CN108380203A - 一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法 - Google Patents

一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法 Download PDF

Info

Publication number
CN108380203A
CN108380203A CN201810144712.9A CN201810144712A CN108380203A CN 108380203 A CN108380203 A CN 108380203A CN 201810144712 A CN201810144712 A CN 201810144712A CN 108380203 A CN108380203 A CN 108380203A
Authority
CN
China
Prior art keywords
lamno
mesoporous
wall
catalyst
spherical shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810144712.9A
Other languages
English (en)
Other versions
CN108380203B (zh
Inventor
王丽
吴丽慧
金云龙
姜秋伶
王颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201810144712.9A priority Critical patent/CN108380203B/zh
Publication of CN108380203A publication Critical patent/CN108380203A/zh
Application granted granted Critical
Publication of CN108380203B publication Critical patent/CN108380203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法,特点是该催化剂的球外径为100‑750nm且其介孔壁由ø26×52nm的棒状纳米颗粒构筑而成,LaMnO3钙钛矿催化剂的介孔壁中的介孔平均孔径67.81 nm,孔容0.15 cm3/g,比表面积15.56 m2/g,其制备方法包括利用P123为软模板剂,以水和乙醇为溶剂,以柠檬酸为络合剂,La和Mn为金属源制备介孔壁中空核壳球形LaMnO3前驱体的步骤;将催化剂前驱体置于马弗炉中,在700℃下焙烧5h,得介孔壁中空核壳球形LaMnO3钙钛矿催化剂的步骤,优点是能耗低,收率近100%以及产物形貌可调控,可用于汽车尾气净化。

