CN108358933B - 一种多取代吡咯化合物的制备方法 - Google Patents

一种多取代吡咯化合物的制备方法 Download PDF

Info

Publication number
CN108358933B
CN108358933B CN201810147601.3A CN201810147601A CN108358933B CN 108358933 B CN108358933 B CN 108358933B CN 201810147601 A CN201810147601 A CN 201810147601A CN 108358933 B CN108358933 B CN 108358933B
Authority
CN
China
Prior art keywords
alkyl
compound
preparation
nmr
cdcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810147601.3A
Other languages
English (en)
Other versions
CN108358933A (zh
Inventor
祝诗发
吴烽
王永东
黄志鹏
陈莲芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENIFARM (GUANGZHOU) TECHNOLOGY Inc
South China University of Technology SCUT
Original Assignee
GENIFARM (GUANGZHOU) TECHNOLOGY Inc
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GENIFARM (GUANGZHOU) TECHNOLOGY Inc, South China University of Technology SCUT filed Critical GENIFARM (GUANGZHOU) TECHNOLOGY Inc
Priority to CN201810147601.3A priority Critical patent/CN108358933B/zh
Publication of CN108358933A publication Critical patent/CN108358933A/zh
Application granted granted Critical
Publication of CN108358933B publication Critical patent/CN108358933B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/36Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种多取代吡咯化合物的制备方法,该制备方法为:炔烯胺化合物在一价金催化下发生环化反应,经过柱层析或重结晶分离,得到全取代吡咯化合物。所制得吡咯化合物可在适当条件下脱除取代基,得到四取代吡咯化合物。本发明利用链状的炔烯胺化合物经环化反应制得全取代或者四取代的吡咯化合物。本发明的制备方法具有操作简单、步骤简便、反应高效、原料廉价易得、可放大中试等优点。

