CN108383867A - 一种易于工业化生产的耐高温偶联剂的制备方法和应用 - Google Patents

一种易于工业化生产的耐高温偶联剂的制备方法和应用 Download PDF

Info

Publication number
CN108383867A
CN108383867A CN201810207849.4A CN201810207849A CN108383867A CN 108383867 A CN108383867 A CN 108383867A CN 201810207849 A CN201810207849 A CN 201810207849A CN 108383867 A CN108383867 A CN 108383867A
Authority
CN
China
Prior art keywords
coupling agent
high temperature
temperature resistant
preparation
resistant coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810207849.4A
Other languages
English (en)
Inventor
宇平
王巍
胡鸣
胡一鸣
潘丽静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Jiming New Mstar Technology Ltd
Original Assignee
Changzhou Jiming New Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Jiming New Mstar Technology Ltd filed Critical Changzhou Jiming New Mstar Technology Ltd
Publication of CN108383867A publication Critical patent/CN108383867A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0825Preparations of compounds not comprising Si-Si or Si-cyano linkages
    • C07F7/083Syntheses without formation of a Si-C bond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)

Abstract

本发明涉及一种易于工业化生产的耐高温偶联剂及其制备方法。本发明是为了解决现有硅烷类偶联剂热稳定性较差,同时耐高温类偶联剂难以工业化制备等问题。本发明耐高温偶联剂的制备方法为:在氮气保护下,将氨基硅烷类偶联剂加入三口烧瓶中,然后加入降冰片烯单酐或4‑苯乙炔苯酐单体,先在室温下搅拌反应2~8h,让反应单体混合分散均匀,搅拌速率控制在50~800r/min,然后以5~50℃/min的升温速率将反应溶液温度调到150~250℃,继续反应2~10h,最后停止搅拌、冷却样品后粉碎,即得。该种耐高温偶联剂材料易于工业化生产,应用于电子工业中的金属表面保护。