Description

一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法
技术领域
本发明涉及一种LaMnO3钙钛矿催化剂,尤其是涉及一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法。
背景技术
与目前采用的贵金属汽车尾气催化剂相比,非贵金属稀土钙钛矿型复合氧化物ABO3具有资源丰富、成本低廉、结构稳定、易于化学剪裁等优点,在汽车尾气和烟气催化净化领域具有极大的应用前景。多孔中空球形催化剂具有特殊的空间几何结构,具有低密度、高比表面积以及大内部空腔等优点,从而相比于常规块体与实心纳米颗粒具有更好的催化性能。
现有的中空球形钙钛矿的制备方法主要有溶剂热法和模板法以及二者结合。溶剂热法是在密闭容器中高温高压下反应, 是特殊形貌多孔材料最常用的方法。在CN101804353A中,以柠檬酸为络合剂,以硝酸铁和硝酸稀土为原料,在高压釜中170-190℃反应24-72h, 水洗,醇洗,烘干,再于700-900℃焙烧1-3h得系列钙钛矿型稀土铁酸盐多孔空心球,球外径1-5µm,壁厚30-200nm,球壁为由20-80nm的纳米颗粒构筑成的多孔结构,该系列催化剂可高活性高选择性地实现CO还原NO为N2。模板法分为硬模板法和软模板法,前者是利用模板的固定空间结构控制产物形貌,后者则是通过控制反应条件利用软模板剂与原料的相互作用控制产物形貌。G.S.Guo等(G.S.Guo et al.,RSC Advances, 2014, 4,58699-58707)将碳微球分散在金属硝酸盐溶液中,再于高压釜中180℃反应6小时,得前驱体,水洗,醇洗,烘干,在400℃、700℃先后焙烧2h、4h,得空心球型钙钛矿LaCoO3;在300℃和700℃先后焙烧2h和3h,得空心球型钙钛矿LaMnO3。LaCoO3球外径100 nm-300 nm,球壁15nm- 35 nm。LaMnO3球外径200nm,球壁20nm,为2-3多壳层结构,比表面积42.6 m2g-1,平均孔径75.4nm, 孔容0.153cm2/g, 对甲烷燃烧催化活性好。在CN201010289455.1中,采用PMMA为硬模板,聚乙二醇作为添加剂,以六水硝酸镧和硝酸锰为金属源,甲醇为溶剂,浸渍,干燥,750℃焙烧4h,得LaMnO3空心球,球外径25-50nm。软模板法常用高分子表面活性剂作模板剂,P123是具有ABA型三嵌段高分子非离子型表面活性剂,其形成的胶团结构稳定,通过调节溶液浓度、温度、添加剂,在水溶液中可形成不同尺寸和形状的稳定胶团或囊泡,与无机金属离子或其络合物形成配位键或氢键,可合成不同形貌的无机多孔材料,其中,文献中以P123为模板制备空心球材料多为简单金属氧化物(TiO2,CeO2)或氟化物(BaF2)或非金属氧化物(SiO2)(CN200910218009.9;B.Mazinani et al.,Ceramics International,2017,43,11786-11791),且多采用溶剂热法。用P123制备多孔球形钙钛矿催化剂的研究很少。P.Gao等(P.Gao et al.,Chinese Journal of Catalysis,2013,34,1811-1815;P.Gao etal.,Mater Lett,2013,92:17;CN103357396A)以P123为模板,以柠檬酸、尿素为添加剂,以水-乙醇-乙二醇为溶剂,在高压反应釜中100℃反应 48 h,水洗,醇洗,烘干,在600℃焙烧4h, 得系列钙钛矿型LaFexMn1-xO3,La1-xSrxMnO3,LaMnO3纳米空心球,球外径40-150nm, 壁厚10-20nm,比表面积30-40m2g-1,该系列催化剂比传统柠檬酸法制得的催化剂对木质素、苯酚等有机物的氧化或对过氧化氢的分解具有更高的催化活性。但是上述文献中的研究均采用溶剂热法或硬膜板法或软模板-溶剂热联合法,溶剂热法,能耗高,产率低。硬模板法制备钙钛矿,形貌调控空间小,且采用浸渍吸附法时,产率低。
发明内容
本发明所要解决的技术问题是提供一种能耗低,收率近100%以及产物形貌可调控的介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法。
本发明解决上述技术问题所采用的技术方案为一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂,所述的LaMnO3钙钛矿催化剂的球外径为100-750nm且其介孔壁由ø26×52nm的棒状纳米颗粒构筑而成,LaMnO3钙钛矿催化剂的介孔壁中的介孔平均孔径67.81 nm,孔容0.15 cm3/g,比表面积15.56 m2/g。
所述的LaMnO3钙钛矿催化剂的球外径为290-310 nm时,壁厚65-97 nm,核径52-65nm。
上述介孔壁中空核壳球形LaMnO3钙钛矿催化剂的制备方法,包括以下步骤:
(1)介孔壁中空核壳球形LaMnO3前驱体的制备
A.称取0.01molLa(NO3)3•6H2O、0.01mol Mn(NO3)2和0.02mol柠檬酸后,溶于73.33-110mL水中,搅拌至完全溶解,得第一溶液;
B.按总金属硝酸盐与P123的摩尔比为(60-70):1的比例,称取(2.8571×10-4)-(3.3333×10-4)mol的P123溶于去由离子水和乙醇按体积比1:2组成的20-30mL混合溶液中,搅拌至完全溶解,得第二溶液;
C.将第二溶液逐滴加入到第一溶液中,在15-35℃下封闭搅拌10h,得第三溶液;
D.将第三溶液置于鼓风干燥箱中,于40℃恒温蒸发至凝胶,所得凝胶在鼓风干燥箱中150℃充分干燥4h,得催化剂前驱体;
(2)介孔壁中空核壳球形LaMnO3的制备
将步骤(1)得到的催化剂前驱体置于马弗炉中,以2℃/min的速率升温,在700℃下,焙烧5h,得介孔壁中空核壳球形LaMnO3钙钛矿催化剂。
上述介孔壁中空核壳球形LaMnO3钙钛矿催化剂在汽车尾气净化方面的应用。
与现有技术相比,本发明的优点在于:本发明一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法,利用P123为软模板剂,以水和乙醇为溶剂,以柠檬酸为络合剂,通过成胶、烘干、焙烧,制备了具有介孔壁中空核壳球形LaMnO3钙钛矿汽车尾气催化剂,前驱体成胶在常压低温下形成,而非高温高压水热法,该方法能耗低,操作简单易行,原料廉价易得,金属利用率100%,催化剂形貌可控。该催化剂对汽车尾气中的NO+CO同时具有较高的催化转化活性,对CO的催化转化温度为T50%=259℃、T90% =311℃、T100%=329℃;对NO的催化转化温度为T50% =279℃、T90%=344℃、T100% =405℃。该催化剂在汽车尾气净化领域具有良好的应用前景。
附图说明
图1为样品1-4的XRD图;
图2为样品1-4的SEM图;扫描电镜(a)样品1;(b)样品2;(c)样品3;(d)样品4;
图3为样品4的TEM图;
图4为样品4的氮气吸附-脱附等温线图;
图5为样品4的孔径分布曲线图;
图6为样品1-4对CO的催化转化率图;
图7为样品1-4对NO的催化转化率图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
一、具体实施例
实施例1
称取4.3301g(0.01mol)La(NO3)3•6H2O,3.5790g的50wt%Mn(NO3)2溶液(其中Mn(NO3)2的用量为1.7895g,即0.01mol)和3.8426g(0.02mol)柠檬酸溶于110mL水中,得第一溶液;按照总金属硝酸盐与P123的摩尔比为60:1的比例,称量1.9333g(3.3333×10-4mol)P123溶于由10mL去离子水和20mL无水乙醇组成的混合溶液中,得第二溶液;将第二溶液逐滴加入到第一溶液中,在25℃下封闭搅拌10h,配成P123摩尔分数为2.381mmol/L的第三溶液;将第三溶液置于鼓风干燥箱中40℃恒温蒸发至凝胶状态,然后升温至150℃干燥4h,得催化剂前驱体;将所制备的催化剂前驱体置于马弗炉中,在700℃下焙烧5h,最后得介孔壁中空核壳球形LaMnO3钙钛矿催化剂,命名为样品1。
实施例2
称取4.3301g(0.01mol)La(NO3)3•6H2O,3.5790g的50wt%Mn(NO3)2溶液(其中Mn(NO3)2的用量为1.7895g,即0.01mol)和3.8426g(0.02mol)柠檬酸溶于110mL水中,得第一溶液;按照总金属硝酸盐与P123摩尔比为65:1的比例,称量1.7846g(3.0769×10-4mol)P123溶于由10mL去离子水和20mL无水乙醇组合的混合溶液中,得第二溶液,将第二溶液逐滴加入到第一溶液中,在35℃下封闭搅拌10h,配成P123摩尔分数为2.198mmol/L 的第三溶液;将第三溶液置于鼓风干燥箱中40℃恒温至凝胶状态,然后升温至150℃干燥4h,得催化剂前驱体;将所制备的催化剂前驱体置于马弗炉中,在700℃下焙烧5h,最后得介孔壁中空核壳球形LaMnO3钙钛矿催化剂,命名为样品2。
实施例3
称取4.3301g(0.01mol)La(NO3)3•6H2O,3.5790g的50wt%Mn(NO3)2溶液(其中Mn(NO3)2的用量为1.7895g,即0.01mol)和3.8426g(0.02mol)柠檬酸溶于82.5mL水中,得第一溶液;按照总金属硝酸盐与P123摩尔比为70:1的比例,称量1.6571g(2.8571×10-4mol)P123溶于由7.5mL去离子水和15mL无水乙醇组成的混合溶液中,得第二溶液;并将第二溶液逐滴加入到第一溶液中,在30℃下搅拌10h,配成P123摩尔分数为2.721mmol/L的第三溶液,将第三溶液置于鼓风干燥箱中40℃恒温蒸发至凝胶状态,然后升温至150℃充分干燥4h,得到催化剂前驱体;将所制备的催化剂前驱体置于马弗炉中,在700℃下焙烧5h,最后得介孔壁中空核壳球形LaMnO3钙钛矿催化剂,命名为样品3。
实施例4
称取4.3301g(0.01mol)La(NO3)3•6H2O,3.5790g的50wt%Mn(NO3)2溶液(其中Mn(NO3)2的用量为1.7895g,即0.01mol)和3.8426g(0.02mol)柠檬酸溶于73.33mL水中,得第一溶液;按照总金属盐:P123摩尔比为70:1的比例,称量1.6571g(2.8571×10-4mol)P123溶于由6.66mL去离子水和13.34mL无水乙醇组成的混合溶液中,得第二溶液,将第二溶液逐滴加入到第一溶液中,在30℃下封闭搅拌10h,配成P123摩尔分数为3.061mmol/L的第三溶液;将第三溶液置于鼓风干燥箱中40℃恒温蒸发至凝胶状态,然后升温至150℃干燥4h,得到催化剂前驱体;将所制备的催化剂前驱体置于马弗炉中,在700℃下焙烧5h,最后得介孔壁中空核壳球形LaMnO3钙钛矿催化剂,命名为样品4。
二、结果分析
图1为样品1-4的XRD图,由图1可知样品1-4均为纯钙钛矿型晶相结构。
图2为样品1-4的SEM图;扫描电镜(a)样品1;(b)样品2;(c)样品3;(d)样品4。由图2可知,LaMnO3为纳米颗粒构筑的介孔壁球状结构,其中,构筑介孔壁的纳米颗粒为棒状ø26×52nm(指棒状纳米颗粒横截面直径为26nm,长度为52nm)。样品1球状规整,球壁孔洞较小,外径200-700nm,其中较多的球径为300-400nm,但少部分纳米颗粒未组装成球;样品2纳米颗粒构筑的球壁具有较大的孔,纳米颗粒结合疏松,部分球体球壁缺失,球外径150-700nm,其中较多的球径为300-400nm;样品3球间共壁或联结紧密,球体形成不完全,但球壁孔也较大,球外径150-750nm,其中较多的球径为500-600nm;样品4球体更完整,分散最好,球壁孔洞较小,球外径100-750nm,其中较多的球径为300-500nm。
图3为样品4的TEM图,由图3可知,LaMnO3形成了中空核壳球形结构,球外径为290-310 nm时,壁厚65-97 nm,核径为52-65 nm。
图4为样品4的氮气吸附-脱附等温线图;图5为样品4的孔径分布曲线图;表1为样品4的BET测试数据,图4说明催化剂具有介孔结构,图5表明样品具有介孔大孔多级孔结构,介孔有利于吸附,大孔有利于传质,从而有利于催化活性的提高。
图6为样品1-4对CO的催化转化率图,图7为样品1-4对NO的催化转化率图。介孔壁中空核壳球形LaMnO3对NO+CO催化活性的测试方法如下:称取0.75 g催化剂装入反应管中,置于催化剂评价装置(天津先权,WFSM-3060)中。以反应空速为20000 mL·g-1·h-1,通入NO和CO(浓度均为1200ppm,N2作为平衡气)气体,以2 ℃/min的升温速率,对催化剂进行25-475 ℃下的催化活性测试,出口CO和NO的浓度采用Gasboard-3000(武汉四方光电科技有限公司)在线红外烟气分析仪进行检测,然后再进行其转化率的计算。由图6和图7可知,对于NO+CO的催化氧化还原,样品3在所有的样品中表现出最好的催化活性,对CO的催化转化温度为T50%=259℃、T90% =311℃、T100%=329℃;对NO的催化转化温度为T50% =279℃、T90%=344℃、T100% =405℃。
上述说明并非对本发明的限制,本发明也并不限于上述举例。本技术领域的普通技术人员在本发明的实质范围内,作出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (4)