Description

一种多取代吡咯化合物的制备方法
技术领域
本发明涉及吡咯化合物的合成领域,具体涉及一种多取代吡咯化合物的制备方法。
背景技术
吡咯及其衍生物广泛应用于有机合成工业,是重要的医药、农药、香料等精细化工品的原料或关键中间体。含有吡咯结构单元的化合物广泛存在于自然界中,由于其特殊的结构显示出重要的生物活性,许多天然产物或药物分子中均含有吡咯单元[1]。(文献1:(a)Paris,D.;Cottin,M.;Demonchaux,P.;Augert,G.;Dupassieux,P.;Lenoir,P.;Peck,M.J.;Jasserand,D.J.Med.Chem.1995,38,669;(b)Fernandez,L.S.;Buchanan,M.S.;Caroll,A.R.;Feng,Y.J.;Quinn,R.J.;Avery,V.M.Org.Lett.2009,11,329;(c)Tanaka,M.;Ubukata,M.;Matsuo,T.;Yasue,K.;Matsumoto,K.;Kajimoto,Y.;Ogo,T.;Inaba,T.Org.Lett.2007,9,3331;(d)Wilson,R.M.;Thalji,R.K.;Bergman,R.G.;Ellman,J.A.Org.Lett.2006,8,1745;(e)Schrader,T.O.;Johnson,B.R.;Lopez,L.;Kasem,M.;Gharbaoui,T.;Sengupta,D.;Buzard,D.;Basmadjian,C.;Jones,R.M.Org.Lett.2012,14,6306.)。
目前,已经发展了许多多取代吡咯的合成方法,包括缩合、有机小分子催化或金属催化的方法[2]。(文献2:(a)Knorr,L.Ber,1884,17,1635.(b)Barton,D.H.R.;Kervagoret,J.;Zard,S.Z.Tetrahedron,1990,46,7587.(c)Klappa,J.J.;Rich,A.E.;McNeill,K.Org.Lett.,2002,4,435.(d)Freifeld,I.,Shojaei,H.;Langer,P.,J.Org.Chem.2006,71,4965.(e)Gabriele,B.;Salerno,G.;Fazio,A.J.Org.Chem.2003,68,7853.(f)Kamijo,S.;Kanazawa,C.;Yamamoto,Y.J.Am.Chem.Soc.2005,127,9260.(g)Ranu,B.C.;Dey,S.S.Tetrahedron Lett,2003,44,2865.(i)Tang,M.;Sun,R.-W.;Li H.;Yu,X.–H.;WangW.,J.Org.Chem.2017,82,8419;(j)Tan,B.;Shi,Z.-G.;Chua,P.-J.,Li,Y.-X.;Zhong,G.-F.,Angew.Chem.Int.Ed.2009,48,758)。
通过缩合的方法合成吡咯通常面临着化学选择性不好,条件较为剧烈等问题[3]。(文献3:(a)Knorr,L.Ber,1884,17,1635.(b)Barton,D.H.R.;Kervagoret,J.;Zard,S.Z.Tetrahedron,1990,46,7587.(c)Binder,J.T.;Kirsch,S.F.Org.Lett,2006,8,2151.(d)Tan,B.;Shi,Z.-G.;Chua,P.-J.,Li,Y.-X.;Zhong,G.-F.,Angew.Chem.Int.Ed.2009,48,758.)通过金属催化的串联反应在构建环状化合物具有独到的优势。目前,有许多关于金催化环化制备多取代吡咯的方法已经被报道[4]。(文献4:(a)Zheng,Z.-T.;M.Touve;J.Barnes;N.Reich;Zhang,L.-M.,Angew.Chem.Int.Ed.2008,47,346.(b)Wan Teng Teo;Weidong Rao;Ming Joo Koh;Philip Wai Hong Chan,J.Org.Chem.2013,78,7508;(c)S.Miaskiewicz;J.M.Weibel;P.Pale;A.Blanc,Org.Lett.2016,18,844.)本发明通过一价金催化的方法,在温和的条件下可以得到多取代的吡咯化合物,具有广泛的底物适应范围,产率较高,原料易得等优点。
发明内容
为了克服现有技术的不足,本发明的目的是提供一种多取代吡咯化合物的合成制备方法。该方法是炔烯胺化合物1在金(I)催化剂条件下生成全取代的吡咯化合物2,全取代的吡咯化合物2在还原剂条件下可生成四取代的吡咯化合物3。本发明从取代的烯炔胺化合物出发,经过金催化的环化反应,以良好的产率获得一系列多取代吡咯化合物。本发明制备步骤简单,操作简便,具有很高的原子经济性和步骤经济性。
本发明的目的通过如下技术方案实现。
一种多取代吡咯化合物的制备方法,包括以下步骤:
(1)合成全取代吡咯化合物2:在惰性气体保护下,将化合物1溶入有机溶剂中,然后加入一价金配合物催化剂LAuX,反应完成后过滤再减压除去溶剂,通过柱层析或重结晶得到对应的全取代吡咯化合物2;当合成R6为醛基的全取代吡咯化合物2时,则需要在加入一价金配合物催化剂LAuX时加入氧化剂;
(2)合成四取代吡咯化合物3:在惰性气体保护下,将全取代吡咯化合物2溶入有机溶剂中,然后加入还原剂,反应完成后过滤,减压除去溶剂,通过柱层析或重结晶得到对应的四取代吡咯化合物3;
合成路线如下所示:
Figure BDA0001579223940000021
优选的,所述有机溶剂为1,4-二氧六环、四氢呋喃、1,2-二氯乙烷、二氯甲烷、氯仿、甲苯、甲醇和乙酸中的一种或二种以上的混合溶剂;化合物1在有机溶剂中的浓度为0.05-2mol/L。
优选的,所述一价金配合物催化剂LAuX中,配体L包括但不局限于三苯基磷(PPh3)、三环己基磷(Cy3PPh3)、2-(二叔丁基)二苯基磷(tBuPhos)、氮杂卡宾(IPr、SIPr、IMes、SIMes),配合物阴离子包括但不局限于三氟甲磺酸根离子、四氟硼酸根离子、双三氟甲磺酰亚胺离子、六氟锑酸根离子和四(3,5-二(三氟甲基)苯基)硼酸根离子,即X=OTf、BF4、NTf2、SbF6、BArF 4;所述一价金配合物催化剂的用量为化合物1用量的1–20mol%。
优选的,所述氧化剂为2,3,5,6-四氯对苯醌(DCQ)或2,3-二氯-5,6-二氰对苯醌(DDQ),氧化剂用量为化合物1用量的200-1000mol%。
优选的,所述还原剂为兰尼镍、四氢铝锂和镁粉,还原剂用量为化合物2用量的1000-2000mol%。
优选的,步骤(1)所述反应的温度为20℃-100℃。
优选的,步骤(2)所述反应的温度为50℃-110℃。
优选的,所述R1为烷基、链烯基、苄基或取代苄基,取代苄基上的取代基为烷基、卤素、烷氧基、硝基中的一种或二种以上,取代基的个数为1-5个;
R2为烷基、芳基或苄基,取代芳基上的取代基为烷基、卤素、烷氧基、硝基中的一种或二种以上,取代基的个数为1-5个;
R3为氢或烷基;
R4为烷基、芳基或杂芳基,取代芳基上的取代基为烷基、卤素、烷氧基、硝基中的一种或二种以上,取代基的个数为1-5个;
R5为芳基磺酰基,其中芳环的取代基为烷基、卤素、烷氧基、硝基中的一种或二种以上,取代基的个数为1-5个;
R6为烷基或醛基;
所述烷基是指具有1~8个碳原子的直链或支链的烷基;优选具有1~4个碳原子的支链或支链的烷基;
所述链烯基是指具有2~6个碳原子的直链或支链的链烯基;优选具有2~4个碳原子的直链或支链的链烯基;
所述烷氧基是指具有1~6个碳原子的支链或支链的烷氧基;优选具有1~4个碳原子的直链或支链的烷氧基;
所述卤素是指氟、氯、溴或碘原子;
所述芳基是指含有苯环结构的单环芳烃、多环芳烃或稠环芳烃;
所述杂芳基是指具有环状结构,成环原子除了碳原子外还有其他元素的化合物。
进一步优选的,所述烷基为甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、仲丁基、戊基、新戊基、己基、庚基或辛基;
所述链烯基为乙烯基、1-丙烯基、2-丙烯基、1-丁烯基、2-丁烯基、1-戊烯基或1-己烯基;
所述烷氧基为甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基、异丁氧基、叔丁氧基、仲丁氧基、戊氧基、新戊氧基或己氧基;
所述杂芳基为噻吩、呋喃、吡咯、吡喃、恶唑或吲哚。
优选的,所述烷基为甲基或乙基;
所述链烯基为乙烯基;
所述烷氧基为甲氧基;
所述芳基为苯环或萘环;
所述杂芳基为噻吩。
优选的,本发明合成的多取代吡咯化合物的结构式如下所示:
并环全取代吡咯(I)
Figure BDA0001579223940000051
全取代吡咯(II)
Figure BDA0001579223940000052
全取代吡咯醛(III)
Figure BDA0001579223940000061
与现有技术相比,本发明具有以下优点:
1.原料简单易得。
2.反应活性高,原料转化完全,分离方法简便,能得到高纯度的化合物。
3.底物适用范围广,能得到各种类型的多取代吡咯化合物。
4.反应条件温和,产率较高。
具体实施方式
下面结合实例对本发明作进一步说明,但本发明的实施方式不限于此。
实施例1
2-{[(4-苯基-1-烯-3-炔)-2-丁基]}-1-对甲苯磺酰基吡咯的制备
Figure BDA0001579223940000062
在250mL的圆底烧瓶中加入脯氨酸甲酯盐酸盐(5g,30.3mmol),对甲基苯磺酰氯(5.76g,30.3mmol),然后往烧瓶中加入200mL二氯甲烷作为溶剂,随后往其中滴加三乙胺(6.13g,60.6mmol),滴加完毕后,将该反应置于常温搅拌20h。反应完成后,加入200mL水淬灭反应。用二氯甲烷萃取,合并有机相,使用1M稀盐酸洗涤后将有机相用无水硫酸镁干燥,并旋蒸除去有机溶剂,得到目标的N-对甲苯磺酰基脯氨酸甲酯(8.15g,产率95%)。
将上一步得到的N-对甲苯磺酰基脯氨酸甲酯(5g,17.6mmol)溶于无水四氢呋喃(100mL)中,往其中加入N,O-二甲基羟胺盐酸盐(2.58g,26.5mmol),在氮气氛围下以1500rpm的速率剧烈搅拌,保持-30℃的低温,往其中滴加异丙基溴化镁的四氢呋喃溶液(53mmol,17.6mL,3mmol/mL in THF)。随后,保持-30℃的低温直至原料完全转化(通过TLC检测)。反应完成后,在其中加入饱和氯化铵溶液淬灭反应,使用乙酸乙酯萃取,合并有机相并使用无水硫酸镁干燥,通过旋蒸除去有机溶剂,得到N-甲基-N-甲氧基-对甲苯磺酰基脯氨酸酰胺(4.94g,产率90%)。
在氮气保护下,在20mL的无水四氢呋喃中加入苯乙炔(510mg,5mmol),将温度控制在0℃,往其中滴加正丁基锂的正己烷溶液(5mmol,2mL,2.5mmol/mL in hexane),滴加完毕后保持0℃反应1小时。随后,将上一步制得的N-甲基-N-甲氧基-对甲苯磺酰基脯氨酸酰胺(1.56g,5mmol)溶于无水四氢呋喃中,滴加到上述的溶液中,滴加完毕后将反应升至常温再反应2小时。反应完成后,在其中加入饱和氯化铵溶液淬灭反应,使用乙酸乙酯萃取,合并有机相并使用无水硫酸镁干燥,通过旋蒸除去有机溶剂,经过柱层析分离可得到目标的3-苯基-1-(1-对甲苯磺酰基吡咯-2-炔)丙基-1-酮(1.23g,产率70%)。
在氮气保护下,在20mL的无水四氢呋喃中加入甲基三苯基溴化膦(2.1g,6mmol),将温度控制在0℃,往其中滴加正丁基锂的正己烷溶液(6mmol,2.4mL,2.5mmol/mL inhexane),滴加完毕后保持0℃反应1小时。随后,将上一步制得的3-苯基-1-(1-对甲苯磺酰基吡咯-2-炔)丙基-1-酮(1.76g,5mmol)溶于无水四氢呋喃中,滴加到上述的溶液中,滴加完毕后将反应升至常温再反应2小时。反应完成后,在其中加入饱和氯化铵溶液淬灭反应,使用乙酸乙酯萃取,合并有机相并使用无水硫酸镁干燥,通过旋蒸除去有机溶剂,经过柱层析分离可得到目标的3-苯基-1-(1-对甲苯磺酰基吡咯-2-炔)丙基-1-酮(1.05g,产率60%)。
实施例2
N,4-甲基-N-[(3-亚甲基-1,5-二苯基-4-炔)-2-戊基]苯磺酰胺的制备
Figure BDA0001579223940000071
在250mL的圆底烧瓶中加入苯丙氨酸甲酯盐酸盐(5g,23.2mmol),对甲基苯磺酰氯(4.4g,23.2mmol),然后往烧瓶中加入200mL二氯甲烷作为溶剂,随后往其中滴加三乙胺(4.67g,46.4mmol),滴加完毕后,将该反应置于常温搅拌20h。反应完成后,加入200mL水淬灭反应。用二氯甲烷萃取,合并有机相,使用1M稀盐酸洗涤后将有机相用无水硫酸镁干燥,并用旋蒸出去有机溶剂,得到目标的N-对甲苯磺酰基苯丙氨酸甲酯(7.4g,产率96%)。
在50mL的圆底烧瓶中加入N-对甲苯磺酰基苯丙氨酸甲酯(3.1g,9.3mmol),无水碳酸钾(2.56g,18.6mmol),25mL丙酮作为溶剂,随后加入碘甲烷(1.56g,11.1mmol),将该反应在60℃反应6小时。反应结束后,过滤除去不溶物,将滤液通过旋蒸除去有机溶剂,得到目标的N-甲基-N-对甲苯磺酰基苯丙氨酸甲酯(3.2g,产率99%)。
将上一步得到的N-甲基-N-对甲苯磺酰基苯丙氨酸甲酯(3g,8.64mmol)溶于无水四氢呋喃(100mL)中,往其中加入N,O-二甲基羟胺盐酸盐(1.26g,13mmol),在氮气氛围下以1500rpm的速率剧烈搅拌,保持-30℃的低温,往其中滴加异丙基溴化镁的四氢呋喃溶液(26mmol,8.7mL,3mmol/mL in THF)。随后,保持-30℃的低温直至原料完全转化(通过TLC检测)。反应完成后,在其中加入饱和氯化铵溶液淬灭反应,使用乙酸乙酯萃取,合并有机相并使用无水硫酸镁干燥,通过旋蒸除去有机溶剂,得到目标的2-[(N,4-二甲基-苯基)磺酰胺]-N-甲氧基-N-甲基-3-苯基丙胺(3.02g,产率93%)。
在氮气保护下,在20mL的无水四氢呋喃中加入苯乙炔(204mg,2mmol),将温度控制在0℃,往其中滴加正丁基锂的正己烷溶液(2mmol,1.6mL,2.5mmol/mL in hexane),滴加完毕后保持该温度反应1小时。随后,将上一步制得的2-[(N,4-二甲基-苯基)磺酰胺]-N-甲氧基-N-甲基-3-苯基丙胺(752mg,2mmol)溶于无水四氢呋喃中,滴加到上述的溶液中,滴加完毕后将反应升至常温再反应2小时。反应完成后,在其中加入饱和氯化铵溶液淬灭反应,使用乙酸乙酯萃取,合并有机相并使用无水硫酸镁干燥,通过旋蒸除去有机溶剂,经过柱层析分离可得到目标的N,4-二甲基-N-(3-羰基-1,5-二苯基-4-炔基-2)-2-戊基苯磺酰胺(417mg,产率50%)。
在氮气保护下,在20mL的无水四氢呋喃中加入甲基三苯基溴化膦(357mg,1mmol),将温度控制在0℃,往其中滴加正丁基锂的正己烷溶液(1mmol,2.4mL,0.4mmol/mL inhexane),滴加完毕后保持该温度反应1小时。随后,将上一步制得的N,4-二甲基-N-(3-羰基-1,5-二苯基-4-炔基-2)-2-戊基苯磺酰胺(417mg,5mmol)溶于无水四氢呋喃中,滴加到上述的溶液中,滴加完毕后将反应升至常温再反应2小时。反应完成后,在其中加入饱和氯化铵溶液淬灭反应,使用乙酸乙酯萃取,合并有机相并使用无水硫酸镁干燥,通过旋蒸除去有机溶剂,经过柱层析分离可得到目标的N,4-甲基-N-[(3-亚甲基-1,5-二苯基-4-炔)-2-戊基]苯磺酰胺(163mg,产率40%)。
实施例3
7-甲基-5-苯基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
Figure BDA0001579223940000091
在氮气保护下,向干净的圆底烧瓶中加入磁力搅拌子,加入1mL 1,2-二氯乙烷,依次往其中加入IPrAuCl(0.005mmol,3.1mg),AgNTf2(0.005mmol,1.9mg),搅拌10min,然后加入2-{[(4-苯基-1-烯-3-炔)-2-丁基]}-1-对甲苯磺酰基吡咯(0.1mmol,35mg),在40℃条件下反应8h。反应结束后,反应液经过短硅胶过滤,将滤液浓缩,使用柱层析分离可得目标产物。展开剂比例为石油醚:乙酸乙酯=5:1,最终得到产品为白色固体,产率74%。
本实施例所制得的产品其物理常数为:1HNMR(CDCl3,400MHz)1H NMR(400MHz,CDCl3)δ7.53(d,J=8.1Hz,2H),7.46–7.29(m,5H),7.15(d,J=8.0Hz,2H),3.71(t,J=7.1Hz,2H),2.79(t,J=7.2Hz,2H),2.42(q,J=7.2Hz,2H),2.36(s,3H),2.24(s,3H).13CNMR(101MHz,CDCl3)δ142.35,141.86,134.57,131.43,130.96,130.58,129.09,128.41,127.74,126.54,121.53,110.14,45.93,26.75,23.15,21.45,10.96.红外光谱IR(KBr)νmax3058,2957,2923,2859,1541,1447,1401,1339,1310,1229,1159,1136,1088,1060,1019,921,854,736,700,655,617,574,540cm-1。高分辨率质谱(DART)([M+H]+)计算值为C21H22O2NS:533.3163,实际测量值为352.1362。