Description

一种易于工业化生产的耐高温偶联剂的制备方法和应用
技术领域
本发明属于耐高温偶联剂材料的制备领域,特别涉及一种易于工业化生产的耐高温偶联剂的制备方法。
背景技术
硅烷类偶联剂是一类分子中官能团能同时与有机材料和无机材料相互作用的有机硅类化合物,其中水解基团硅酯键易水解产生羟基,能与无机材料表面的羟基产生氢键,再加热脱水缩合形成部分共价键,非水解基团可与有机物发生反应,硅烷类偶联剂能赋予材料优良的应用性能,已经在复合材料、电子机械及航空航天等领域得到了广泛应用。
镀铬工艺是保护金属基体最有效的方法,但是局限性在于其中使用的六价铬具有很强的氧化性,会造成严重的环境污染和人体伤害。因此,需要寻找绿色环保、效果好的新的金属表面防腐工艺。科研工作者越来越关注硅烷偶联剂在金属表面处理中的作用。硅烷偶联剂处理金属表面是一项绿色环保、新兴的表面处理工艺,其操作简单、成本低及应用广泛,可与金属表面的羟基进行脱水缩合或者硅烷间脱水缩合,形成稳定的共价键附着在金属表面,形成硅烷膜,可以高效地保护金属,避免被腐蚀。截至目前,许多金属表面可以使用硅烷类偶联剂进行防腐保护。但是,随着现代科技的快速发展,机械汽车中的活塞离合器、电子工业中的电路板,特别是航空航天领域的金属部件作业温度要求很高,需要使用的偶联剂产品具有很好的耐温性,这样使得一般的硅烷类偶联剂难以承受高温条件下的考验,会发生分解,失去性能,不能对高温作业下的金属表面起到有效的保护。因此,研究开发性能优异的耐高温偶联剂具有十分重要的意义。
目前,对于耐高温偶联剂国外做了大量研究,研究发现含芳香结构的硅烷类偶联剂相比较脂肪结构的偶联剂具有更高的热稳定性和更低的热失重敏感性,也有通过引入耐高温元素或基团来提高偶联剂的耐温性。张余宝等(耐高温硅烷偶联剂的合成及硅烷偶联剂预处理铜箔的研究.南昌大学硕士毕业论文, 2011.)采用冰醋酸试剂合成了几种耐高温的硅烷偶联剂,改性硅烷偶联剂合成方法采用了硅氢加成法,成本高、步骤繁琐,不适宜产业化生产。因此,研究合成易于工业化生产的耐高温偶联剂具有十分重要的工业应用前景。
发明内容
本发明所要解决的技术问题是提供一种易于工业化生产的耐高温偶联剂的制备方法,在传统氨基硅烷类偶联剂的基础上,依据交联基团降冰片烯或苯乙炔基高温固化形成高密度网络结构,能显著提高材料热氧稳定性的机理,进行共聚合成,从而得到耐高温型的偶联剂。另外,本发明的合成制备方法工艺简单、可操作性强,没有废弃污染物,易于工业化生产。
本发明的一种易于工业化生产的耐高温偶联剂的制备方法,包括:在氮气保护下,将氨基硅烷类偶联剂加入三口烧瓶中,再加入干燥的单酐,先在室温下搅拌反应2~8h,让反应单体混合分散均匀,搅拌速率控制在50~800r/min,然后以5~50℃/min的升温速率将反应混合液温度调节到一定的高温下,继续搅拌反应2~10h,最后停止搅拌,将样品冷却后进行粉碎,即得耐高温偶联剂粉末样品。
所述的氨基硅烷类偶联剂为3-氨丙基三乙氧基硅烷、3-氨丙基三甲氧基硅烷、4-氨丙基甲基二甲氧基硅烷、3-氨丙基甲基二乙氧基硅烷、N-2-氨乙基-3- 氨丙基甲基二乙氧基硅烷、N-2-氨乙基-3-氨丙基甲基二甲氧基硅烷、N-2-氨乙基-3-氨丙基三乙氧基硅烷、N-2-氨乙基-3-氨丙基三甲氧基硅烷、3-二乙烯三胺基丙基甲基二甲氧基硅烷、3-二乙烯三胺基丙基三甲氧基硅烷、3-脲丙基三甲氧基硅烷及3-脲丙基三乙氧基硅烷中的一种或几种的混合。
所述的单酐为降冰片烯单酐和4-苯乙炔苯酐中的一种或两种的混合。
所述的反应混合液温度需要调到150~250℃。
所述的氨基硅烷类偶联剂和单酐的摩尔比为1:1。
所述氨基硅烷类偶联剂的纯度为95.0%~100%。
本发明中的耐高温偶联剂制备反应流程式为:
所述方法制备的耐高温偶联剂水解后涂覆于金属表面,硅羟基先与金属表面羟基发生缩合反应,自身的缩合反应也会形成Si-O-Si网络结构,进一步经过高温处理,会发生交联反应形成耐高温的交联结构,这种材料可应用于电子工业、机械制造、航空航天及国防军工等领域。
有益效果:
1、本发明设计制备的耐高温偶联剂采用了高耐热的酰亚胺环结构及高温交联基团。一方面,引入的酰亚胺环结构具有优异的化学和热氧稳定性,同时其较强的极性结构会与金属表面产生一定的相互作用力,这样增加了对金属表面的粘附性,防腐、耐温效果更好。另一方面,引入的交联基团降冰片烯或苯炔基在更高的温度下会发生高温交联反应,其中苯乙炔苯酐交联反应过程无小分子释放,这样在金属表面形成更为致密的耐高温保护膜,交联致密的网络结构能显著地提高材料的使用温度和热分解温度。
2、本发明采用的单体氨基硅烷类偶联剂、降冰片烯单酐及4-苯乙炔苯酐均为工业化成熟的产品,容易获得且价格较为低廉,同时合成制备过程中无溶剂、无毒性、无挥发性物质、无废弃副产物或杂质,只需加热共混实现亚胺化,产率高,工艺简单,绿色环保,可操作性很强,易于工业化生产。
