (zh) 2018-03-09 2018-03-09 一种Co掺杂MoS2阵列原位电极的CVD制备方法

Publications (2)

Publication Number Publication Date
CN108385132A true CN108385132A (zh) 2018-08-10
CN108385132B CN108385132B (zh) 2020-06-23

Family

ID=63067459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810196376.2A Active CN108385132B (zh) 2018-03-09 2018-03-09 一种Co掺杂MoS2阵列原位电极的CVD制备方法

Country Status (1)

Country Link
CN (1) CN108385132B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993542A (zh) * 2018-08-13 2018-12-14 皖西学院 磁性原子掺杂的单层MoS2及其应用
CN109208027A (zh) * 2018-10-10 2019-01-15 三峡大学 一种二硫化钼-硫化钴-碳三元复合原位电极的制备方法
CN109306501A (zh) * 2018-09-11 2019-02-05 三峡大学 一种硫化钴-碳原位电极的制备方法
CN111495406A (zh) * 2020-04-03 2020-08-07 三峡大学 硼、氮掺杂钴钼硫氧化合物/碳复合材料的方法
CN113046783A (zh) * 2021-03-12 2021-06-29 松山湖材料实验室 一种钴掺杂二硫化钼电催化剂、其制备方法及应用
CN113061928A (zh) * 2021-03-24 2021-07-02 三峡大学 二硫化钼纳米片@硫化钴纳米颗粒阵列电极的制备方法
CN114212824A (zh) * 2022-02-23 2022-03-22 浙江大学杭州国际科创中心 一种可控生长六角星形单层MoS2的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130068613A1 (en) * 2010-04-16 2013-03-21 Ecole Polytechnique Federale De Lausanne (Epfl) Amorphous transition metal sulphide films or solids as efficient electrocatalysts for hydrogen production from water or aqueous solutions
US20140353166A1 (en) * 2013-05-09 2014-12-04 North Carolina State University Novel process for scalable synthesis of molybdenum disulfide monolayer and few-layer films
CN104971744A (zh) * 2015-06-02 2015-10-14 浙江理工大学 一种硫化钴与二硫化钼纳米核壳结构的电解水催化材料
CN106167290A (zh) * 2016-08-23 2016-11-30 杨梅 一种稀土Ce掺杂Ti/Sb‑SnO2电极的制备方法
CN106238077A (zh) * 2016-07-28 2016-12-21 中国地质大学(北京) 一种碳纤维@二硫化钼纳米片核壳复合结构及其制备方法
CN106622296A (zh) * 2016-10-12 2017-05-10 吉林大学 MoS2/CoS2复合裂解水产氢低过电位电催化剂及其硫化法制备方法
CN106964371A (zh) * 2017-04-07 2017-07-21 中国科学院化学研究所 一种多孔碳负载二硫化钼纳米片复合材料及其制备方法与应用
CN107010670A (zh) * 2016-07-27 2017-08-04 北京大学 一种MoSxOy/碳纳米复合材料、其制备方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130068613A1 (en) * 2010-04-16 2013-03-21 Ecole Polytechnique Federale De Lausanne (Epfl) Amorphous transition metal sulphide films or solids as efficient electrocatalysts for hydrogen production from water or aqueous solutions
US20140353166A1 (en) * 2013-05-09 2014-12-04 North Carolina State University Novel process for scalable synthesis of molybdenum disulfide monolayer and few-layer films
CN104971744A (zh) * 2015-06-02 2015-10-14 浙江理工大学 一种硫化钴与二硫化钼纳米核壳结构的电解水催化材料
CN107010670A (zh) * 2016-07-27 2017-08-04 北京大学 一种MoSxOy/碳纳米复合材料、其制备方法及其应用
CN106238077A (zh) * 2016-07-28 2016-12-21 中国地质大学(北京) 一种碳纤维@二硫化钼纳米片核壳复合结构及其制备方法
CN106167290A (zh) * 2016-08-23 2016-11-30 杨梅 一种稀土Ce掺杂Ti/Sb‑SnO2电极的制备方法
CN106622296A (zh) * 2016-10-12 2017-05-10 吉林大学 MoS2/CoS2复合裂解水产氢低过电位电催化剂及其硫化法制备方法
CN106964371A (zh) * 2017-04-07 2017-07-21 中国科学院化学研究所 一种多孔碳负载二硫化钼纳米片复合材料及其制备方法与应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993542A (zh) * 2018-08-13 2018-12-14 皖西学院 磁性原子掺杂的单层MoS2及其应用
CN109306501A (zh) * 2018-09-11 2019-02-05 三峡大学 一种硫化钴-碳原位电极的制备方法
CN109208027A (zh) * 2018-10-10 2019-01-15 三峡大学 一种二硫化钼-硫化钴-碳三元复合原位电极的制备方法
CN111495406A (zh) * 2020-04-03 2020-08-07 三峡大学 硼、氮掺杂钴钼硫氧化合物/碳复合材料的方法
CN113046783A (zh) * 2021-03-12 2021-06-29 松山湖材料实验室 一种钴掺杂二硫化钼电催化剂、其制备方法及应用
CN113061928A (zh) * 2021-03-24 2021-07-02 三峡大学 二硫化钼纳米片@硫化钴纳米颗粒阵列电极的制备方法
CN113061928B (zh) * 2021-03-24 2022-05-20 三峡大学 二硫化钼纳米片@硫化钴纳米颗粒阵列电极的制备方法
CN114212824A (zh) * 2022-02-23 2022-03-22 浙江大学杭州国际科创中心 一种可控生长六角星形单层MoS2的方法