实施例4
5-(4-甲基苯基)-7-甲基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以2-{[(4-甲基苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,所用催化剂为5%PPh3AuCl/AgNTf2(其中5%是指催化剂的摩尔量占原料摩尔量的百分数,为5mol%,下同),溶剂为1,2-二氯乙烷,反应温度为20℃,产品产率为66%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.55(d,J=8.2Hz,2H),7.30–7.18(m,4H),7.16(d,J=8.1Hz,2H),3.71(t,J=7.1Hz,2H),2.79(t,J=7.3Hz,2H),2.42(m,5H),2.37(s,3H),2.23(s,3H).13C NMR(101MHz,CDCl3)δ142.29,141.97,138.26,134.40,131.63,130.41,129.09,128.50,127.99,126.54,121.29,110.03,45.87,26.74,23.14,21.40,10.95.红外光谱IR(KBr)νmax 3024,2958,2923,2864,2745,2584,1912,1798,1735,1701,1652,1596,1531,1492,1460,1417,1394,1337,1311,1233,1211,1182,1159,1137,1114,1088,1058,1018,946,914,862,815,723cm-1。高分辨率质谱(DART)([M+H]+)计算值为C22H24O2NS:366.1522,实际测量值为366.1523。
实施例5
5-(4-甲氧基苯基)-7-甲基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以2-{[(4-甲氧基苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯(0.1mmol,38.1mg)为原料,所用催化剂为5%IPrAuCl/AgSbF6,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为75%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.53(d,J=8.2Hz,2H),7.29(d,J=8.8Hz,2H),7.15(d,J=8.1Hz,2H),6.94(d,J=8.7Hz,2H),3.88(s,3H),3.71(t,J=7.1Hz,2H),2.78(t,J=7.3Hz,2H),2.41(q,J=7.4Hz,2H),2.36(s,3H),2.23(s,3H).13C NMR(101MHz,CDCl3)δ159.68,142.27,141.98,134.24,131.82,131.38,129.08,126.50,123.15,121.26,113.24,110.02,55.27,45.82,26.74,23.13,21.44,10.97.红外光谱IR(KBr)νmax 2958,2924,2854,2746,2538,1718,1653,1611,1574,1530,1462,1441,1422,1398,1338,1289,1249,1177,1059,1027,966,914,861,733,704,665,592cm-1。高分辨率质谱(DART)([M+H]+)计算值为C22H24O3NS:382.1471,实际测量值为382.1470。
实施例6
5-(4-溴苯基)-7-甲基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以2-{[(4-溴苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,所用催化剂为5%tBuPhosAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,通过乙酸乙酯重结晶得到产品,产品产率为67%。所制备产品的物理常数为:1HNMR(400MHz,CDCl3)δ7.57–7.51(m,3H),7.43–7.35(m,1H),7.25(d,J=8.3Hz,2H),7.20–7.12(m,2H),3.71(t,J=7.1Hz,2H),2.79(t,J=7.2Hz,2H),2.48–2.34(m,5H),2.23(m,3H).13C NMR(101MHz,CDCl3)δ142.61,142.36,141.60,141.28,135.08,134.57,132.19,131.02,130.58,129.95,129.85,129.22,129.10,128.42,127.75,126.54,126.50,122.89,121.87,110.40,110.13,45.98,26.74,23.15,21.48,10.89.红外光谱IR(KBr)νmax 3060,2957,2923,2856,2747,1511,1493,1458,1416,1340,1311,1233,1159,1137,1088,1071,1011,968,916,862,833,812,736,701,668,616,574cm-1。高分辨率质谱(DART)([M+H]+)计算值为C21H21O2NBrS:430.4071,实际测量值为430.4071。
实施例7
5-(4-氟苯基)-7-甲基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以2-{[(4-氟苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,所用催化剂为5%IPrAuCl/AgOTf,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为70%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.52(d,J=8.3Hz,2H),7.37–7.32(m,2H),7.16(d,J=8.1Hz,2H),7.14–7.07(m,2H),3.70(t,J=7.1Hz,2H),2.80(t,J=7.3Hz,2H),2.43(q,J=7.3Hz,2H),2.37(s,3H),2.23(s,3H).13C NMR(101MHz,CDCl3)δ162.82(d,JC-F=248.1Hz),142.53,141.69,132.42(d,JC-F=8.3Hz),132.38,130.21,129.17,126.89,126.48,121.73,114.87(d,JC-F=21.6Hz),110.21,45.89,26.74,23.14,21.47,10.91.19F NMR(376MHz,CDCl3)δ-112.94.红外光谱IR(KBr)νmax 3063,2956,2923,2861,1912,1735,1650,1598,1527,1462,1421,1393,1338,1300,1225,1158,1136,1088,1057,1016,966,914,862,841,812,725,704,666,619,573cm-1。高分辨率质谱(DART)([M+H]+)计算值为C21H21O2NFS:370.1272,实际测量值为370.1272。
实施例8
5-(4-三氟甲基苯基)-7-甲基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以2-{[(4-三氟甲基苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,所用催化剂为10%IPrAuCl/AgNTf2,溶剂为二氯甲烷,反应温度为40℃,产品产率为50%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.64(d,J=8.1Hz,2H),7.50(m,4H),7.15(d,J=8.1Hz,2H),3.71(t,J=7.1Hz,2H),2.79(t,J=7.2Hz,2H),2.47–2.38(m,2H),2.35(s,3H),2.20(s,3H).13C NMR(101MHz,CDCl3)δ142.72,141.44,135.52,134.65,130.98,129.51,129.21,126.52,124.70(q,JC-F=3.7Hz),122.39,110.67,46.10,26.74,23.14,21.42,10.81.19F NMR(376MHz,CDCl3)δ-62.62.红外光谱IR(KBr)νmax2958,2924,2854,1920,1701,1617,1597,1540,1491,1421,1394,1324,1236,1214,1162,1135,1089,1069,1016,1135,1089,1069,1016,916,864,846,812,741,705,691,662cm-1。高分辨率质谱(DART)([M+H]+)计算值为C22H21O2NF3S:420.1240,实际测量值为420.1239。
实施例9
5-(4-叔丁基苯基)-7-甲基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以2-{[(4-叔丁基苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,所用催化剂为5%IPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为60℃,产品产率为69%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.49(d,J=8.1Hz,2H),7.37(d,J=8.3Hz,2H),7.25(d,J=8.2Hz,2H),7.09(d,J=8.1Hz,2H),3.70(t,J=7.1Hz,2H),2.77(t,J=7.2Hz,2H),2.39(q,J=7.2Hz,2H),2.33(s,3H),2.21(s,3H),1.35(s,9H).13C NMR(101MHz,CDCl3)δ151.25,142.21,141.78,134.34,131.59,130.16,128.98,127.85,126.61,124.64,121.31,110.15,45.97,34.68,31.35,26.75,23.13,21.42,10.98.红外光谱IR(KBr)νmax3060,2957,2923,2856,2747,1511,1493,1458,1416,1340,1311,1233,1159,1137,1088,1071,1011,968,916,862,833,812,736,701,668,616,574cm-1。高分辨率质谱(DART)([M+H]+)计算值为C25H30O2NS:408.1991,实际测量值为408.1992。
实施例10
7-甲基-5-(3-噻吩基)-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以2-{[(3-噻吩基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,所用催化剂为5%IPrAuCl/AgNTf2,溶剂为四氢呋喃,反应温度为60℃,产品产率为75%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.49(d,J=8.1Hz,2H),7.36(d,J=2.6Hz,1H),7.33–7.30(m,1H),7.16–7.07(m,3H),3.75(t,J=7.1Hz,2H),2.77(d,J=7.2Hz,2H),2.40(p,J=7.0Hz,2H),2.33(s,3H),2.23(s,3H).13C NMR(101MHz,CDCl3)δ142.42,141.72,134.68,130.43,129.48,129.11,126.40,126.30,126.14,124.50,121.84,110.55,46.23,26.73,23.14,21.45,11.06.红外光谱IR(KBr)νmax 3104,2955,2923,1719,1595,1555,1492,1416,1335,1300,1232,1181,1156,1136,1087,1061,1019,922,870,837,809,735,698,622,622,575cm-1。高分辨率质谱(DART)([M+H]+)计算值为C19H20O2NS2:358.0930,实际测量值为358.0930。
实施例11
7-甲基-5-(3-甲基苯基)-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以2-{[(3-甲基苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,所用催化剂为5%IPrAuCl/AgBF4,溶剂为甲苯,反应温度为80℃,产品产率为60%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.52(d,J=8.2Hz,2H),7.30–7.23(m,1H),7.19(m,1H),7.16–7.09(m,4H),3.69(t,J=7.1Hz,2H),2.77(t,J=7.3Hz,2H),2.37(dd,J=15.7,7.1Hz,8H),2.22(s,3H).13C NMR(101MHz,CDCl3)δ142.31,141.88,137.24,134.35,131.60,131.25,130.85,129.19,129.04,127.63,127.51,126.63,121.41,110.08,45.89,26.75,23.14,21.45,10.98.红外光谱IR(KBr)νmax 3062,2960,2925,2865,1734,1597,1529,1460,1417,1363,1338,1311,1234,1160,1137,1087,1058,1017,915,863,840,813,735,703,663,617,573cm-1。高分辨率质谱(DART)([M+H]+)计算值为C12H24O2NS:366.1522,实际测量值为366.1522。
实施例12
7-甲基-5-(2-萘基)-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以2-{[(2-萘基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,反所用催化剂为1%IPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为72%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.84(m,3H),7.78(s,1H),7.49(m,,5H),7.08(d,J=8.1Hz,2H),3.72(t,J=7.1Hz,2H),2.80(t,J=7.3Hz,2H),2.40(p,J=7.2Hz,2H),2.31(s,3H),2.25(s,3H).13C NMR(101MHz,CDCl3)δ142.40,141.83,134.78,133.05,132.71,131.28,129.84,129.07,128.47,128.25,128.22,127.73,127.25,126.61,126.52,126.22,121.91,110.32,46.03,26.79,23.18,21.41,10.97.红外光谱IR(KBr)νmax 3054,2956,2923,2858,2746,1917,1729,1630,1494,1442,1407,1334,1309,1214,1188,1159,1136,1086,1057,1018,950,899,865,816,747,701,664,614,573cm-1。高分辨率质谱(DART)([M+H]+)计算值为C25H24O2NS:402.1522,实际测量值为402.1523。
实施例13
7-甲基-5-环己基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以2-[(4-环己基)-1-烯-3-炔-2-丁基]-1-对甲苯磺酰基吡咯为原料,所用催化剂为5%IPrAuCl/AgNTf2,溶剂为氯仿,反应温度为60℃,产品产率为41%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.75(d,J=8.1Hz,2H),7.24(d,J=8.1Hz,2H),3.97(t,J=7.0Hz,2H),3.70(td,J=10.4,8.9,3.1Hz,1H),2.64(d,J=7.2Hz,2H),2.38(q,J=6.9Hz,5H),2.10(s,3H),1.84–1.64(m,5H),1.45(m,5H).13C NMR(101MHz,CDCl3)δ142.48,142.32,137.02,134.21,129.33,126.26,118.91,108.95,47.84,35.32,31.28,27.36,26.71,26.10,22.04,21.45,11.00.红外光谱IR(KBr)νmax 2923,2856,1428,1363,1334,1308,1286,1263,1234,1182,1158,1130,1083,1016,999,922,889,841,814,738,701,668,629,575cm-1。高分辨率质谱(DART)([M+H]+)计算值为C21H28O2NS:358.1835,实际测量值为358.1835。
实施例14
7-甲基-5-环丙基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以2-[(4-环丙基)-1-烯-3-炔-2-丁基]-1-对甲苯磺酰基吡咯为原料,所用催化剂为5%IPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为66%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.80(d,J=8.0Hz,2H),7.24(d,J=8.0Hz,2H),3.86(t,J=7.0Hz,2H),2.64(t,J=7.3Hz,2H),2.39(d,J=6.6Hz,5H),2.12(d,J=5.0Hz,2H),0.94(q,J=5.5,4.9Hz,2H),0.70(q,J=5.5Hz,2H).13CNMR(101MHz,CDCl3)δ142.40,142.18,133.28,132.22,129.24,126.44,121.36,109.62,46.32,27.16,22.46,10.82,7.23,6.60.红外光谱IR(KBr)νmax 3084,2959,2923,2861,1920,1736,1597,1594,1423,1354,1297,1211,1175,1133,1086,1019,971,922,837,813,774,739,693,660,575,540cm-1。高分辨率质谱(DART)([M+H]+)计算值为C18H22O2NS:316.1366,实际测量值为316.1364。
实施例15
5-己基-7-甲基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤(I-13)的制备
制备方法与实施例3相同,以2-[(1-烯-2-炔)-2-癸基]-1-对甲苯磺酰基吡咯为原料,所用催化剂为5%IMesAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为48%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.78(d,J=8.0Hz,2H),7.26(d,J=7.9Hz,2H),3.83(t,J=7.0Hz,2H),2.93–2.85(m,2H),2.70(t,J=7.2Hz,2H),2.42(d,J=15.2Hz,5H),2.08(s,3H),1.55(q,J=7.7Hz,2H),1.41–1.21(m,6H),0.90(t,J=5.9Hz,3H).13C NMR(101MHz,CDCl3)δ142.38,142.22,133.34,133.25,129.32,126.37,118.85,108.96,44.96,31.62,30.22,29.35,26.89,26.02,22.79,22.62,21.47,14.11,10.66.红外光谱IR(KBr)νmax 2955,2927,2853,2216,1915,1705,1598,1493,1439,1381,1345,1299,1184,1159,1133,1084,1015,916,813,767,670,576cm-1。高分辨率质谱(DART)([M+H]+)计算值为C21H30O2NS:360.1992,实际测量值为360.1992。
实施例16
6-(4-甲氧基苯磺酰基)-7-甲基-5-苯基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以1-(4-甲氧基苯磺酰基)-2-[(4-苯基-1-烯-3-炔)-2-丁基]吡咯为原料,所用催化剂为5%SIPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为50%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.47(d,J=8.8Hz,2H),7.34–7.24(m,5H),3.72(s,3H),3.62(t,J=7.1Hz,2H),2.71(t,J=7.3Hz,2H),2.32(p,J=7.2Hz,2H),2.15(s,3H).13C NMR(101MHz,CDCl3)δ162.22,136.62,134.48,130.99,130.59,128.62,128.40,127.75,121.94,113.61,110.02,55.49,45.89,26.74,23.14,10.96.红外光谱IR(KBr)νmax 3065,2923,2853,1753,1594,1495,1459,1445,1404,1339,1311,1295,1257,1135,1110,1089,1060,1023,919,833,805,760,699,669,615,576cm-1。高分辨率质谱(DART)([M+H]+)计算值为C21H22O3NS:368.1315,实际测量值为369.1314。
实施例17
6-(4-氟苯磺酰基)-7-甲基-5-苯基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以1-(4-氟苯磺酰基)-2-[(4-苯基-1-烯-3-炔)-2-丁基]吡咯为原料,反所用催化剂为5%IPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为34%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.58(dd,J=8.7,5.2Hz,2H),7.42–7.36(m,3H),7.31(dd,J=6.5,3.0Hz,2H),6.97(t,J=8.6Hz,2H),3.70(t,J=7.1Hz,2H),2.79(t,J=7.3Hz,2H),2.41(p,J=7.2Hz,2H),2.23(s,3H).13C NMR(101MHz,CDCl3)δ164.56(d,J C-F=253.2Hz),163.30,140.73,134.66,131.57,130.70,130.54,129.17(d,JC-F=9.2Hz),,128.58,127.84,121.16,115.51(d,JC-F=22.4Hz),110.28,45.95,26.74,23.13,10.96.19F NMR(376MHz,CDCl3)δ-107.13.红外光谱IR(KBr)νmax 3068,2958,2923,2854,1905,1649,1590,1519,1492,1458,1446,1405,1338,1311,1287,1232,1161,1136,1088,1060,1016,969,921,838,818,800,736,700,615,573cm-1。高分辨率质谱(DART)([M+H]+)计算值为C20H19O2NFS:356.1115,实际测量值为356.1115。
实施例18
1-甲基-3-苯基-2-对甲苯磺酰基-5,6,7,8-四氢吲哚嗪的制备
制备方法与实施例3相同,以2-[(4-苯基-1-烯-3-炔)]-2-丁基-1-对甲苯磺酰基哌啶为原料,所用催化剂为5%SIPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为42%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.51(d,J=8.2Hz,2H),7.41(d,J=6.6Hz,3H),7.27–7.23(m,2H),7.15(d,J=8.1Hz,2H),3.48(s,2H),2.67(s,2H),2.37(s,3H),2.22(s,3H),1.85–1.76(m,4H).13C NMR(101MHz,CDCl3)δ142.35,141.76,134.57,131.25,130.72,129.06,128.58,127.79,126.68,126.42,119.40,113.35,44.43,23.40,21.65,21.44,20.57,9.55.红外光谱IR(KBr)νmax 3060,2926,2861,1732,1716,1699,1649,1572,1539,1492,1460,1445,1388,1365,1310,1299,1269,1216,1186,1151,1095,1071,1032,969,919,876,814,778,735,701,670,641,594,571cm-1。高分辨率质谱(DART)([M+H]+)计算值为C22H24O2NS:366.1522,实际测量值为366.1521。
实施例19
7-乙基-5-苯基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤的制备
制备方法与实施例3相同,以2-[(4-苯基-1-烯-3-炔)]-2-丁基-1-对甲苯磺酰基哌啶为原料,所用催化剂为5%Cy3PAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为45%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.47(d,J=8.2Hz,2H),7.39–7.30(m,5H),7.10(d,J=8.1Hz,2H),3.67(t,J=7.1Hz,2H),2.84(t,J=7.3Hz,2H),2.75(q,J=7.5Hz,2H),2.39(p,J=7.1Hz,2H),2.33(s,3H),1.18(t,J=7.5Hz,2H).13C NMR(101MHz,CDCl3)δ142.24,141.96,133.90,131.26,131.07,130.67,129.01,128.38,127.70,126.56,121.05,116.86,45.61,26.80,23.94,21.42,18.80,15.08.红外光谱IR(KBr)νmax 3061,2963,2926,2870,2071,1913,1674,1597,1515,1492,1448,1404,1351,1300,1259,1230,1160,1138,1091,1023,967,920,863,811,759,736,707,665,615,575cm-1。高分辨率质谱(DART)([M+H]+)计算值为C22H24O2NS:366.1522,实际测量值为366.1522。
实施例20
2-苄基-1,3-二甲基-5-苯基-4-对甲苯磺酰基-1H-吡咯的制备
Figure BDA0001579223940000161
在氮气保护下,向干净的圆底烧瓶中加入磁力搅拌子,加入1mL 1,2-二氯乙烷,依次往其中加入IPrAuCl(0.005mmol,3.1mg),AgNTf2(0.005mmol,1.9mg),搅拌10min,然后加入N,4-甲基-N-[(3-亚甲基-1,5-二苯基-4-炔)-2-戊基]苯磺酰胺(0.1mmol,41.5mg),在40℃条件下反应8h。反应结束后,反应液经过短硅胶过滤,将滤液浓缩,使用柱层析分离可得目标产物。展开剂比例为石油醚:乙酸乙酯=6:1,最终得到产品为白色固体,产率53%。
本实施例所制得的产品其物理常数为:1H NMR(400MHz,CDCl3)δ7.48(d,J=8.2Hz,2H),7.38(q,J=6.7,6.2Hz,3H),7.31–7.24(m,2H),7.23–7.17(m,3H),7.14(d,J=8.1Hz,2H),7.06(d,J=7.4Hz,2H),3.95(s,2H),3.03(s,3H),2.35(d,J=3.9Hz,6H).13C NMR(101MHz,CDCl3)δ142.45,141.72,138.32,136.70,131.29,130.72,129.11,128.79,128.74,128.60,127.86,127.84,126.62,126.48,119.22,116.39,31.84,30.16,21.47,10.47.红外光谱IR(KBr)νmax 3060,3028,2925,1915,1805,1736,1653,1599,1520,1493,1461,1386,1311,1233,1181,1144,1096,1074,1018,970,923,838,813,762,733,703,661,614,589,563cm-1。高分辨率质谱(DART)([M+H]+)计算值为C26H26O2NS:416.1679,实际测量值为416.1679。
实施例21
1,2-二苄基-3-甲基-5-苯基-4-对甲苯磺酰基-1H-吡咯的制备
制备方法与实施例20相同,以N-苄基-4-甲基-N-[(3-亚甲基-1,5-二苯基-4-炔)-2-戊基]苯磺酰胺为原料,所用催化剂为5%IPrAuCl/NaBArF4,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为49%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.52(d,J=8.2Hz,2H),7.33(t,J=7.4Hz,1H),7.28–7.10(m,12H),6.96(d,J=7.2Hz,2H),6.71–6.66(m,2H),4.60(s,2H),3.74(s,2H),2.38(s,3H),2.36(s,3H).13C NMR(101MHz,CDCl3)δ142.52,141.64,138.48,137.35,137.26,131.30,130.31,129.14,128.85,128.68,127.79,127.68,127.31,126.71,126.46,125.52,119.90,117.20,47.90,30.04,21.50,10.57.红外光谱IR(KBr)νmax 3061,3028,2926,1953,1807,1736,1600,1521,1494,1454,1396,1356,1312,1181,1157,1135,1090,1060,1028,973,919,849,812,763,735,699,667,606,588,566,540cm-1。高分辨率质谱(DART)([M+H]+)计算值为C32H30O2NS:492.1992,实际测量值为492.1990。
实施例22
1-烯丙基-2-苄基-3-甲基-5-苯基-4-对甲苯磺酰基-1H-吡咯的制备
制备方法与实施例20相同,以N-烯丙基-4-甲基-N-[(3-亚甲基-1,5-二苯基-4-炔)-2-戊基]苯磺酰胺为原料,所用催化剂为20%IMesAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为36%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.52(d,J=8.2Hz,2H),7.42(t,J=7.3Hz,1H),7.36(t,J=7.4Hz,2H),7.31(d,J=7.2Hz,2H),7.25–7.20(m,3H),7.18(d,J=8.1Hz,2H),7.06(d,J=7.3Hz,2H),5.69–5.38(m,1H),5.04(d,J=10.4Hz,1H),4.66(d,J=17.1Hz,2H),4.03–3.98(m,2H),3.94(s,2H),2.39(s,3H),2.36(s,3H).13C NMR(101MHz,CDCl3)δ142.46,141.68,138.60,136.81,133.58,131.31,130.48,129.11,128.89,128.71,128.34,127.80,127.62,126.68,126.47,119.64,116.79,116.41,46.74,29.87,21.46,10.46.红外光谱:IR(KBr)νmax 3061,3027,2925,2854,1719,1642,1598,1520,1493,1453,1394,1312,1141,1089,1024,923,813,762,734,701,664,589cm-1。高分辨率质谱(ESI)([M+H]+)计算值为C28H28O2NS:442.1835,实际测量值为442.1844。
实施例23
1,3-二甲基-2,5-二苯基-对甲苯磺酰基-1H-吡咯的制备
制备方法与实施例20相同,以N,4二-甲基-N-[(2-亚甲基-1,4-二苯基-3炔)-1-丁基]苯磺酰胺为原料,所用催化剂为5%IPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为59%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.53(s,2H),7.47–7.37(m,5H),7.34–7.27(m,4H),7.15(d,J=8.1Hz,2H),3.10(s,3H),2.36(s,3H),2.22(s,3H).13C NMR(101MHz,CDCl3)δ142.54,141.55,136.87,132.26,131.27,131.21,130.90,130.85,129.11,128.87,128.47,128.07,127.92,126.81,119.98,116.69,33.09,21.47,10.92.红外光谱IR(KBr)νmax 3056,2955,2925,2855,1912,1682,1599,1522,1491,1462,1382,1312,1265,1181,1147,1100,1078,1014,920,854,813,758,737,702,669,655,591cm-1。高分辨率质谱(DART)([M+H]+)计算值为C25H24O2NS:402.1522,实际测量值为402.1521。