1.一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂,其特征在于:所述的LaMnO3钙钛矿催化剂的球外径为100-750nm且其介孔壁由ø26×52nm的棒状纳米颗粒构筑而成,LaMnO3钙钛矿催化剂的介孔壁中的介孔平均孔径67.81 nm,孔容0.15 cm3/g,比表面积15.56 m2/g。
2.根据权利要求1所述的一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂,其特征在于:所述的LaMnO3钙钛矿催化剂的球外径为290-310 nm时,壁厚65-97 nm,核径52-65 nm。
3.一种权利要求1或2所述的介孔壁中空核壳球形LaMnO3钙钛矿催化剂的制备方法,其特征在于包括以下步骤:
(1)介孔壁中空核壳球形LaMnO3前驱体的制备
A.称取0.01molLa(NO3)3•6H2O、0.01mol Mn(NO3)2和0.02mol柠檬酸后,溶于73.33-110mL水中,搅拌至完全溶解,得第一溶液;
B.按总金属硝酸盐与P123的摩尔比为(60-70):1的比例,称取(2.8571×10-4)-(3.3333×10-4)mol的P123溶于去由离子水和乙醇按体积比1:2组成的20-30mL混合溶液中,搅拌至完全溶解,得第二溶液;
C.将第二溶液逐滴加入到第一溶液中,在15-35℃下封闭搅拌10h,得第三溶液;
D.将第三溶液置于鼓风干燥箱中,于40℃恒温蒸发至凝胶,所得凝胶在鼓风干燥箱中150℃充分干燥4h,得催化剂前驱体;
(2)介孔壁中空核壳球形LaMnO3的制备
将步骤(1)得到的催化剂前驱体置于马弗炉中,以2℃/min的速率升温,在700℃下,焙烧5h,得介孔壁中空核壳球形LaMnO3钙钛矿催化剂。
4.一种权利要求1-3中任一项所述的介孔壁中空核壳球形LaMnO3钙钛矿催化剂在汽车尾气净化方面的应用。
CN201810144712.9A 2018-02-12 2018-02-12 一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法 Active CN108380203B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810144712.9A CN108380203B (zh) 2018-02-12 2018-02-12 一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810144712.9A CN108380203B (zh) 2018-02-12 2018-02-12 一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN108380203A true CN108380203A (zh) 2018-08-10
CN108380203B CN108380203B (zh) 2020-10-20

Family

ID=63068884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810144712.9A Active CN108380203B (zh) 2018-02-12 2018-02-12 一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN108380203B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110142039A (zh) * 2019-06-12 2019-08-20 中国科学院宁波材料技术与工程研究所 一种催化剂的制备方法及其在金属空气电池中的应用
CN112023935A (zh) * 2020-09-15 2020-12-04 赵玉平 一种多层立方体LaCoO3柴油机尾气氧化催化剂制备方法
CN112897587A (zh) * 2021-04-07 2021-06-04 昆明理工大学 锰酸镧的制备方法及应用
WO2023035532A1 (zh) * 2021-09-07 2023-03-16 清华大学 一种La 1-xMn 1+xO 3的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357396A (zh) * 2012-04-09 2013-10-23 中国科学院大连化学物理研究所 具有高活性的钙钛矿空心球催化剂及制备和应用
CN107673411A (zh) * 2017-10-17 2018-02-09 宁波大学 一种大孔‑介孔钙钛矿氧化物的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357396A (zh) * 2012-04-09 2013-10-23 中国科学院大连化学物理研究所 具有高活性的钙钛矿空心球催化剂及制备和应用
CN107673411A (zh) * 2017-10-17 2018-02-09 宁波大学 一种大孔‑介孔钙钛矿氧化物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANGSHENG GUO等: "High specific surface area LaMO3 (M=Co, Mn)hollow spheres: synthesis, characterization and catalytic properties in methane combustion", 《RSC ADVANCES》 *
吴何珍著: "《纳米技术与环境保护》", 30 June 2013, 合肥工业大学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110142039A (zh) * 2019-06-12 2019-08-20 中国科学院宁波材料技术与工程研究所 一种催化剂的制备方法及其在金属空气电池中的应用
CN110142039B (zh) * 2019-06-12 2022-03-01 中国科学院宁波材料技术与工程研究所 一种催化剂的制备方法及其在金属空气电池中的应用
CN112023935A (zh) * 2020-09-15 2020-12-04 赵玉平 一种多层立方体LaCoO3柴油机尾气氧化催化剂制备方法
CN112897587A (zh) * 2021-04-07 2021-06-04 昆明理工大学 锰酸镧的制备方法及应用
WO2023035532A1 (zh) * 2021-09-07 2023-03-16 清华大学 一种La 1-xMn 1+xO 3的制备方法

Also Published As

Publication number Publication date
CN108380203B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
Arandiyan et al. Ordered meso-and macroporous perovskite oxide catalysts for emerging applications
CN108380203A (zh) 一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法
CN107983329A (zh) 一种以金属有机骨架为模板的铈基复合氧化物VOCs燃烧催化剂及其制备方法
CN102642843B (zh) 一种同时制备多级结构介孔二氧化硅和碳纳米材料的方法
CN101134586B (zh) 一种纳米氧化铝空心球的制备方法
CN109967099A (zh) 一种具有中空纳米结构的Co2P@C复合材料及其制备方法和应用
CN101972663B (zh) 一种制备LaCoO3/SBA-16和LaMnO3/SBA-16催化剂的方法
CN106495128A (zh) 一种单分散氮掺杂中空碳纳米多面体及其制备方法
Liu et al. A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation
CN109494381A (zh) 一种单原子铁基碳材料及制备方法和电催化应用
CN103949192B (zh) 一种微波辅助气溶胶制备空心球的方法
Zhen et al. Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis
CN105170151A (zh) 一种核壳结构铜基催化剂及制备方法和应用
CN102060534A (zh) 具有介孔孔壁的三维有序大孔La1-xSrxCrO3的制备方法
CN102744059A (zh) 一种有序介孔二氧化钛/银光催化剂的制备方法
CN110102248A (zh) 一种表面氧缺陷多孔金属氧化物材料及其制备和应用
CN110357172A (zh) MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法
CN102443454B (zh) 一种化学链燃烧的载氧体及其制备方法和应用
CN109638300A (zh) 特殊形貌稀土氧化铈的制备方法
CN103301850A (zh) 三维有序大孔Co3O4负载纳米Au催化剂、制备方法及应用
CN109569607A (zh) 一种新型钴基复合材料的制备方法
CN104891448A (zh) 一种过渡金属氧化物纳米材料、其制备方法及用途
CN101905903B (zh) 具有介孔孔壁的三维有序大孔锰酸镧的双模板制备法
CN113318731A (zh) 一种介孔二氧化锰催化剂的制备方法
CN108273488A (zh) 一种纳米片状二氧化铈/多孔炭复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180810

Assignee: Ningbo Science and Technology Innovation Association

Assignor: Ningbo University

Contract record no.: X2023980033633

Denomination of invention: A mesoporous wall hollow core shell spherical LaMnO3 perovskite catalyst and its preparation method

Granted publication date: 20201020

License type: Common License

Record date: 20230317