Also Published As

Publication number Publication date
CN108385132B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
CN108385132A (zh) 一种Co掺杂MoS2阵列原位电极的CVD制备方法
Li et al. FeS 2/carbon hybrids on carbon cloth: a highly efficient and stable counter electrode for dye-sensitized solar cells
Sarkar et al. NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell
Zhang et al. Enhanced charge separation and transfer through Fe2O3/ITO nanowire arrays wrapped with reduced graphene oxide for water-splitting
Yi et al. One dimensional CuInS 2–ZnS heterostructured nanomaterials as low-cost and high-performance counter electrodes of dye-sensitized solar cells
Mehmood et al. Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovoltaic performance of dye-sensitized solar cells (DSSCSs)
Chang et al. Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells
CN108046338B (zh) 一种钴掺杂二硫化钼原位电极及其制备方法
Wang et al. Facile synthesis of NiCo2O4/carbon black composite as counter electrode for dye-sensitized solar cells
Yue et al. Glucose aided synthesis of molybdenum sulfide/carbon nanotubes composites as counter electrode for high performance dye-sensitized solar cells
Huang et al. Solution-processed relatively pure MoS2 nanoparticles in-situ grown on graphite paper as an efficient FTO-free counter electrode for dye-sensitized solar cells
Theerthagiri et al. Electrochemical deposition of carbon materials incorporated nickel sulfide composite as counter electrode for dye-sensitized solar cells
Wu et al. Co/Se and Ni/Se nanocomposite films prepared by magnetron sputtering as counter electrodes for dye-sensitized solar cells
Yue et al. Enhanced photovoltaic performance of dye-sensitized solar cells based on a promising hybrid counter electrode of CoSe2/MWCNTs
Gopi et al. Low-temperature easy-processed carbon nanotube contact for high-performance metal-and hole-transporting layer-free perovskite solar cells
Wang et al. The sesame ball-like CoS/MoS2 nanospheres as efficient counter electrode catalysts for dye-sensitized solar cells
Zeng et al. A multifunctional pentlandite counter electrode toward efficient and stable sensitized solar cells
Yao et al. One-step hydrothermal synthesis of ZnS-CoS microcomposite as low cost counter electrode for dye-sensitized solar cells
Song et al. Metal sulfide counter electrodes for dye-sensitized solar cells: a balanced strategy for optical transparency and electrochemical activity
Wang et al. Dye-sensitized solar cells based on low cost carbon-coated tungsten disulphide counter electrodes
Tsai et al. Preparation of CoS 2 nanoflake arrays through ion exchange reaction of Co (OH) 2 and their application as counter electrodes for dye-sensitized solar cells
Cheng et al. Electrochemical deposition of molybdenum sulfide thin films on conductive plastic substrates as platinum-free flexible counter electrodes for dye-sensitized solar cells
Liu et al. In-situ growth of Cu2ZnSnS4 nanospheres thin film on transparent conducting glass and its application in dye-sensitized solar cells
Syrrokostas et al. Platinum decorated zinc oxide nanowires as an efficient counter electrode for dye sensitized solar cells
Li et al. Electrospun and hydrothermal techniques to synthesize the carbon-coated nickel sulfide microspheres/carbon nanofibers nanocomposite for high performance liquid-state solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant