CN108330146B - 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法 - Google Patents

催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法 Download PDF

Info

Publication number
CN108330146B
CN108330146B CN201810095829.2A CN201810095829A CN108330146B CN 108330146 B CN108330146 B CN 108330146B CN 201810095829 A CN201810095829 A CN 201810095829A CN 108330146 B CN108330146 B CN 108330146B
Authority
CN
China
Prior art keywords
gene
leu
glu
ala
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810095829.2A
Other languages
English (en)
Other versions
CN108330146A (zh
Inventor
张雁
陈义华
南迦纳杰·阿瑟·安卡拉哈里
胡逸灵
李鹏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Institute of Microbiology of CAS
Original Assignee
Tianjin University
Institute of Microbiology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University, Institute of Microbiology of CAS filed Critical Tianjin University
Priority to CN201810095829.2A priority Critical patent/CN108330146B/zh
Publication of CN108330146A publication Critical patent/CN108330146A/zh
Priority to JP2020541990A priority patent/JP7194741B2/ja
Priority to CN201880088112.3A priority patent/CN111788310A/zh
Priority to PCT/CN2018/117160 priority patent/WO2019148944A1/zh
Priority to EP18903578.5A priority patent/EP3748005A4/en
Priority to US16/966,719 priority patent/US20230257760A1/en
Application granted granted Critical
Publication of CN108330146B publication Critical patent/CN108330146B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1288Transferases for other substituted phosphate groups (2.7.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/08Transferases for other substituted phosphate groups (2.7.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/08Transferases for other substituted phosphate groups (2.7.8)
    • C12Y207/08007Holo-[acyl-carrier-protein] synthase (2.7.8.7)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法,步骤为:1)选编码磷酸泛酰巯基乙胺基转移酶的Sfp基因和编码靛蓝合成酶的bpsA基因,分别克隆在含植物启动子的质粒的植物启动子下游;2)将获得的质粒,在大肠杆菌中扩增,并转入土壤农杆菌;3)把含Sfp和bpsA的DNA转入植物中;本发明生产的蓝色花,具有天然花的各种特征,新鲜有花香,不脱色,无毒。转基因编码的酶和产生的靛蓝不在液泡中,不受植物液泡低pH的影响,可形成纯正的蓝色。产生蓝色物质的前体物,即酶的底物为植物体内富含的谷氨酰胺,涉及的酶促反应仅有一步,可以从自然界中有的白花出发进行转基因改造。

Description

催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法
技术领域
本发明属于生物技术领域,涉及一种催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法。
背景技术
花色是观赏植物的重要的观赏特征,针对花色的改良一直是园艺工作者的重要目标之一。植物的花色不仅在植物的授粉和繁衍后代方面起到重要作用,也为人类提供了五彩斑斓的观赏感受,具有重要的美学价值(Grotewold,E.The genetics and biochemistryof floral pigments[J].Annual Review of Plant Biology,2006,57(1):761.)。作为花种重要的观赏植物,现代玫瑰(Rosa hybrida)已有5000年的栽培历史。至今,人类已培育出2500多个品种,然而这其中却没有真正的蓝色的玫瑰。
市场上现有的蓝色玫瑰,如“蓝色妖姬”实际上是用染料染出的蓝色(Holton T.A,Tanaka Y.Blue roses:a pigment of our imagination?[J].Trends in Biotechnology:United Kingdom,1994,12(2):40–42.)。蓝色玫瑰(Blue rose)在英语里作为成语,表示不可能实现的奇迹,频繁出现在包括电影、电视、诗歌、小说、戏剧等各种文艺作品中。
植物的花的颜色有很多决定因素,包括类黄酮类的花青素,萜类的胡萝卜素,还有液泡的pH值,金属离子等(Tanaka Y,Brugliera F.Flower colour and cytochromes P450[J].Philosophical Transactions of the Royal Society of London,2013,368(1612):283-291.)。花青素在不同位点和不同程度的羟基化使花具有不同的颜色,其中类黄酮3’5’羟基化酶(F3’5’H)催化形成蓝色的花翠素,这是很多植物开蓝花的原因。由于包括玫瑰等植物在内的很多植物缺少编码F3’5’H的基因,所以这类植物没有蓝色的花(Mikanagi Y,Saito N,Yokoi M,et al.Anthocyanins in flowers of genus Rosa,sectionsCinnamomeae(=Rosa),Chinenses,Gallicanae and some modern garden roses[J].Biochemical Systematics&Ecology,2000,28(9):887.)。
日本Suntory公司利用转基因技术,通过导入包括F3’5’H在内的外源基因,同时抑制其它几个基因的表达来实现让自然界不开蓝色花的植物开出蓝色的花朵。该方法涉及多个基因的改造,所需前体物质复杂,制作成本极高,这一技术在康乃馨和菊花中取得成功,而由于玫瑰的液泡pH值很低(pH约为2.7),这一技术在玫瑰上应用只得到淡紫色的花,无法展现真正的蓝色(图1)(Katsumoto Y,Fukuchimizutani M,Fukui Y,et al.Engineeringof the rose flavonoid biosynthetic pathway successfully generated blue-huedflowers accumulating delphinidin.[J].Plant&Cell Physiology,2007,48(11):1589.)。尽管如此,这种淡紫色的玫瑰,每朵售价22-35美元(Staff(20October 2009)."Blue roses to debut in Japan".The Independent,House and Home.Retrieved 30August 2012.),为Suntory公司带来巨大经济效益,目前这种玫瑰只在日本和美洲大陆供应。真正蓝色的玫瑰的获得依然是一个人类还没有能解决的技术难题。
发明内容
本发明的目的是克服现有技术的不足,提供一种催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法。
本发明的技术方案概述如下:
催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法,包括如下步骤:
1)选取编码磷酸泛酰巯基乙胺基转移酶的Sfp基因和编码靛蓝合成酶的bpsA基因,分别克隆在含植物启动子的质粒的植物启动子下游;
2)将步骤1)获得的质粒,在大肠杆菌中扩增,并转入土壤农杆菌;
3)利用土壤农杆菌介导把含Sfp和bpsA的DNA转入植物中;
所述Sfp基因为任何物种来源的编码磷酸泛酰巯基乙胺基转移酶的基因,或编码磷酸泛酰巯基乙胺基转移酶同功酶的基因;
所述bpsA基因为任何物种来源的编码靛蓝合成酶的基因,或编码靛蓝合成酶同功酶的基因;
所述植物启动子为在植物细胞中能驱动下游基因表达的DNA序列。
优选地,Sfp基因的核苷酸序列为SEQ ID NO.1所示。
优选地,Sfp基因所编码的磷酸泛酰巯基乙胺基转移酶的氨基酸序列为SEQ IDNO.2所示。
优选地,bpsA基因的核苷酸序列为SEQ ID NO.3所示。
优选地,bpsA基因所编码的靛蓝合成酶的氨基酸序列为SEQ ID NO.4所示。
优选地,Sfp基因上游的植物启动子CHSp的核苷酸序列为SEQ ID NO.5所示。
优选地,bpsA基因上游的植物启动子RhAGp的核苷酸序列为SEQ ID NO.6所示。
含植物启动子的质粒优选:pBI121。
所述花卉为玫瑰、月季、百合、菊花、康乃馨或兰花。
本发明的优点:
本发明克服了现有技术如染料染色、以及转基因方法的不足,染料对花进行染色具有更明显的人工痕迹,容易脱色,使用的有机染料通常还有毒;花通常为干花,不具花的香味,如果是鲜花染色则不宜保存,很快凋敝。本发明的方法生产的蓝色花,具有天然花的各种特征:新鲜,有花香,不脱色,无毒。
本发明所用方法转基因编码的酶不在液泡中,产生的靛蓝也不在液泡中,不受植物液泡低pH的影响,因而可以形成纯正的蓝色(royal blue)。产生蓝色物质的前体物,即酶的底物为植物体内富含的简单氨基酸,谷氨酰胺,涉及的酶促反应仅有一步,不需要复杂的前体物质,可以从自然界中有的白花出发进行基因改造。
用转基因的方法培育出蓝色的花卉,如百合、月季、菊花、康乃馨、兰花等,特别是蓝色的玫瑰的获得。
附图说明
图1日本Suntory公司蓝色玫瑰改造策略。其中,图1-1为Suntory公司利用花翠素的生物合成获得淡紫色玫瑰花的基因改造路线图;图1-2为Suntory最终获得的淡紫色玫瑰花照片。
图2磷酸泛酰巯基乙胺基转移酶Sfp与靛蓝合成酶bpsA的信息图。包括,磷酸泛酰巯基乙胺基转移酶的反应过程示意图(图2-1),编码的靛蓝合成酶的bpsA的结构和反应机理示意图(图2-2),靛蓝合成酶bpsA的SDS-PAGE电泳图(图2-3)和蓝色化合物靛蓝的光吸收图谱(图2-4)。
图3表达质粒pBI121-GENES2构建示意图。其中:oriT:转移起始区,基因转移元件;oriV:质粒复制起始区;IS1:基因转座元件;KanR:卡那霉素抗性基因;LB/RB:nopalineC58T-DNA来源的重复序列,基因转座元件;MASt/NOSt:终止子;CHSp:Chalcone Synthase基因启动子;RhAGp:AGAMOUS-like protein基因启动子。
图4土壤农杆菌介导的bpsA基因瞬时转染玫瑰显示蓝色花瓣图。图4-1显示转化后的蓝色花瓣;图4-2左边的花为没有乙酰丁香酮的负对照,右边的花为添加乙酰丁香酮并瞬时转染转化后的蓝色玫瑰花瓣;箭头标示的是瞬时转化位置,虚线圆圈显示蓝色色斑区域。
具体实施方式
本发明利用一种磷酸泛酰巯基乙胺基转移酶活化靛蓝合成酶,活化后的该酶催化谷氨酰胺合成蓝色化合物靛蓝,从而使白色玫瑰花呈现蓝色。
本发明用现代玫瑰(Rosa hybrida)作为例子,但使用这一方法获得的蓝色花卉不限于现代玫瑰,实验证明,用本发明的方法获得蓝色的玫瑰、月季、百合、菊花、康乃馨或兰花。
本发明的具体实施例中,植物细胞转化方法可以为将人工改造的基因序列经物理或化学或生物手段导入植物细胞中的过程。本发明中采用的是生物手段,利用土壤农杆菌介导的植物细胞转基因方法。
下面结合具体实施例对本发明作进一步的说明
实施例1基因选择
磷酸泛酰巯基乙胺基转移酶(Phosphopantetheinyl Transferases)活化非核糖体多肽合成酶的巯基化结构域T,其反应机制见示意图2-1,活化后的T结构域行使固定底物的功能,该功能是非核糖体多肽合成酶发挥催化功能所必须的。
本发明中所使用的磷酸泛酰巯基乙胺基转移酶的基因Sfp来源于Bacillussubtilis ATCC21332(NCBI编号:ALS83446),我们针对蔷薇科植物基因密码子偏好性对基因密码子调整优化,获得核苷酸序列SEQ ID NO.1。Sfp基因编码的氨基酸序列见SEQ IDNO.2。Sfp基因的选择不应该限制本发明中对磷酸泛酰巯基乙胺基转移酶的保护范围,使用任何其他物种来源的编码磷酸泛酰巯基乙胺基转移酶的基因,或编码磷酸泛酰巯基乙胺基转移酶同功酶的基因,且与靛蓝合成酶共同作用从而获得蓝色花卉的方法均应得到本发明的保护。
靛蓝合成酶(Indigoidine Synthetase)属于非核糖体多肽合成酶,其含两个氨基酸特异性识别结构域A,一个含黄素(FMN)的氧化结构域Ox,一个Thiolation结构域T,和一个负责产物解离的结构域TE。靛蓝合成酶具有催化两分子的谷氨酰胺合成蓝色化合物靛蓝的功能,机制如图2-2所示。所形成的靛蓝(Indigoidine)分子式如图2-2中所示,光吸收图谱如图2-4所示,与其他染料相比,具有非常好的水溶性,和蓝色光泽,且未发现对植物细胞有明显的伤害作用。
本发明选择的编码靛蓝合成酶基因bpsA来源于链霉菌Streptomyces lavendulaeATCC11924,bpsA编码的氨基酸序列见SEQ ID NO.4(NCBI编号:WP_030237949),我们针对蔷薇科植物基因密码子偏好性对基因密码子调整优化,获得核苷酸序列SEQ ID NO.3。bpsA基因编码的靛蓝合成酶基因全长3846个碱基,编码的蛋白1282个氨基酸,大约140KD,表达纯化的蛋白在SDS聚丙烯酰胺(SDS-PAGE)蛋白胶上如图2-3。bpsA基因的选择不应该限制本发明对靛蓝合成酶的保护范围,使用任何其他物种来源的编码靛蓝合成酶的基因,或编码靛蓝合成酶同功酶的基因,且与磷酸泛酰巯基乙胺基转移酶共同表达从而获得蓝色花卉的方法均应得到本发明的保护。
玫瑰(Rosa hybrida)来源的植物启动子CHSp启动子和RhAGp启动子序列分别见SEQ ID NO.5(NCBI编号:FW556946)和SEQ ID NO.6(NCBI编号:U43372)。
实施例2质粒克隆
本发明选择植物双元表达载体pBI121做为出发质粒载体。
在质粒pBI121的限制性酶切位点PmeI和SacI之间插入人工合成片段(SEQ IDNO.7),组建质粒pBI121-CHS-RhAG,见图3。SEQ ID NO.7包括Mannopine Synthase的终止子序列MASt、启动子序列CHSp和启动子序列RhAGp。
以包含SEQ ID NO.3序列的质粒为模版,以BpsA-FG(SEQ ID NO.8)和BpsA-RG(SEQID NO.9)为引物,经PCR获得片段bpsA。
以包含SEQ ID NO.1序列的质粒为模版,以Sfp-FG(SEQ ID NO.10)和Sfp-RG(SEQID NO.11)为引物,经PCR获得片段Sfp。
质粒pBI121-CHS-RhAG经限制性内切酶BamHI和SpeI酶切,经纯化回收后得到片段CHS-RhAG和质粒pBI121骨架,使用
Figure BDA0001565008940000041
HiFi DNA Assembly Master Mix(NewEngland Biolabs,USA)体系,在50℃条件下反应1小时,后转化大肠杆菌感受态获得克隆并扩增包含质粒,经验证测序正确后,获得双元表达质粒pBI121-GENES2。见图3。
实施例3:携带目标基因的感受态土壤农杆菌的制备
从大肠杆菌中经质粒抽提获得的质粒pBI121-GENES2转化进入土壤农杆菌。土壤农杆菌感受态细胞的制备为通用的方法,具体是:
1.土壤农杆菌(Agrobacterium tumefaciens GV3101)在含10μg/mL利福平和50μg/mL庆大霉素的LB琼脂培养基上于28℃培养两天;
2.单克隆菌落接入5mL含相同抗生素的LB液体培养液(10μg/mL利福平和50μg/mL庆大霉素)于28℃的摇床培养过夜,转速150转每分钟。
3.2mL过夜培养的土壤农杆菌培养液稀释到200毫升的LB培养液在28℃的摇床中(转速250转每分钟)培养至细胞密度OD600为0.3到0.5。
4.土壤农杆菌培养液装入50mL的离心管中在冰上冷却并经3000×g的转速离心。
5.去除上清后,土壤农杆菌细胞重新悬浮于80mL的冰上预冷的CCMB80缓冲液中,置于冰上冷却20分钟.CCMB80缓冲液的配方是:10mM醋酸钾,80mM CaCl2·2H2O,20mMMnCl2·4H2O,10mM MgCl2·6H2O,10%甘油,pH 6.4。
6.细胞再次离心,去除上清,再悬浮于5mL的预冷的CCMB80缓冲液中。
7.用1.5mL的EP管分装,每管100μL,然后用液氮迅速冷冻后,储存于零下80度的冰箱。
土壤农杆菌转化的实验操作也是同样操作,具体如下
1)在冰上加1μg质粒DNA(pBI121-GENES2)到100μL上述制备的感受态土壤农杆菌细胞悬浮液中,然后迅速用液氮冷冻。
2)上述包含质粒DNA的土壤农杆菌感受态细胞在37℃的水浴锅中融化5min。
3)加入一毫升不含抗生素的LB培养液在28℃摇床150转每分钟震荡培养3小时。
4)低速离心获得细胞。
5)把细胞涂在LB琼脂平板上,把平板放在28℃培养箱中,用抗生素筛选含抗性基因的菌落。LB平板中含10μg/mL利福平、50μg/mL庆大霉素和50μg/mL卡那霉素。
6)两到三天可以看到菌落生长。
实施例4:土壤农杆菌介导bpsA瞬时转染蓝色转基因玫瑰花的获得
1.上述转化成功的土壤农杆菌GV3101菌落单克隆接入5mL含抗生素的LB培养液中(10μg/mL利福平、50μg/mL庆大霉素和50μg/mL卡那霉素)于28℃,200转每分钟震荡培养过夜。
2.1mL上述土壤农杆菌菌液转入100mL含相同抗生素的LB培养液中28℃,200RPM培养直至OD600达到1.5。
3.土壤农杆菌细胞3000×g离心10min去除上清后,用10mM MgCl2,10mM MES,pH5.6的缓冲液(负对照)或上述相同缓冲液额外加入150μg/mL乙酰丁香酮(正对照)悬浮细胞至细胞密度为OD600在0.5-1.0的范围中,避光在室温下保存3-5小时。
4.取新鲜白色玫瑰花Rosa hybrida的完整花枝的切花,将花茎浸泡于无菌水中。
5.花瓣上的脉络在花瓣背面标记,避免损伤组织。
6.用1mL的一次性针头注射器将100-150μl步骤3中的包含(正对照)和不含(负对照)乙酰丁香酮的土壤农杆菌细胞悬浮液缓慢从主脉注入,并在22℃避光保存12小时以上。
实验结果如图4所示,箭头标示的是瞬时转染位置,虚线圆圈显示蓝色色斑区域。图4-1显示转化后的蓝色花瓣。图4-2左边的花为不含乙酰丁香酮的同样细胞密度的感受态土壤农杆菌,土壤农杆菌细胞在注射的原位和经花脉转移的附近的地方,图4-2右边的花为在有能刺激基因从土壤农杆菌转化进入植物细胞的乙酰丁香酮存在的情况下,完成了基因转化,使花瓣呈现蓝颜色。
实验结果显示链霉菌来源的bpsA和枯草杆菌Sfp基因经土壤农杆菌介导,进入玫瑰花细胞,并且在植物细胞内表达出相应有活性的非核糖体多肽合成酶,并利用植物细胞体内的谷氨酰胺合成了蓝色的靛蓝,从而使玫瑰花瓣呈现蓝色。
序列表
<110> 天津大学;中国科学院微生物研究所
<120> 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法
<160> 11
<170> SIPOSequenceListing 1.0
<210> 1
<211> 675
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgaagattt acagaattta tatggaccgc ccgctttcac aggaagaaaa tgaacggttc 60
atgtctttca tatcacctga aaaacgggag aaatgccgga gattttatca taaagaagat 120
gctcaccgca ccctgctggg agatgtgctc gttcgctcag tcataagcag gcagtatcag 180
ttggacaaat ccgatatccg ctttagcacg caggaatacg ggaagccgtg catcactgat 240
cttcccgacg ctcatttcaa catttctcac tccggccgct gggtcattgg tgcgtttgat 300
tcacagccga tcggcataga tatcgaaaaa acgaaaccga tcagccttga gatcgccaag 360
cgcttctttt caaaaacaga gtacagcgac cttttagcaa aagacaagga cgagcgaaca 420
gactattttt atcatctatg gtcaatgaaa gagagcttta tcaaacagga aggcaaaggc 480
ttatcgcttc cgcttgattc cttttcagtg cgcctgcatc aggacggaca agtatccatt 540
gagcttccgg acagccattc cccatgctat atcaaaacgt atgaggtcga tcccggctac 600
aaaatggctg tatgcgccgc acaccctgat ttccccgagg atatcacaat ggtgtcgtac 660
gaagagcttt tatag 675
<210> 2
<211> 224
<212> PRT
<213> 枯草芽孢杆菌(Bacillus subtilis)
<400> 2
Met Lys Ile Tyr Arg Ile Tyr Met Asp Arg Pro Leu Ser Gln Glu Glu
1 5 10 15
Asn Glu Arg Phe Met Ser Phe Ile Ser Pro Glu Lys Arg Glu Lys Cys
20 25 30
Arg Arg Phe Tyr His Lys Glu Asp Ala His Arg Thr Leu Leu Gly Asp
35 40 45
Val Leu Val Arg Ser Val Ile Ser Arg Gln Tyr Gln Leu Asp Lys Ser
50 55 60
Asp Ile Arg Phe Ser Thr Gln Glu Tyr Gly Lys Pro Cys Ile Thr Asp
65 70 75 80
Leu Pro Asp Ala His Phe Asn Ile Ser His Ser Gly Arg Trp Val Ile
85 90 95
Gly Ala Phe Asp Ser Gln Pro Ile Gly Ile Asp Ile Glu Lys Thr Lys
100 105 110
Pro Ile Ser Leu Glu Ile Ala Lys Arg Phe Phe Ser Lys Thr Glu Tyr
115 120 125
Ser Asp Leu Leu Ala Lys Asp Lys Asp Glu Arg Thr Asp Tyr Phe Tyr
130 135 140
His Leu Trp Ser Met Lys Glu Ser Phe Ile Lys Gln Glu Gly Lys Gly
145 150 155 160
Leu Ser Leu Pro Leu Asp Ser Phe Ser Val Arg Leu His Gln Asp Gly
165 170 175
Gln Val Ser Ile Glu Leu Pro Asp Ser His Ser Pro Cys Tyr Ile Lys
180 185 190
Thr Tyr Glu Val Asp Pro Gly Tyr Lys Met Ala Val Cys Ala Ala His
195 200 205
Pro Asp Phe Pro Glu Asp Ile Thr Met Val Ser Tyr Glu Glu Leu Leu
210 215 220
<210> 3
<211> 3852
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atgacccttc aagaaaccag cgttctggaa ccgaccctgc gcggaacgac caccctgccg 60
gatctgctgg caaaacgggt tgcagaacat ccggaagcaa ccgcagttgc atatcgcgat 120
gaaaaactga cctatcgtga actggcaagc cgtagcagcg cactggcaga atatctgcgt 180
catctgggtg ttagcaccga tgattgtgtt ggtctgtttg ttgaaccgag cattgatctg 240
atggttggtg catggggtat tctgagcgca ggtgcagcat atctgccgct gagcccggaa 300
tatccggaag atcgcctgcg ctatatgatt gaaaatagcc aggcaaaaat tattctggca 360
cagcagcgcc tggttacccg cctgcgcgaa ctggcaccgc aggatgttcg tgttgttacc 420
ctgcgcgaaa gcgaagcatt tgttctgccg gaaggtcagg ttgcaccggc aattgaaggt 480
gcacgtccgg atagcctggc ttatgttatc tataccagcg gtagcaccgg taaaccgaaa 540
ggtgttatga ttgaacatca tagcattgtt agccagctgg gttggctgcg cgaaacctat 600
ggtattgatc gtagcaaaac cattttacag aaaaccccga tgagctttga tgcagcacag 660
tgggaaattc tgagcccggc aaatggtgca accgttgtta tgggtgcacc gggtgtttat 720
gcagatccgg aaggtctgat tgaaaccatt gttaaatatg gtgttaccac cctccagtgt 780
gttccgaccc tgctgcaagg tctgctggat accgaaaaat ttccggaatg taccagcttg 840
cagcagattt ttagcggtgg tgaagcactg agccgcctgc tggcaattca gaccacccag 900
gaaatgccgg gtcgcgcact gattaatgtt tatggtccga ccgaatgtac cattaatagc 960
agcagctatg cagttgatcc ggcagaactg ggtgaagcac cgcagagcat tagcattggt 1020
gcaccggttg cagataccga atatcatatt ctgggtaaag aggacctgaa accggttggt 1080
gttggtgaaa ttggtgaact gtatattggt ggtggtcagc tggcacgcgg ttatctgcat 1140
cgcccggatc tgaccgcaga acgctttctg gaaattgaag ttaccgaagg tgcaggtccg 1200
gttcgcctgt acaagaccgg cgacctgggt cagtggaatc cggatggaac cgttcagttt 1260
gcaggtcgcg cagataatca ggttaaactg cgcggttatc gtgttgaact ggatgaaatt 1320
agcctggcaa ttgaaaatca tgattgggtt cgtaatgcag cagttattgt taaaaatgat 1380
ggtcgtaccg gttttcagaa tctgattgca tgtgttgaac tgagcgaaaa agaagcagca 1440
ctgatggatc agggtaatca tggtagccat catgcaagca aaaaatccaa attgcaggtt 1500
aaagcacagc tgagcaatcc gggtctgcgc gatgatgcgg atctggcagc cagagttgct 1560
tacgatctgc cgggtgcaga accgaccccg gaacagcgta gccgtgtttt tgcaaggaaa 1620
acctatcgct tttatgaagg tggtgcagtt accgaagccg acctgctggc actgctgggt 1680
ggtcaggttc cggcagcata tagccgtaaa gcagctgacc tggcaccggc agaactgggt 1740
cagattctgc gttggtttgg tcagtatctg agcgaagaac gcctgctgcc gaaatatggt 1800
tatgcatcgc caggtgcact gtatgcaacc cagctgtatt ttgaactgga aggtgttggt 1860
ggtctgcaac cgggttatta ttattatcag ccgcagcgcc atcagctggt tctgattagc 1920
gaaaaagcag caaccggtcg tccgaccgca catattcatt ttattggtaa acgcggtggt 1980
attgaaccgg tttacaaaaa caatattcag gaagttctgg aaattgaaac cggtcatatt 2040
gttggtctgt ttgaacaggt tctgccggcc tacggtctgg atattcgtga tctggcctac 2100
gaaccggcag ttcgcgatct gctggatgtt ccggaagaag atttttatct gggaacgttt 2160
gaactggttc cgcataccgg tcgtcgtgaa gatcatgcag aagtttatgt tcagactcac 2220
ggtagcaaag ttgcaaatct gccggaaggt cagtatcgct atgcagatgg cacgctgacc 2280
cgctttagcg atgatattgt tctgaaaaaa caggttattg caattaatca gagcgtttat 2340
caggcagcct cctttggtat tagcgttatt agccgcgcac cggaagagtg gatgcattat 2400
gttaccctgg gcaagaaact ccagcatctg atgatgaatg gtctgggtct gggttttatg 2460
agcagcggtt atagcagcaa aaccggtaat ccgctgccgg caagccgtcg cattgatagc 2520
gttctacaag caaatggtgt tgaaagcggt ccgagctatt tctttgttgg tggtcgtgtt 2580
agcgatgaac agctgggtca tgaaggtatg cgtgaagata gcgttcacat gcgcggtccg 2640
gcagaactga ttcgcgatga tctggttagc tttctgccgg attatatgat tccgaatcgt 2700
gttgttgttt ttgaacgcct gccgctgagc gcaaatggga agattgatgc aaaagcactg 2760
gcagcaagcg atcaggttaa tgcagaactg gttgaacgcc cgtttgttgc accgcgtacc 2820
gaaaccgaaa aagaaattgc agaagtttgg gcaaaaagcc tgcgtcgcga aagcgttagc 2880
gttcaggatg atttctttga aagcggtggt aatagcctga ttgcagttgg tctgattcgc 2940
gaactgaata gccgcctggg tgttagcctg ccgctacaga gcgttctgga aagcccgacc 3000
gttgaaaaac tgagccgtcg cctggaacgc gaagttgcac aggaaagcag ccgcctggtt 3060
cgccttcacg cagaaaccgg taaagatcgt ccggttctgt gttggccggg tctgggtggt 3120
tatccgatga atctgcgtac cctggcaggt gaaattggtc tgggtcgtag cttttatggt 3180
attcaggcac atggtattaa cgaaggtgaa gcaccgtatg caaccattac cgaaatggca 3240
aaagcagata ttgaagcaat taaagaattg caaccgaaag gtccgtatac cctgtggggt 3300
tatagctttg gtgcgcgtgt tgcatttgaa accgcatatc agctggaaca ggcaggtgaa 3360
aaagttgata atctgtttct gattgcaccg ggtagcccga ccgttcgcgc agaaaatggt 3420
aaagtttatg gtcgcgaagc cagttttgca aatcgcgcat ataccaccat tctgtttagc 3480
gtttttaccg gaactattag cggtccggat ctggaaaaat gtctggaaag cgcaaccgat 3540
gaagaaagtt ttgcaggttt tattagcgaa ctgaaaggta ttgatgttga tctggcaaaa 3600
cgtattatta gcgttgttgg tcagacctat gaatttgaat atagctttcg cgaactggca 3660
gaacgtaccc tggcagcacc ggttaccatt tttaaagcac gcggcgatga ttatagcttt 3720
attgaaaata gcaatggtta tagcgcagaa ccgccgaccg ttattgatct ggatgcagat 3780
cattatagcc tgctgcgtac cccggatatt ggtgaactgg ttaaacatat tcgctatctg 3840
ctgggtgaat aa 3852
<210> 4
<211> 1283
<212> PRT
<213> 淡紫灰链霉菌(Streptomyces lavendulae)
<400> 4
Met Thr Leu Gln Glu Thr Ser Val Leu Glu Pro Thr Leu Arg Gly Thr
1 5 10 15
Thr Thr Leu Pro Asp Leu Leu Ala Lys Arg Val Ala Glu His Pro Glu
20 25 30
Ala Thr Ala Val Ala Tyr Arg Asp Glu Lys Leu Thr Tyr Arg Glu Leu
35 40 45
Ala Ser Arg Ser Ser Ala Leu Ala Glu Tyr Leu Arg His Leu Gly Val
50 55 60
Ser Thr Asp Asp Cys Val Gly Leu Phe Val Glu Pro Ser Ile Asp Leu
65 70 75 80
Met Val Gly Ala Trp Gly Ile Leu Ser Ala Gly Ala Ala Tyr Leu Pro
85 90 95
Leu Ser Pro Glu Tyr Pro Glu Asp Arg Leu Arg Tyr Met Ile Glu Asn
100 105 110
Ser Gln Ala Lys Ile Ile Leu Ala Gln Gln Arg Leu Val Thr Arg Leu
115 120 125
Arg Glu Leu Ala Pro Gln Asp Val Arg Val Val Thr Leu Arg Glu Ser
130 135 140
Glu Ala Phe Val Leu Pro Glu Gly Gln Val Ala Pro Ala Ile Glu Gly
145 150 155 160
Ala Arg Pro Asp Ser Leu Ala Tyr Val Ile Tyr Thr Ser Gly Ser Thr
165 170 175
Gly Lys Pro Lys Gly Val Met Ile Glu His His Ser Ile Val Ser Gln
180 185 190
Leu Gly Trp Leu Arg Glu Thr Tyr Gly Ile Asp Arg Ser Lys Thr Ile
195 200 205
Leu Gln Lys Thr Pro Met Ser Phe Asp Ala Ala Gln Trp Glu Ile Leu
210 215 220
Ser Pro Ala Asn Gly Ala Thr Val Val Met Gly Ala Pro Gly Val Tyr
225 230 235 240
Ala Asp Pro Glu Gly Leu Ile Glu Thr Ile Val Lys Tyr Gly Val Thr
245 250 255
Thr Leu Gln Cys Val Pro Thr Leu Leu Gln Gly Leu Leu Asp Thr Glu
260 265 270
Lys Phe Pro Glu Cys Thr Ser Leu Gln Gln Ile Phe Ser Gly Gly Glu
275 280 285
Ala Leu Ser Arg Leu Leu Ala Ile Gln Thr Thr Gln Glu Met Pro Gly
290 295 300
Arg Ala Leu Ile Asn Val Tyr Gly Pro Thr Glu Cys Thr Ile Asn Ser
305 310 315 320
Ser Ser Tyr Ala Val Asp Pro Ala Glu Leu Gly Glu Ala Pro Gln Ser
325 330 335
Ile Ser Ile Gly Ala Pro Val Ala Asp Thr Glu Tyr His Ile Leu Gly
340 345 350
Lys Glu Asp Leu Lys Pro Val Gly Val Gly Glu Ile Gly Glu Leu Tyr
355 360 365
Ile Gly Gly Gly Gln Leu Ala Arg Gly Tyr Leu His Arg Pro Asp Leu
370 375 380
Thr Ala Glu Arg Phe Leu Glu Ile Glu Val Thr Glu Gly Ala Gly Pro
385 390 395 400
Val Arg Leu Tyr Lys Thr Gly Asp Leu Gly Gln Trp Asn Pro Asp Gly
405 410 415
Thr Val Gln Phe Ala Gly Arg Ala Asp Asn Gln Val Lys Leu Arg Gly
420 425 430
Tyr Arg Val Glu Leu Asp Glu Ile Ser Leu Ala Ile Glu Asn His Asp
435 440 445
Trp Val Arg Asn Ala Ala Val Ile Val Lys Asn Asp Gly Arg Thr Gly
450 455 460
Phe Gln Asn Leu Ile Ala Cys Val Glu Leu Ser Glu Lys Glu Ala Ala
465 470 475 480
Leu Met Asp Gln Gly Asn His Gly Ser His His Ala Ser Lys Lys Ser
485 490 495
Lys Leu Gln Val Lys Ala Gln Leu Ser Asn Pro Gly Leu Arg Asp Asp
500 505 510
Ala Asp Leu Ala Ala Arg Val Ala Tyr Asp Leu Pro Gly Ala Glu Pro
515 520 525
Thr Pro Glu Gln Arg Ser Arg Val Phe Ala Arg Lys Thr Tyr Arg Phe
530 535 540
Tyr Glu Gly Gly Ala Val Thr Glu Ala Asp Leu Leu Ala Leu Leu Gly
545 550 555 560
Gly Gln Val Pro Ala Ala Tyr Ser Arg Lys Ala Ala Asp Leu Ala Pro
565 570 575
Ala Glu Leu Gly Gln Ile Leu Arg Trp Phe Gly Gln Tyr Leu Ser Glu
580 585 590
Glu Arg Leu Leu Pro Lys Tyr Gly Tyr Ala Ser Pro Gly Ala Leu Tyr
595 600 605
Ala Thr Gln Leu Tyr Phe Glu Leu Glu Gly Val Gly Gly Leu Gln Pro
610 615 620
Gly Tyr Tyr Tyr Tyr Gln Pro Gln Arg His Gln Leu Val Leu Ile Ser
625 630 635 640
Glu Lys Ala Ala Thr Gly Arg Pro Thr Ala His Ile His Phe Ile Gly
645 650 655
Lys Arg Gly Gly Ile Glu Pro Val Tyr Lys Asn Asn Ile Gln Glu Val
660 665 670
Leu Glu Ile Glu Thr Gly His Ile Val Gly Leu Phe Glu Gln Val Leu
675 680 685
Pro Ala Tyr Gly Leu Asp Ile Arg Asp Leu Ala Tyr Glu Pro Ala Val
690 695 700
Arg Asp Leu Leu Asp Val Pro Glu Glu Asp Phe Tyr Leu Gly Thr Phe
705 710 715 720
Glu Leu Val Pro His Thr Gly Arg Arg Glu Asp His Ala Glu Val Tyr
725 730 735
Val Gln Thr His Gly Ser Lys Val Ala Asn Leu Pro Glu Gly Gln Tyr
740 745 750
Arg Tyr Ala Asp Gly Thr Leu Thr Arg Phe Ser Asp Asp Ile Val Leu
755 760 765
Lys Lys Gln Val Ile Ala Ile Asn Gln Ser Val Tyr Gln Ala Ala Ser
770 775 780
Phe Gly Ile Ser Val Ile Ser Arg Ala Pro Glu Glu Trp Met His Tyr
785 790 795 800
Val Thr Leu Gly Lys Lys Leu Gln His Leu Met Met Asn Gly Leu Gly
805 810 815
Leu Gly Phe Met Ser Ser Gly Tyr Ser Ser Lys Thr Gly Asn Pro Leu
820 825 830
Pro Ala Ser Arg Arg Ile Asp Ser Val Leu Gln Ala Asn Gly Val Glu
835 840 845
Ser Gly Pro Ser Tyr Phe Phe Val Gly Gly Arg Val Ser Asp Glu Gln
850 855 860
Leu Gly His Glu Gly Met Arg Glu Asp Ser Val His Met Arg Gly Pro
865 870 875 880
Ala Glu Leu Ile Arg Asp Asp Leu Val Ser Phe Leu Pro Asp Tyr Met
885 890 895
Ile Pro Asn Arg Val Val Val Phe Glu Arg Leu Pro Leu Ser Ala Asn
900 905 910
Gly Lys Ile Asp Ala Lys Ala Leu Ala Ala Ser Asp Gln Val Asn Ala
915 920 925
Glu Leu Val Glu Arg Pro Phe Val Ala Pro Arg Thr Glu Thr Glu Lys
930 935 940
Glu Ile Ala Glu Val Trp Ala Lys Ser Leu Arg Arg Glu Ser Val Ser
945 950 955 960
Val Gln Asp Asp Phe Phe Glu Ser Gly Gly Asn Ser Leu Ile Ala Val
965 970 975
Gly Leu Ile Arg Glu Leu Asn Ser Arg Leu Gly Val Ser Leu Pro Leu
980 985 990
Gln Ser Val Leu Glu Ser Pro Thr Val Glu Lys Leu Ser Arg Arg Leu
995 1000 1005
Glu Arg Glu Val Ala Gln Glu Ser Ser Arg Leu Val Arg Leu His Ala
1010 1015 1020
Glu Thr Gly Lys Asp Arg Pro Val Leu Cys Trp Pro Gly Leu Gly Gly
1025 1030 1035 1040
Tyr Pro Met Asn Leu Arg Thr Leu Ala Gly Glu Ile Gly Leu Gly Arg
1045 1050 1055
Ser Phe Tyr Gly Ile Gln Ala His Gly Ile Asn Glu Gly Glu Ala Pro
1060 1065 1070
Tyr Ala Thr Ile Thr Glu Met Ala Lys Ala Asp Ile Glu Ala Ile Lys
1075 1080 1085
Glu Leu Gln Pro Lys Gly Pro Tyr Thr Leu Trp Gly Tyr Ser Phe Gly
1090 1095 1100
Ala Arg Val Ala Phe Glu Thr Ala Tyr Gln Leu Glu Gln Ala Gly Glu
1105 1110 1115 1120
Lys Val Asp Asn Leu Phe Leu Ile Ala Pro Gly Ser Pro Thr Val Arg
1125 1130 1135
Ala Glu Asn Gly Lys Val Tyr Gly Arg Glu Ala Ser Phe Ala Asn Arg
1140 1145 1150
Ala Tyr Thr Thr Ile Leu Phe Ser Val Phe Thr Gly Thr Ile Ser Gly
1155 1160 1165
Pro Asp Leu Glu Lys Cys Leu Glu Ser Ala Thr Asp Glu Glu Ser Phe
1170 1175 1180
Ala Gly Phe Ile Ser Glu Leu Lys Gly Ile Asp Val Asp Leu Ala Lys
1185 1190 1195 1200
Arg Ile Ile Ser Val Val Gly Gln Thr Tyr Glu Phe Glu Tyr Ser Phe
1205 1210 1215
Arg Glu Leu Ala Glu Arg Thr Leu Ala Ala Pro Val Thr Ile Phe Lys
1220 1225 1230
Ala Arg Gly Asp Asp Tyr Ser Phe Ile Glu Asn Ser Asn Gly Tyr Ser
1235 1240 1245
Ala Glu Pro Pro Thr Val Ile Asp Leu Asp Ala Asp His Tyr Ser Leu
1250 1255 1260
Leu Arg Thr Pro Asp Ile Gly Glu Leu Val Lys His Ile Arg Tyr Leu
1265 1270 1275 1280
Leu Gly Glu
<210> 5
<211> 2934
<212> DNA
<213> 现代玫瑰(Rosa hybrida)
<400> 5
aagcttcagc aagagttgaa gaaataggga cagagccatc catgtgcttt gatgaatctg 60
atgggataca aaatgtgaaa gattcacttg ctgatttatc cagaatttct tcatatagtg 120
aggagaatgt tgaaagatct aatgatgagc actctgttaa actagacgga attcatgtgc 180
agcacgagtg tcatgagggc agtgaagaag acaaacctga tggtaagagc ggtgagaatg 240
cagttgatct ggctaatcat ggcatggctc gaactgattt ttgtcagata acagaagaga 300
ttgagaatgg agtagtcatc actgagatga gcaacattgc caaccctgat aaaactgata 360
ttccaaacgg ggtgcctcaa aatgagactg atgatggatt taataacact caggatgatg 420
ctaatacaaa ggaagtgaca gaagagaatt ctgacagacg tgcgaaggaa gtgacagaag 480
agaattctga caaagatgtt ttgaagaata tccttgaatt ctcacgtgct tcttctgtgg 540
tggattttga aattccagtg ttggatgtga aatttacttc tcttgaaagt tgcagtgcca 600
cttgttctct tgcagccctt ttgtctgaat cgccggaatc aatgactgaa gcaccttgtg 660
tgaggcaaat tgatgatgtg cccccggttg gtgaggagtc tagcttgatt ttggtggaag 720
atcgggagcc ggttggtcct actcctgatg gtaatttttc tgtggatatg gattactata 780
gtgtagcaga acctttgagc acatgggatg cgaatctgca gtgtgaaaca tcaaatagcc 840
atgagacttt tgctgcaagt ctcatttgat agcttctgtg ttaataactt tgttagtctg 900
tacataaatt tgtctagaca agaattggtc gtgtactatc gtgtgttttt gccgtgcttt 960
agtactcatg aaccaattca gagaaaactg gctgcatatt ttgaggagtc tctgaattct 1020
tcaatgctca actggtatgc atgtaggtgg catatcactt cagggattct tctattcttt 1080
aactttacgc atcttgacat tttgtatata acaaaatcag gtctattggg tgaaagtaat 1140
tggctagaat ggaaagctct acggttttac cgcaggtcaa ttttcatagc tccacaagtg 1200
aattgaaaat gctcataggc tttatgtttg tcctccacct ctggcgacga tgtttgttgg 1260
ggagttaact caaacctacc accaaactcg aacccatctt ccataattta taatacaaat 1320
ttgcgatcat ttgttcatcc aattattgtg acactcggct accacccaaa atatcggtca 1380
cagacccaaa cgtattgtca caacaaatcg tgtctctcgc attaaacaca gctagaaaga 1440
agagttgaac ccacaattcg agcacccact acctatgtac gaagtcatga gttcgagtca 1500
ccataggggt agaagtgaaa tcatttgatc atctttaaag aaataaaagg aagagttgaa 1560
cccacaattg gctcttgtcc caaaaagaac taatagttca gtgcaccgac gtgtatttgc 1620
accgacataa atggattgtt agattatatt aaatacactc ttaggttatt aataaaaata 1680
ttaattataa atatcaaaag ttgagatcat cttataaatg ttgggtcagt tacaccgtcg 1740
gtgcatagaa taatttccaa actatataat agccttcatt ttctgattta gctcatggga 1800
catgattgct ataaataatt gtactcgtag aggcatactt gtgtcttttt atacagttgt 1860
actgaagctc agaaaagttt atgaaggtga gaactgagaa gggcaaggca tttggtagtt 1920
gaggtatatg agagcatgaa ccccatgcat tgcagctacc acctctcttt tttccttctt 1980
cccatacaaa taaaaccaac tcttctcacc taagtctatc atctttattt atggcagctc 2040
ttgcttaatt agctcatcta tattatatta tttatctata atatgtgtca ctctgtctac 2100
ctaccagccc aaaataaaac tgataatagt caatttgatg atattttttg ttttttgttt 2160
tgttttgtct tttttgtatt gattttttta aaattaaaat gacttcattt tttgtttttg 2220
tttttttttc tatttttttt tatagaaaaa ttggcaaact ttcattatct gttattgatg 2280
acaattaagc cattaaaacc tataattaat tatctttcaa ttcgagtaaa tttaaaacgg 2340
tgtaaaatta aaatatgatc gtattcttaa atgaataaaa ctcacttaat aatagtaata 2400
cttgaatcac atctacgaac atagattctt ttcatccagt ctaaccatgt ttgaatatat 2460
agagtttgat tatggttatg tctttgtcca cattttggtt tgtaaataaa tgtgcaacgg 2520
aggtatggta ctgttgctct atcaaattca agtttgaatt aaaagaaaaa aaaaaagacg 2580
atattttgtg cgctttgttt ggtaggtaaa acgagagaac aaacgcattc caaatcatgc 2640
ggattttgat cggcaacaca caccacaaaa aaccgtacac gatgcacgtg ccatttgccg 2700
ggggtttcta acaaggtaat tgggcaggca cgtgatcccc cagctaccca cctctcgctt 2760
cccttctcaa actccttttc catgtatata tacaacccct tttctcagac cattatattc 2820
taacattttt gctttgctat tgtaacgcaa caaaaactgc tcattccatc cttgttcctc 2880
cccattttga tcttctctcg acccttctcc gagatgggta ccgagctcga attc 2934
<210> 6
<211> 1183
<212> DNA
<213> 现代玫瑰(Rosa hybrida)
<400> 6
cgatggactc cagagcggcc gcggggtggg tttccccacc acgtgtcttt acgaccctcc 60
aatcagaaga gaggaaattt tcaatctttt ccaaaattgc ccctgctccc tgaagtgcaa 120
tacccaaaac actcccctgc tgggcattga ttggccctcc ccaccacgtg tccgtgcggg 180
tgccctacgc aagattctct cctcttcctc ctctatatcc catcaatcat tcacaggtaa 240
aagaattaat gtatatcttt gataaaataa atgagtaaaa actggacggt tgatggaccc 300
tgaatcaaat gagtgattcc catggtttct ctttactttt gcttcaggtc caatacaaaa 360
tgtattatac cacttacatt tccttgtaat aataactaaa gtcatataca ttaaaaattg 420
aagccaagtt ttggaaatta gtataatgga ggaaagatcg tttttccctt tataaatacc 480
ttctctgagt cccccttgct ttcatttttc tgcatatctt cttgtttaga ttgtggaaaa 540
gaaaagaagt ctaagaaaaa acccaaaagg tagaaacctc tctgtttctt tcatcatctc 600
catcttctct ttgttttctt atctgggtat tgatcaaaat actcaaaaca ccatctggta 660
atccaatctt cagtgcctca cttttttagt ccaattcatg tttttgactt ttgagtactc 720
cacagctagc tagatcagca actgcttgat gtttgctgtc aaagaaccca aaaagcaatg 780
aacttaaaat tttttagtcc atcagttcac aatttctttt agtccaattc atgtttttag 840
ctccacagct agatcagcaa ctgtactttg atgtttgttg tcaaagaacc caaagtgcaa 900
tgaacttatt aactctcagt ccatcagttc gcaatttctt gagctagtta gctagttgta 960
gtgtaacacc acgcttttct tgatcaaagc tagatagggg agattagtac tatttagaaa 1020
ccgtcttttg attttctaat ttgtacataa agtttgatcc ttttttgctt gattgatgat 1080