实施例24
2-(4-甲基苯基)-1,4-二甲基-5-苯基-3-对甲苯磺酰基-1H-吡咯的制备
制备方法与实施例20相同,以N-[4-(4-甲基苯基)-2-亚甲基-1苯基-3-炔]-1-丁基-N,4-二甲基苯磺酰胺为原料,所用催化剂为5%IPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为73%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.54(d,J=8.2Hz,2H),7.47–7.34(m,3H),7.32–7.19(m,6H),7.16(d,J=8.1Hz,2H),3.10(s,3H),2.43(s,3H),2.37(s,3H),2.20(s,3H).13C NMR(101MHz,CDCl3)δ142.49,141.66,138.76,137.09,132.18,131.29,131.07,130.89,129.10,128.68,128.44,128.01,127.83,126.81,119.80,116.60,33.06,21.47,10.92.红外光谱IR(KBr)νmax 3028,2954,2924,2857,1910,1735,1700,1652,1599,1558,1538,1492,1461,1379,1312,1211,1182,1147,1100,1079,1014,969,919,860,816,767,731,705,664,620,590cm-1。高分辨率质谱(DART)([M+H]+)计算值为C26H26O2NS:416.1679,实际测量值为416.1680。
实施例25
2-(4-甲氧基苯基)-1,4-二甲基-5-苯基-3-对甲苯磺酰基-1H-吡咯的制备
制备方法与实施例20相同,以N-[4-(4-甲氧基苯基)-2-亚甲基-1苯基-3-炔]-1-丁基-N,4-二甲基苯磺酰胺为原料,所用催化剂为5%IPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为48%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.45(d,J=8.1Hz,2H),7.36(t,J=7.2Hz,2H),7.31(d,J=7.1Hz,1H),7.24–7.13(m,4H),7.09(d,J=8.0Hz,2H),6.89(d,J=8.6Hz,2H),3.80(s,3H),3.03(s,3H),2.29(s,3H),2.14(s,3H).13C NMR(101MHz,CDCl3)δ160.02,142.49,141.66,136.82,132.51,132.10,131.31,130.88,129.10,128.44,128.01,126.78,122.82,119.86,116.62,113.41,55.28,33.04,21.47,10.95.红外光谱IR(KBr)νmax 3059,2956,2924,2851,2042,1892,1732,1649,1612,1574,1533,1492,1464,1379,1290,1249,1177,1147,1101,1079,1066,1030,968,921,861,831,768,729,704,664,622,586cm-1。高分辨率质谱(DART)([M+H]+)计算值为C26H26O3NS:432.1628,实际测量值为432.1628。
实施例26
2-(4-氟苯基)-1,4-二甲基-5-苯基-3-对甲苯磺酰基-1H-吡咯的制备
制备方法与实施例20相同,以N-[4-(4-氟苯基)-2-亚甲基-1苯基-3-炔]-1-丁基-N,4-二甲基苯磺酰胺为原料,所用催化剂为5%IPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为64%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.52(d,J=8.1Hz,2H),7.42(dt,J=15.1,6.9Hz,3H),7.29(td,J=7.9,6.8,4.9Hz,4H),7.17(d,J=8.1Hz,2H),7.12(t,J=8.6Hz,2H),3.10(s,3H),2.37(s,3H),2.21(s,3H).13C NMR(101MHz,CDCl3)δ163.13(d,J C-F=249.0Hz),142.72,141.45,135.62,133.15(d,JC-F=8.3Hz),132.46,131.06,130.86,129.18,128.51,128.17,126.75,120.29,116.78,115.09(d,JC-F=21.7Hz),33.05,21.47,10.88.19F NMR(376MHz,CDCl3)δ-112.15.红外光谱:IR(KBr)νmax 3060,2955,2925,2855,1895,1733,1653,1599,1530,1493,1464,1381,1312,1228,1181,1147,1099,1079,1015,968,921,864,838,812,768,732,705,664,641,622,590,574cm-1。高分辨率质谱(DART)([M+H]+)计算值为C25H23O2NFS:420.1428,实际测量值为420.1426。
实施例27
3-(4-甲氧基苯磺酰基)-1,4-二甲基-2,5-二苯基-1H-吡咯的制备
制备方法与实施例20相同,以4-甲氧基-N-[2-亚甲基-1,4-二苯基-3-炔]-1-丁基苯磺酰胺为原料,所用催化剂为5%IPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为60%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.58(d,J=8.7Hz,2H),7.49–7.37(m,6H),7.33(m,4H),6.84(d,J=8.7Hz,2H),3.84(s,3H),3.12(s,3H),2.25(s,3H).13C NMR(101MHz,CDCl3)δ162.39,136.62,136.35,132.20,131.30,131.25,130.91,128.90,128.48,128.07,127.95,120.40,116.58,113.66,55.50,33.07,10.92.红外光谱:IR(KBr)νmax3060,2957,2926,2844,1899,1729,1695,1595,1495,1463,1411,1381,1311,1297,1258,1179,1144,1102,1074,1022,922,853,833,802,759,736,702,671,593,562cm-1。高分辨率质谱(ESI)([M+H]+)计算值为C25H24O3NS:418.1471,实际测量值为418.1482。
实施例28
3-(4-氟苯磺酰基)-1,4-二甲基-2,5-二苯基-1H-吡咯的制备
制备方法与实施例20相同,以4-氟-N-[2-亚甲基-1,4-二苯基-3-炔]-1-丁基苯磺酰胺为原料,所用催化剂为5%IPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为66%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.59(dd,J=8.7,5.2Hz,2H),7.49–7.36(m,6H),7.33–7.27(m,4H),7.01(t,J=8.6Hz,2H),3.11(s,3H),2.23(s,3H).13C NMR(101MHz,CDCl3)δ164.68(d,JC-F=253.4Hz),140.40,136.95,132.38,131.23,131.03,130.89,130.58,129.46(d,JC-F=9.3Hz),129.03,128.52,128.20,128.03,119.58,116.75,115.57(d,JC-F=22.4Hz),33.13,10.94.19F NMR(376MHz,CDCl3)δ-106.78.红外光谱:IR(KBr)νmax3061,2956,2925,2854,1895,1734,1703,1652,1590,1560,1544,1523,1492,1462,1383,1314,1288,1265,1232,1146,1098,1071,1013,969,920,837,817,759,737,702,671,657,589,543cm-1。高分辨率质谱(ESI)([M+H]+)计算值为C24H21O2NFS:406.1272,实际测量值为402.1270。
实施例29
(R)-2-仲丁基-1,3-二甲基-5-苯基-对甲苯磺酰基-1H-吡咯的制备
制备方法与实施例20相同,以N,4-二甲基-N-[(5R)-5-甲基-3-亚甲基-1-苯基-1-炔]-4-庚基苯磺酰胺为原料,所用催化剂为5%IPrAuCl/AgNTf2,溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为51%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.46(d,J=8.2Hz,2H),7.39(q,J=5.8Hz,3H),7.21(d,J=6.1Hz,2H),7.13(d,J=8.0Hz,2H),3.19(s,3H),2.85(d,J=7.5Hz,1H),2.35(s,3H),2.28(s,3H),1.75–1.60(m,3H),1.29(d,J=7.2Hz,3H),0.85(t,J=7.4Hz,3H).13C NMR(101MHz,CDCl3)δ142.25,141.87,136.15,134.07,131.38,129.03,128.62,127.78,126.58,119.08,114.56,28.71,21.44,19.26,12.77,10.57.红外光谱:IR(KBr)νmax 3056,2965,2929,2874,2738,1725,1658,1599,1528,1486,1456,1390,1354,1313,1265,1212,11177,1148,1133,1086,1023,965,931,896,852,813,738,794,667,556cm-1。高分辨率质谱(DART)([M+H]+)计算值为C23H28O2NS:382.1835,实际测量值为382.1835。
实施例30
5-苯基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤-7-甲醛的制备
Figure BDA0001579223940000211
在氮气保护下,向干净的圆底烧瓶中加入磁力搅拌子,加入1mL 1,2-二氯乙烷,40μL乙酸,40μL甲醇,依次往其中加入IPrAuCl(0.005mmol,3.1mg),AgNTf2(0.005mmol,1.9mg)搅拌10min,然后加入2,3-二氯-5,6-二氰对苯醌(0.25mmol,57mg),2-[(4-苯基-1-烯-3-炔-2-丁基)]-1-对甲苯磺酰基吡咯(0.1mmol,35.1mg),在40℃条件下反应8h。反应结束后,反应液经过短硅胶过滤,将滤液浓缩,使用柱层析分离可得目标产物。展开剂比例为石油醚:乙酸乙酯=3:1,最终得到产品为白色固体,产率66%。
本实施例所制得的产品其物理常数为:1H NMR(400MHz,CDCl3)δ10.46(s,1H),7.43(m,5H),7.31(d,J=7.6Hz,2H),7.12(d,J=7.9Hz,2H),3.73(t,J=7.3Hz,2H),3.17(t,J=7.4Hz,2H),2.54–2.44(m,1H),2.34(s,3H).13C NMR(101MHz,CDCl3)δ187.47,144.61,143.33,140.66,132.89,130.52,129.44,129.39,128.88,128.12,126.84,124.21,115.48,46.27,26.27,26.14,21.46.红外光谱:IR(KBr)νmax 3061,2922,2852,1893,1719,1657,1599,1543,1491,1465,1428,1398,1363,1302,1181,1141,1085,1057,1024,968,923,887,848,812,783,763,735,700,666,575cm-1。高分辨率质谱(DART)([M+H]+)计算值为C21H20O3NS:366.1158,实际测量值为366.1157。
实施例31
5-(4-甲基苯基)-6-对甲苯磺酰基-2,3-二氢-1H-吡呤-7-甲醛的制备
制备方法与实施例30相同,以2-{[(4-甲基苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,所用催化剂为5%IPrAuCl/AgNTf2,氧化剂为DDQ(220mol%),溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为73%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ10.45(s,1H),7.45(d,J=8.0Hz,2H),7.24(d,J=8.3Hz,2H),7.13(d,J=8.0Hz,2H),6.95(d,J=8.3Hz,2H),3.87(s,3H),3.72(t,J=7.3Hz,2H),3.16(t,J=7.5Hz,2H),2.55–2.36(m,2H),2.34(s,3H).13C NMR(101MHz,CDCl3)δ187.51,160.46,144.47,143.26,140.80,132.96,131.86,129.38,126.79,123.89,120.89,115.43,113.61,55.34,46.20,26.28,26.13,21.45.红外光谱:IR(KBr)νmax 3028,2957,2923,1918,1662,1597,1490,1429,1404,1363,1307,1235,1210,1182,1142,1085,1052,1018,968,922,887,817,737,703,666,604,577,541.cm-1。高分辨率质谱(DART)([M+H]+)计算值为C22H22O3NS:380.1315,实际测量值为380.1313。
实施例32
5-(4-甲氧基苯基)-6-对甲苯磺酰基-2,3-二氢-1H-吡呤-7-甲醛的制备
制备方法与实施例30相同,以2-{[(4-甲氧基苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,所用催化剂为10%IPrAuCl/AgNTf2,氧化剂为DDQ(220mol%),溶剂为1,2-二氯乙烷,反应温度为100℃,产品产率为44%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ10.45(s,1H),7.45(d,J=8.0Hz,2H),7.24(d,J=8.3Hz,2H),7.13(d,J=8.0Hz,2H),6.95(d,J=8.3Hz,2H),3.87(s,3H),3.72(t,J=7.3Hz,2H),3.16(t,J=7.5Hz,2H),2.55–2.36(m,2H),2.34(s,3H).13C NMR(101MHz,CDCl3)δ187.51,160.46,144.47,143.26,140.80,132.96,131.86,129.38,126.79,123.89,120.89,115.43,113.61,55.34,46.20,26.28,26.13,21.45.红外光谱:IR(KBr)νmax 3033,2960,2931,1900,1667,1596,1493,1422,1400 1361,1307,1232,1211,1180,1142,1085,1042,1010,968,922,888,813,737,700,666,604,577,541.cm-1。高分辨率质谱(ESI)([M+H]+)计算值为C22H22O4NS:396.1264,实际测量值为396.1277。
实施例33
5-(4-溴苯基)-6-对甲苯磺酰基-2,3-二氢-1H-吡呤-7-甲醛的制备
制备方法与实施例30相同,以2-{[(4-溴苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,所用催化剂为10%IPrAuCl/AgNTf2,氧化剂为DDQ(200mol%),溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为61%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ10.43(s,1H),7.57(d,J=8.3Hz,2H),7.46(d,J=8.2Hz,2H),7.19(m,4H),3.74(t,J=7.3Hz,2H),3.16(t,J=7.5Hz,2H),2.57–2.43(m,2H),2.36(s,3H).13C NMR(101MHz,CDCl3)δ187.13,145.06,143.64,140.47,132.13,131.49,131.43,129.55,127.77,126.75,124.46,124.06,115.48,46.35,26.23,26.13,21.50.红外光谱:IR(KBr)νmax 3060,2958,2923,1913,1662,1596,1543,1485,1465,1429,1395,1365,1307,1232,1181,1142,1083,1048,1010,967,922,886,834,813,735,703,666,574,540cm-1。高分辨率质谱(ESI)([M+H]+)计算值为C21H19O3BrNS:444.0264,实际测量值为444.0275。
实施例34
5-(4-叔丁基苯基)-6-对甲苯磺酰基-2,3-二氢-1H-吡呤-7-甲醛的制备
制备方法与实施例30相同,以2-{[(4-叔丁基苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,10%IPrAuCl/AgNTf2,氧化剂为DDQ(250mol%),溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为57%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ10.48(s,1H),7.43(dd,J=8.0,5.2Hz,4H),7.23(d,J=8.2Hz,2H),7.11(d,J=8.1Hz,2H),3.76(t,J=7.3Hz,2H),3.18(t,J=7.5Hz,2H),2.58–2.42(m,2H),2.35(s,4H),1.39(s,9H).13C NMR(101MHz,CDCl3)δ187.57,152.55,144.49,143.20,140.53,133.08,130.15,129.26,126.90,125.75,125.03,124.00,115.54,46.33,34.82,31.31,26.29,26.15,21.47.红外光谱:IR(KBr)νmax 3061,2961,2871,1662,1597,1543,1488,1429,1399,1364,1305,1236,1204,1180,1143,1115,1084,1053,1017,922,887,841,812,735,702,666,601,577cm-1。高分辨率质谱(ESI)([M+H]+)计算值为C25H28O3NS:422.1784,实际测量值为422.1796。
实施例35
5-(3-噻吩基)-6-对甲苯磺酰基-2,3-二氢-1H-吡呤-7-甲醛的制备
制备方法与实施例30相同,以2-{[(3-噻吩基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,10%IPrAuCl/AgNTf2,氧化剂为DDQ(1000mol%),溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为61%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ10.48(s,1H),7.44(m,3H),7.38(dd,J=4.8,3.0Hz,1H),7.13(d,J=8.1Hz,2H),7.08(d,J=4.9Hz,1H),3.80(t,J=7.3Hz,2H),3.16(t,J=7.5Hz,2H),2.59–2.42(m,2H),2.34(s,3H).13C NMR(101MHz,CDCl3)δ10.46,7.50,7.48,7.27,7.25,7.23,7.21,7.17,7.15,3.76,3.74,3.72,3.20,3.18,3.16,2.53,2.51,2.49,2.47,2.45,2.43,2.41,2.37.红外光谱:IR(KBr)νmax 3105,2958,2923,1661,1596,1540,1492,1431,1381,1350,1304,1232,1193,1142,1084,1059,1017,930,878,808,734,702,661,606,573cm-1。高分辨率质谱(ESI)([M+H]+)计算值为C19H18O3NS2:372.0723,实际测量值为372.0723。
实施例36
5-(3-甲基苯基)-6-对甲苯磺酰基-2,3-二氢-1H-吡呤-7-甲醛的制备
制备方法与实施例30相同,以2-{[(3-甲基苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,10%IPrAuCl/AgNTf2,氧化剂为DDQ(600mol%),溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为34%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ10.46(s,1H),7.46(d,J=8.2Hz,2H),7.30(m,2H),7.13(d,J=8.1Hz,2H),7.08(d,J=9.1Hz,2H),3.72(t,J=7.3Hz,2H),3.17(t,J=7.5Hz,2H),2.54–2.42(m,2H),2.37(s,3H),2.35(s,3H).13C NMR(101MHz,CDCl3)δ187.50,144.45,143.28,140.70,137.79,133.10,131.12,130.18,129.32,128.78,128.02,127.43,126.94,124.11,115.47,46.23,29.70,26.27,26.14,21.47,21.35.红外光谱:IR(KBr)νmax 2956,2922,2854,1662,1596,1542,1487,1430,1401,1363,1304,1189,1141,1084,1063,1018,925,907,867,803,735,705,663,599,575.cm-1。高分辨率质谱(ESI)([M+H]+)计算值为C22H22O3NS:380.1315,实际测量值为380.1325。
实施例37
5-(2-萘基)-6-对甲苯磺酰基-2,3-二氢-1H-吡呤-7-甲醛的制备
制备方法与实施例30相同,以2-{[(2-萘基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,10%IPrAuCl/AgNTf2,氧化剂为DCQ(250mol%),溶剂为1,2-二氯乙烷,反应温度为100℃,产品产率为64%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ10.50(s,1H),7.89(t,J=8.4Hz,2H),7.84(d,J=7.1Hz,1H),7.62–7.52(m,2H),7.44(d,J=8.2Hz,2H),7.40–7.35(m,1H),7.06(d,J=8.1Hz,2H),3.75(t,J=7.3Hz,2H),3.19(t,J=7.5Hz,2H),2.55–2.41(m,2H),2.30(s,3H).13C NMR(101MHz,CDCl3)δ187.43,144.76,143.39,140.63,133.41,132.80,132.61,130.40,129.36,128.30,127.83,127.41,127.18,126.92,126.69,126.26,124.54,115.58,46.37,26.30,26.19,21.43.红外光谱:IR(KBr)νmax 3055,2959,2924,1926,1661,1698,1543,1497,1454,1428,1402,1369,1305,1222,1142,1084,1053,1017,951,922,899,867,817,754,734,663,603,574cm-1。高分辨率质谱(ESI)([M+H]+)计算值为C25H22O3NS:416.1315,实际测量值为416.1326。
实施例38
5-(4-氟苯基)-6-对甲苯磺酰基-2,3-二氢-1H-吡呤-7-甲醛的制备
制备方法与实施例30相同,以2-{[(4-甲氧基苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,10%IPrAuCl/AgNTf2,氧化剂为DCQ(220mol%),溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为70%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ10.47(s,1H),7.46(d,J=8.1Hz,2H),7.32(m,2H),7.15(m,4H),3.74(t,J=7.3Hz,2H),3.19(t,J=7.5Hz,2H),2.56–2.46(m,2H),2.37(s,3H).13C NMR(101MHz,CDCl3)δ187.30,163.39(d,JC-F=250.0Hz),144.69,143.50,140.57,132.53(d,JC-F=8.5Hz),131.70,129.47,126.78,124.85,124.50,115.51,115.35(d,JC-F=21.9Hz),46.25,26.25,26.13,21.47.19F NMR(376MHz,CDCl3)δ-110.91.红外光谱:IR(KBr)νmax 3063,2959,2922,1910,1662,1599,1542,1488,1430,1403,1365,1304,1229,1181,1142,1084,1051,1015,921,887,842,814,735,702,667,605,576,540cm-1。高分辨率质谱(DART)([M+H]+)计算值为C21H19O3NFS:384.1064,实际测量值为384.1072。
实施例39
5-(4-氯苯基)-6-对甲苯磺酰基-2,3-二氢-1H-吡呤-7-甲醛的制备
制备方法与实施例30相同,以2-{[(4-氯苯基)-1-烯-3-炔]-2-丁基}-1-对甲苯磺酰基吡咯为原料,10%IPrAuCl/AgNTf2,氧化剂为DDQ(300mol%),溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为55%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ10.43(s,1H),7.46(d,J=8.1Hz,2H),7.41(d,J=8.3Hz,2H),7.26(d,J=6.4Hz,2H),7.16(d,J=8.1Hz,2H),3.73(t,J=7.3Hz,2H),3.16(t,J=7.5Hz,2H),2.57–2.44(m,2H),2.36(s,3H).13C NMR(101MHz,CDCl3)δ187.18,144.96,143.59,140.52,135.79,131.89,131.47,129.52,128.48,127.29,126.77,124.56,115.52,46.32,26.23,26.14,21.49.红外光谱:IR(KBr)νmax 3060,2959,2922,1914,1663,1597,1544,1485,1465,1430,1399,1365,1307,1232,1181,1142,1088,1050,1014,968,921,886,837,814,735,706,667,600,675,575,540cm-1。高分辨率质谱(DART)([M+H]+)计算值为C21H19O3NClS:400.0769,实际测量值为400.0779。
实施例40
5-己基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤-7-甲醛的制备
制备方法与实施例30相同,以2-[(1-烯-2-炔)-2-癸基]-1-对甲苯磺酰基吡咯为原料,10%IPrAuCl/AgNTf2,氧化剂为DDQ(300mol%),溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为24%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ10.24(s,1H),7.77(d,J=8.1Hz,2H),7.27(d,J=5.0Hz,2H),3.89(t,J=7.3Hz,2H),3.08(t,J=7.5Hz,2H),2.96–2.82(m,2H),2.58–2.47(m,2H),2.39(s,3H),1.58–1.46(m,2H),1.33(m,6H),0.89(t,J=6.5Hz,3H).13C NMR(101MHz,CDCl3)δ186.66,144.49,143.40,141.27,135.16,129.72,126.58,121.71,114.77,45.51,31.49,29.68,29.28,26.26,25.89,25.46,22.54,21.49,14.05.红外光谱:IR(KBr)νmax 3108,2955,2927,2857,2719,1652,1540,1474,1414,1388,1287,1192,1143,975,862,824,726,636,578,543cm-1。高分辨率质谱(DART)([M+H]+)计算值为C21H28O3NS:374.1784,实际测量值为374.1796。
实施例41
2-苄基-1-二甲基-5-苯基-4-对甲苯磺酰基-1H-吡咯-3-甲醛的制备
制备方法与实施例30相同,以N,4-甲基-N-[(3-亚甲基-1,5-二苯基-4-炔)-2-戊基]苯磺酰胺为原料,10%IPrAuCl/AgNTf2,氧化剂为BQ(300mol%),溶剂为1,2-二氯乙烷,反应温度为40℃,产品产率为45%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ10.72(s,1H),7.46(m,6H),7.34–7.26(m,1H),7.25–7.10(m,7H),4.51(s,2H),3.11(s,3H),2.39(s,3H).13C NMR(101MHz,CDCl3)δ188.32,143.44,140.51,138.62,138.12,136.61,131.15,129.66,129.44,128.84,128.23,126.95,126.75,122.50,119.39,31.71,31.21,21.51.红外光谱:IR(KBr)νmax3059,2959,2925,2542,1912,1730,1661,1611,1573,1544,1489,1468,1435,1363,1297,1251,1179,1142,1114,1085,1056,1026,922,887,838,813,734,703,668,606,577,540cm-1。高分辨率质谱(ESI)([M+H]+)计算值为C26H24O3NS:430.1471,实际测量值为430.1483。
实施例42
7-甲基-5-苯基-2,3-二氢-吡呤的制备
Figure BDA0001579223940000261
在氮气保护下,向干净的圆底烧瓶中加入磁力搅拌子,加入1mL 1,4-二氧六环,7-甲基-5-苯基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤(0.1mmol,35.1mg),四氢铝锂(1.5mmol,57mg)在110℃条件下反应2h。反应结束后,反应液经过短硅胶过滤,将滤液浓缩,使用柱层析分离可得目标产物。展开剂比例为石油醚:乙酸乙酯=100:1,最终得到产品为白色液体,产率20%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.41–7.31(m,5H),6.29(s,1H),3.98(t,J=6.9Hz,2H),2.95–2.73(t,J=6.9Hz,2H),2.54(m,2H),2.10(s,3H)。
实施例43
在氮气保护下,向干净的圆底烧瓶中加入磁力搅拌子,加入3mL甲醇,7-甲基-5-苯基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤(0.1mmol,35.1mg),镁粉(1.0mmol,24mg)在50℃条件下反应2h。反应结束后,反应液经过短硅胶过滤,将滤液浓缩,使用柱层析分离可得目标产物。展开剂比例为石油醚:乙酸乙酯=100:1,最终得到产品为白色液体,产率17%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.41–7.31(m,5H),6.29(s,1H),3.98(t,J=6.9Hz,2H),2.95–2.73(t,J=6.9Hz,2H),2.54(m,2H),2.10(s,3H)。
实施例44
在氮气保护下,向干净的圆底烧瓶中加入磁力搅拌子,加入3mL四氢呋喃,7-甲基-5-苯基-6-对甲苯磺酰基-2,3-二氢-1H-吡呤(0.1mmol,35.1mg),兰尼镍(2000wt%,700mg)在100℃条件下反应8h。反应结束后,反应液经过短硅胶过滤,将滤液浓缩,使用柱层析分离可得目标产物。展开剂比例为石油醚:乙酸乙酯=100:1,最终得到产品为白色液体,产率21%。所制备产品的物理常数为:1H NMR(400MHz,CDCl3)δ7.41–7.31(m,5H),6.29(s,1H),3.98(t,J=6.9Hz,2H),2.95–2.73(t,J=6.9Hz,2H),2.54(m,2H),2.10(s,3H)。