3、本发明制备得到的易于工业化生产的耐高温偶联剂,能够溶解于常用的极性有机溶剂中,具有较好的溶解性能,同时具有很高的热稳定性,氮气气氛下5%和10%的热分解温度分别高达483℃和538℃,800℃的残炭率高达 56.9%。该种方法制备的耐高温偶联剂对于高温作业下的金属部件具有很好的应用价值。
附图说明
图1是实施例2制备得到的耐高温偶联剂的红外光谱图。
图2是实施例2制备得到耐高温偶联剂(KH-PE)、4-苯乙炔苯酐(PEPA) 及3-氨丙基三乙氧基硅烷(KH550)在氮气中的热失重曲线。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1:
在氮气保护下,将3-氨丙基三乙氧基硅烷(纯度为99%)(KH550,0.02mol,4.42g)加入三口烧瓶中,然后加入降冰片烯单酐(0.02mol,3.28g),先在室温下搅拌反应8h,搅拌速率控制在500r/min,然后以50℃/min的升温速率将反应溶液温度调到150℃,继续反应10h,最后停止搅拌、冷却样品后粉碎,即得样品7.26g,产率98.9%。
实施例2
在氮气保护下,将3-氨丙基三乙氧基硅烷(纯度为99%)(KH550,0.02mol, 4.42g)加入三口烧瓶中,然后加入4-苯乙炔苯酐(0.02mol,4.96g),先在室温下搅拌反应4h,搅拌速率控制在400r/min,然后以40℃/min的升温速率将反应溶液温度调到180℃,继续反应3h,最后停止搅拌、冷却样品后粉碎,即得样品8.87g,产率98.3%。
图1所示是实施例2制备得到的耐高温偶联剂的红外光谱图,由图可以看出,2216cm-1为苯乙炔苯酐中-C≡C-伸缩振动峰,1778cm-1和1723cm-1为羰基伸缩振动峰,1372cm-1、1098cm-1及744cm-1为亚胺环的伸缩振动峰,3067cm-1和1600cm-1分别为苯环中的=C-H和C=C伸缩振动峰。2856~2942cm-1处峰对应的是-Si-OCH2CH3基团中亚甲基的伸缩振动峰。1098cm-1处峰对应的是-C-C- 伸缩振动峰。测试结果证明耐高温偶联剂的合成方法是成功的。
图2所示是实施例2制备得到的耐高温偶联剂(KH-PE)、4-苯乙炔苯酐 (PEPA)及3-氨丙基三乙氧基硅烷(KH550)在氮气中的热失重曲线,由图可以看出,纯的KH550和PEPA在氮气下质量损失5%对应的温度较低,分别只有93℃和217℃,热稳定性很差。但是,二者加热共聚得到的偶联剂KH-PE 热稳定性大幅度提高,其质量损失5%和10%时对应温度分别高达483℃和 538℃,800℃的残炭率达到56.9%,因此这种偶联剂材料具有很高的热氧稳定性。
实施例3
在氮气保护下,将3-氨丙基三乙氧基硅烷(纯度为99%)(KH550,0.02mol, 4.42g)加入三口烧瓶中,然后加入4-苯乙炔苯酐(0.02mol,4.96g),先在室温下搅拌反应6h,搅拌速率控制在500r/min,然后以40℃/min的升温速率将反应溶液温度调到220℃,继续反应5h,最后停止搅拌、冷却样品后粉碎,即得样品8.71g,产率96.6%。
实施例4
在氮气保护下,将3-氨丙基三甲氧基硅烷(纯度为99%)(0.02mol,3.58g) 加入三口烧瓶中,然后加入4-苯乙炔苯酐(0.02mol,4.96g),先在室温下搅拌反应6h,搅拌速率控制在500r/min,然后以40℃/min的升温速率将反应溶液温度调到220℃,继续反应5h,最后停止搅拌、冷却样品后粉碎,即得样品8.09 g,产率98.9%。
对比实施例1
在氮气保护下,将纯度为90.0%的3-氨丙基三乙氧基硅烷(KH550,0.02mol,4.42g)加入三口烧瓶中,然后加入降冰片烯单酐(0.02mol,3.28g),先在室温下搅拌反应8h,搅拌速率控制在500r/min,然后以50℃/min的升温速率将反应溶液温度调到150℃,继续反应10h,最后停止搅拌、冷却样品后粉碎,即得样品7.04g,产率95.9%。产品纯度的降低会造成降冰片烯单酐与3-氨丙基三乙氧基硅烷反应不完全,因此产率相对于实施例1有所降低。
对比实施例2
在氮气保护下,将纯度为99.0%的3-氨丙基三乙氧基硅烷(KH550,0.02mol,4.42g)加入三口烧瓶中,然后加入降冰片烯单酐(0.02mol,3.28g),先在室温下搅拌反应8h,搅拌速率控制在500r/min,然后以50℃/min的升温速率将反应溶液温度调到140℃,继续反应10h,最后停止搅拌、冷却样品后粉碎,即得样品6.77g,产率92.8%,由于反应温度较低,导致反应物活性低,反应不充分,使得产率较低。
对比实施例3
在氮气保护下,将纯度为99.0%的3-氨丙基三乙氧基硅烷(KH550,0.02mol,4.42g)加入三口烧瓶中,然后加入降冰片烯单酐(0.02mol,3.28g),先在室温下搅拌反应8h,搅拌速率控制在500r/min,然后以50℃/min的升温速率将反应溶液温度调到280℃,继续反应,由于温度过高会使得带有封端剂的酰亚胺交联,得不到产物。

Claims (7)

1.一种耐高温偶联剂的制备方法,其特征在于:所述制备方法为:在氮气保护下,将氨基硅烷类偶联剂加入三口烧瓶中,再加入经干燥的单酐,先在室温下搅拌反应2~8h,搅拌速率控制在50~800r/min,然后以5~50℃/min的升温速率将反应溶液温度调节到高温,继续搅拌反应2~10h,最后停止搅拌,将样品冷却后进行粉碎,即得耐高温偶联剂粉末样品。
2.根据权利要求1所述的耐高温偶联剂的制备方法,其特征在于:所述的氨基硅烷类偶联剂为3-氨丙基三乙氧基硅烷、3-氨丙基三甲氧基硅烷、4-氨丙基甲基二甲氧基硅烷、3-氨丙基甲基二乙氧基硅烷、N-2-氨乙基-3-氨丙基甲基二乙氧基硅烷、N-2-氨乙基-3-氨丙基甲基二甲氧基硅烷、N-2-氨乙基-3-氨丙基三乙氧基硅烷、N-2-氨乙基-3-氨丙基三甲氧基硅烷、3-二乙烯三胺基丙基甲基二甲氧基硅烷、3-二乙烯三胺基丙基三甲氧基硅烷、3-脲丙基三甲氧基硅烷及3-脲丙基三乙氧基硅烷中的一种或几种的混合。
3.根据权利要求1所述的耐高温偶联剂的制备方法,其特征在于:所述的单酐为降冰片烯单酐或4-苯乙炔苯酐中的一种或两种的混合。
4.根据权利要求1所述的耐高温偶联剂的制备方法,其特征在于:所述的氨基硅烷类偶联剂和单酐的摩尔比为1:1。
5.根据权利要求1所述的耐高温偶联剂的制备方法,其特征在于:所述的氨基硅烷类偶联剂的纯度为95.0%~100%。
6.根据权利要求1所述的耐高温偶联剂的制备方法,其特征在于:所述的反应溶液温度需要调到150~250℃。
7.一种根据权利要求1所述方法制备的耐高温偶联剂的应用,其特征在于:所述的偶联剂应用于电子工业、机械制造、航空航天及国防军工领域的金属表面防护。
CN201810207849.4A 2018-01-16 2018-03-14 一种易于工业化生产的耐高温偶联剂的制备方法和应用 Pending CN108383867A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2018100387027 2018-01-16
CN201810038702 2018-01-16

Publications (1)

Publication Number Publication Date
CN108383867A true CN108383867A (zh) 2018-08-10