Claims (9)

1.一种多取代吡咯化合物的制备方法,其特征在于,包括以下步骤:
(1)合成全取代吡咯化合物2:在惰性气体保护下,将化合物1溶入有机溶剂中,然后加入一价金配合物催化剂LAuX,反应完成后过滤再减压除去溶剂,通过柱层析或重结晶得到对应的全取代吡咯化合物2;当合成R6为醛基的全取代吡咯化合物2时,则需要在加入一价金配合物催化剂LAuX时加入氧化剂;所述一价金配合物催化剂LAuX中,配体L为三苯基磷、三环己基磷、2-(二叔丁基)二苯基磷、氮杂卡宾IPr、SIPr、IMes、SIMes中的一种;配合物阴离子为三氟甲磺酸根离子、四氟硼酸根离子、双三氟甲磺酰亚胺离子、六氟锑酸根离子和四(3,5-二(三氟甲基)苯基)硼酸根离子中的一种,即X=OTf、BF4、NTf2、SbF6或BArF4;所述氧化剂为2,3,5,6-四氯对苯醌或2,3-二氯-5,6-二氰对苯醌;
(2)合成四取代吡咯化合物3:在惰性气体保护下,将全取代吡咯化合物2溶入有机溶剂中,然后加入还原剂,反应完成后过滤,减压除去溶剂,通过柱层析或重结晶得到对应的四取代吡咯化合物3;所述还原剂为兰尼镍、四氢铝锂和镁粉;
合成路线如下所示:
Figure FDA0003032458820000011
所述R1为烷基、链烯基、苄基或取代苄基,取代苄基上的取代基为烷基、卤素、烷氧基、硝基中的一种或二种以上,取代基的个数为1-5个;
R2为烷基、芳基、苄基或取代芳基,取代芳基上的取代基为烷基、卤素、烷氧基、硝基中的一种或二种以上,取代基的个数为1-5个;
R3为氢或烷基;
R4为烷基、芳基、杂芳基或取代芳基,取代芳基上的取代基为烷基、卤素、烷氧基、硝基中的一种或二种以上,取代基的个数为1-5个;
R5为芳基磺酰基或取代芳基磺酰基,其中芳环的取代基为烷基、卤素、烷氧基、硝基中的一种或二种以上,取代基的个数为1-5个;
R6为烷基或醛基;
所述烷基是指具有1~8个碳原子的直链或支链的烷基;
所述链烯基是指具有2~6个碳原子的直链或支链的链烯基;
所述烷氧基是指具有1~6个碳原子的支链或支链的烷氧基;
所述卤素是指氟、氯、溴或碘原子;
所述芳基为苯环或萘环;
所述杂芳基为噻吩、呋喃、吡咯、吡喃、恶唑或吲哚。
2.根据权利要求1所述的制备方法,其特征在于,所述有机溶剂为1,4-二氧六环、四氢呋喃、1,2-二氯乙烷、二氯甲烷、氯仿、甲苯、甲醇和乙酸中的一种或二种以上的混合溶剂;化合物1在有机溶剂中的浓度为0.05-2mol/L。
3.根据权利要求1所述的制备方法,其特征在于,所述一价金配合物催化剂的用量为化合物1用量的1–20mol%。
4.根据权利要求1所述的制备方法,其特征在于,所述氧化剂用量为化合物1用量的200-1000mol%。
5.根据权利要求1所述的制备方法,其特征在于,所述还原剂用量为化合物2用量的1000-2000mol%。
6.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述反应的温度为20℃-100℃。
7.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述反应的温度为50℃-110℃。
8.根据权利要求1所述的制备方法,其特征在于,
所述烷基为甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、仲丁基、戊基、新戊基、己基、庚基或辛基;
所述链烯基为乙烯基、1-丙烯基、2-丙烯基、1-丁烯基、2-丁烯基、1-戊烯基或1-己烯基;
所述烷氧基为甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基、异丁氧基、叔丁氧基、仲丁氧基、戊氧基、新戊氧基或己氧基。
9.根据权利要求8所述的制备方法,其特征在于,
所述烷基为甲基或乙基;
所述链烯基为乙烯基;
所述烷氧基为甲氧基;
所述杂芳基为噻吩。
CN201810147601.3A 2018-02-12 2018-02-12 一种多取代吡咯化合物的制备方法 Expired - Fee Related CN108358933B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810147601.3A CN108358933B (zh) 2018-02-12 2018-02-12 一种多取代吡咯化合物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810147601.3A CN108358933B (zh) 2018-02-12 2018-02-12 一种多取代吡咯化合物的制备方法

Publications (2)

Publication Number Publication Date
CN108358933A CN108358933A (zh) 2018-08-03
CN108358933B true CN108358933B (zh) 2021-09-14

Family

ID=63002310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810147601.3A Expired - Fee Related CN108358933B (zh) 2018-02-12 2018-02-12 一种多取代吡咯化合物的制备方法

Country Status (1)

Country Link
CN (1) CN108358933B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327977B (zh) * 2019-06-21 2021-05-14 山西大学 一种铝锂双金属催化剂及其制备方法和应用
CN112851674B (zh) * 2019-11-26 2022-03-15 中国科学院大连化学物理研究所 一种多取代吡咯化合物及其合成方法
CN113200902B (zh) * 2019-11-27 2022-11-11 云南大学 一种多取代吡咯衍生物及其制备方法
CN112500425B (zh) * 2020-10-30 2022-04-15 太原理工大学 一种3-硫代吡咯化合物及其合成方法
CN113620856B (zh) * 2021-09-02 2023-04-28 南京先进生物材料与过程装备研究院有限公司 一种多取代吡咯烷化合物及其制备方法和应用
CN114733566B (zh) * 2022-01-30 2023-10-31 上海师范大学 一种基于binol骨架的手性超强碳酸催化剂及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW338042B (en) * 1995-10-31 1998-08-11 Clary Kk Process for producing all trans-form polyprenols

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A Simple and Efficient Protocol to 1,2,4-Substituted Pyrroles via a Sonogashira Coupling–Acid-Catalyzed Cyclization;Da Zhu et al.;《SYNLETT》;20110810(第15期);第2186页 *
Gold-Catalyzed Domino Aminocyclization/1,3-Sulfonyl Migration of N-Substituted N-Sulfonyl-aminobut-3-yn-2-ols to 1-Substituted 3‑Sulfonyl‑1H‑pyrroles;Wan Teng Teo et al.;《J. Org. Chem. 》;20131202;第44卷(第51期);第B-E页 *
Selective hetero- and carbo-cycle syntheses via masked cyclopalladated secondary amine and ketone functions;F. Maassarani et al.;《Journal of Orgarwmetallic Chemiwy》;19931231;第466卷;第267页 *
Synergistic Gold and Iron Dual Catalysis:Preferred Radical Addition toward Vinyl-Gold Intermediate over Alkene;Haihui Peng et al.;《Journal of the American Chemical Society》;20151231;第135卷;第8912页 *

Also Published As

Publication number Publication date
CN108358933A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
CN108358933B (zh) 一种多取代吡咯化合物的制备方法
Nájera et al. Conjugated ynones in organic synthesis
Goldup et al. Ligand-assisted nickel-catalysed sp 3–sp 3 homocoupling of unactivated alkyl bromides and its application to the active template synthesis of rotaxanes
Chen et al. Thermally induced [3+ 2] cyclization of aniline-tethered alkylidenecyclopropanes: a facile synthetic protocol of pyrrolo [1, 2-a] indoles
Morandi et al. Expedient preparation of trifluoromethyl-substituted benzofuranols
Jiang et al. New multicomponent cyclization: domino synthesis of pentasubstituted pyridines under solvent-free conditions
CN107501156B (zh) 一种多取代吡咯的三组分串联合成方法
Chen et al. Thermal induced intramolecular [2+ 2] cycloaddition of allene-ACPs
Ma et al. Synthesis of the azatricyclic ACD ring system of calyciphylline A-type Daphniphyllum alkaloids via a nonstabilized azomethine ylide generated by desilylation
Wang et al. Synthesis of the ring C pyrrole of native chlorophylls and bacteriochlorophylls
Zhu et al. Visible-Light-Induced [4+ 1] Cyclization-Aromatization of Acylsilanes and α, β-Unsaturated Ketones
Li et al. Temperature-Controlled Divergent Hydroamination Cyclization [2+ 2]-Cycloaddition Cascade Reactions of Homopropargylic Amines with 2-Butynedioates: Direct Access To Pyrrolo-b-cyclobutene and Dihydro-1 H-azepines
Zhang et al. A free-radical-promoted stereospecific denitro silylation of β-nitroalkenes with silanes
Zhang et al. A solvent-free synthesis of β-amino-α, β-unsaturated ketones and esters catalysed by sulfated zirconia
Fogassy et al. Efficient synthesis and resolution of (±)-1-[2-carboxy-6-(trifluoromethyl) phenyl] pyrrole-2-carboxylic acid
Bouet et al. Preparation of new axially chiral bridged 2, 2′-bipyridines and pyridyl monooxazolines (pymox). Evaluation in copper (i)-catalyzed enantioselective cyclopropanation
CN108440483B (zh) 一种3,4-二氢氧基-2(7h)-酮及制备方法
Lange et al. Towards the synthesis of tetraethynylallene
Keim et al. Terminal acetylenic iminium salts–synthesis and reactivity
EP2606054B1 (en) Functionalized polyhedral octavinylsilsesquioxanes
Mohanty et al. Knoevenagel condensation of aromatic bisulfite adducts with 2, 4-thiazolidinedione in the presence of Lewis acid catalysts
CN109020989B (zh) 一种三氟甲基取代的2-甲基二氢呋喃并色满骨架化合物的合成方法
CN114031613A (zh) 一种1-(苯并[b]噻吩-7-基)-吲哚衍生物及其合成方法
Durka et al. Formation of dilithiated bis-(1H-pyrazol-1-yl) alkanes and their application in the synthesis of diboronic acids
CN107935803B (zh) 一种1,2-二酮类化合物的合成方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210914

Termination date: 20220212

CF01 Termination of patent right due to non-payment of annual fee