Family

ID=63067239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810207849.4A Pending CN108383867A (zh) 2018-01-16 2018-03-14 一种易于工业化生产的耐高温偶联剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN108383867A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111423786A (zh) * 2020-04-26 2020-07-17 常州市碳索新材料科技有限公司 石墨烯改性地铁隧道预埋槽用粉末涂料及其制备方法
CN113150331A (zh) * 2021-05-28 2021-07-23 惠州市纵胜电子材料有限公司 一种玻璃纤维布增强的绝缘模压板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058909A1 (en) * 2000-02-10 2001-08-16 The Government Of The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Phenylethynyl-containing imide silanes
CN101265227A (zh) * 2008-04-25 2008-09-17 中国科学院长春应用化学研究所 2,4-二氨基[4’-(4-苯乙炔基酞酰亚胺基)]二苯醚的合成方法
CN101775140A (zh) * 2010-01-15 2010-07-14 南昌大学 一类高耐热酰亚胺芳杂环改性硅烷偶联剂
EP2228351A1 (en) * 2009-03-12 2010-09-15 Johns Manville Surfaces containing coupling activator compounds and reinforced composites produced therefrom
CN103665020A (zh) * 2013-11-14 2014-03-26 南昌大学 含酰亚胺环结构单元的硅烷偶联剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058909A1 (en) * 2000-02-10 2001-08-16 The Government Of The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Phenylethynyl-containing imide silanes
CN101265227A (zh) * 2008-04-25 2008-09-17 中国科学院长春应用化学研究所 2,4-二氨基[4’-(4-苯乙炔基酞酰亚胺基)]二苯醚的合成方法
EP2228351A1 (en) * 2009-03-12 2010-09-15 Johns Manville Surfaces containing coupling activator compounds and reinforced composites produced therefrom
CN101775140A (zh) * 2010-01-15 2010-07-14 南昌大学 一类高耐热酰亚胺芳杂环改性硅烷偶联剂
CN103665020A (zh) * 2013-11-14 2014-03-26 南昌大学 含酰亚胺环结构单元的硅烷偶联剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘峰等,: "苯乙炔苯酐改性硅烷偶联剂的合成研究", 《化学试剂》 *
齐海霞等,: "一类新型高耐热有机硅材料的制备及应用研究", 《化工新型材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111423786A (zh) * 2020-04-26 2020-07-17 常州市碳索新材料科技有限公司 石墨烯改性地铁隧道预埋槽用粉末涂料及其制备方法
CN113150331A (zh) * 2021-05-28 2021-07-23 惠州市纵胜电子材料有限公司 一种玻璃纤维布增强的绝缘模压板及其制备方法

Similar Documents

Publication Publication Date Title
Ni et al. Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes
Agag et al. Synthesis and characterization of benzoxazine resin-SiO2 hybrids by sol-gel process: The role of benzoxazine-functional silane coupling agent
CN107759478B (zh) 一种含双碳硼烷的热固性聚酰亚胺材料及制备方法和应用
Zhang et al. Environment-friendly synthesis and performance of a novel hyperbranched epoxy resin with a silicone skeleton
CN109054734A (zh) 一种基于含氨基硅氧烷制备的胶黏剂及其制备和使用方法
CN102775614B (zh) 含双塔型倍半硅氧烷的苯并噁嗪树脂
CN109867792A (zh) 一种聚(苯并噁嗪-硅氧烷)共聚物及其制备方法
CN108383867A (zh) 一种易于工业化生产的耐高温偶联剂的制备方法和应用
CN102690415A (zh) 聚酰亚胺微球及其制备方法与应用
Chen et al. Curing kinetics and the properties of KH560-SiO 2/polyethersulfone/bismaleimide-phenolic epoxy resin composite
GB2616136A (en) Dielectricity and thermal conductivity enhanced bio-based high-temperature-resistant epoxy resin, preparation method therefor, and application thereof
Song et al. Reduced curing kinetic energy and enhanced thermal resistance of phthalonitrile resins modified with inorganic particles
Cheng et al. The curing behavior and properties of phthalonitrile resins using ionic liquids as a new class of curing agents.
CN103951829A (zh) 一种超支化聚硅氧烷液晶改性热固性树脂及其制备方法
Zhang et al. Synthesis, curing and thermal properties of the low melting point phthalonitrile resins containing glycidyl groups
Wang et al. Improved heat resistance and electrical properties of epoxy resins by introduction of bismaleimide
CN114105803A (zh) 一种环氧树脂固化剂的合成方法
CN108129640A (zh) 一种耐高温阻燃环氧树脂固化剂及其制备方法
CN103122068A (zh) 一种uv涂料用聚酰亚胺丙烯酸酯低聚物
CN105542172A (zh) 主链含碳硼烷的硼硅炔聚合物及其制备方法
CN103819308B (zh) 一种可固化的聚间苯及其制备方法和应用
CN103087671A (zh) 一种耐高温耐湿热的聚三唑树脂胶粘剂及制备方法与应用
CN105418670A (zh) 笼型八聚(乙炔基二甲基硅氧)倍半硅氧烷及其合成方法
CN109928907A (zh) 一种具有优异加工性和耐高温的活性稀释剂及其制备方法
CN101560298A (zh) 热塑性含氟全芳型聚酰亚胺粉末及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180810