tctcattgta cattggcctt ttttttttct ttcccctact tgattgatga ctctcattgt 1140
ggaaaagaaa agaagtctaa gaaaaaaccc aaaagctgca act 1183
<210> 7
<211> 4491
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
tgaaggcggg aaacgacaat ctgatcatga gcggagaatt aagggagtca cgttatgacc 60
cccgccgatg acgcgggaca agccgtttta cgtttggctc gaggataatt tatttgaaaa 120
ttcataagaa aagcaaacgt tacatgaatt gatgaaacaa tacaaagaca gataaagcca 180
cgcacattta ggatattggc cgagattact gaatattgag taagatcacg gaatttctga 240
caggagcatg tcttcaattc agcccaaatg gcagttgaaa tactcaaacc gccccatatg 300
caggagcgga tcattcattg tttgtttggt tgcctttgcc aacatgggag tccaagggat 360
ccgaattcga gctcggtacc catctcggag aagggtcgag agaagatcaa aatggggagg 420
aacaaggatg gaatgagcag tttttgttgc gttacaatag caaagcaaaa atgttagaat 480
ataatggtct gagaaaaggg gttgtatata tacatggaaa aggagtttga gaagggaagc 540
gagaggtggg tagctggggg atcacgtgcc tgcccaatta ccttgttaga aacccccggc 600
aaatggcacg tgcatcgtgt acggtttttt gtggtgtgtg ttgccgatca aaatccgcat 660
gatttggaat gcgtttgttc tctcgtttta cctaccaaac aaagcgcaca aaatatcgtc 720
tttttttttt tcttttaatt caaacttgaa tttgatagag caacagtacc atacctccgt 780
tgcacattta tttacaaacc aaaatgtgga caaagacata accataatca aactctatat 840
attcaaacat ggttagactg gatgaaaaga atctatgttc gtagatgtga ttcaagtatt 900
actattatta agtgagtttt attcatttaa gaatacgatc atattttaat tttacaccgt 960
tttaaattta ctcgaattga aagataatta attataggtt ttaatggctt aattgtcatc 1020
aataacagat aatgaaagtt tgccaatttt tctataaaaa aaaatagaaa aaaaaacaaa 1080
aacaaaaaat gaagtcattt taattttaaa aaaatcaata caaaaaagac aaaacaaaac 1140
aaaaaacaaa aaatatcatc aaattgacta ttatcagttt tattttgggc tggtaggtag 1200
acagagtgac acatattata gataaataat ataatataga tgagctaatt aagcaagagc 1260
tgccataaat aaagatgata gacttaggtg agaagagttg gttttatttg tatgggaaga 1320
aggaaaaaag agaggtggta gctgcaatgc atggggttca tgctctcata tacctcaact 1380
accaaatgcc ttgcccttct cagttctcac cttcataaac ttttctgagc ttcagtacaa 1440
ctgtataaaa agacacaagt atgcctctac gagtacaatt atttatagca atcatgtccc 1500
atgagctaaa tcagaaaatg aaggctatta tatagtttgg aaattattct atgcaccgac 1560
ggtgtaactg acccaacatt tataagatga tctcaacttt tgatatttat aattaatatt 1620
tttattaata acctaagagt gtatttaata taatctaaca atccatttat gtcggtgcaa 1680
atacacgtcg gtgcactgaa ctattagttc tttttgggac aagagccaat tgtgggttca 1740
actcttcctt ttatttcttt aaagatgatc aaatgatttc acttctaccc ctatggtgac 1800
tcgaactcat gacttcgtac ataggtagtg ggtgctcgaa ttgtgggttc aactcttctt 1860
tctagctgtg tttaatgcga gagacacgat ttgttgtgac aatacgtttg ggtctgtgac 1920
cgatattttg ggtggtagcc gagtgtcaca ataattggat gaacaaatga tcgcaaattt 1980
gtattataaa ttatggaaga tgggttcgag tttggtggta ggtttgagtt aactccccaa 2040
caaacatcgt cgccagaggt ggaggacaaa cataaagcct atgagcattt tcaattcact 2100
tgtggagcta tgaaaattga cctgcggtaa aaccgtagag ctttccattc tagccaatta 2160
ctttcaccca atagacctga ttttgttata tacaaaatgt caagatgcgt aaagttaaag 2220
aatagaagaa tccctgaagt gatatgccac ctacatgcat accagttgag cattgaagaa 2280
ttcagagact cctcaaaata tgcagccagt tttctctgaa ttggttcatg agtactaaag 2340
cacggcaaaa acacacgata gtacacgacc aattcttgtc tagacaaatt tatgtacaga 2400
ctaacaaagt tattaacaca gaagctatca aatgagactt gcagcaaaag tctcatggct 2460
atttgatgtt tcacactgca gattcgcatc ccatgtgctc aaaggttctg ctacactata 2520
gtaatccata tccacagaaa aattaccatc aggagtagga ccaaccggct cccgatcttc 2580
caccaaaatc aagctagact cctcaccaac cgggggcaca tcatcaattt gcctcacaca 2640
aggtgcttca gtcattgatt ccggcgattc agacaaaagg gctgcaagag aacaagtggc 2700
actgcaactt tcaagagaag taaatttcac atccaacact ggaatttcaa aatccaccac 2760
agaagaagca cgtgagaatt caaggatatt cttcaaaaca tctttgtcag aattctcttc 2820
tgtcacttcc ttcgcacgtc tgtcagaatt ctcttctgtc acttcctttg tattagcatc 2880
atcctgagtg ttattaaatc catcatcagt ctcattttga ggcaccccgt ttggaatatc 2940
agttttatca gggttggcaa tgttgctcat ctcagtgatg actactccat tctcaatctc 3000
ttctgttatc tgacaaaaat cagttcgagc catgccatga ttagccagat caactgcatt 3060
ctcaccgctc ttaccatcag gtttgtcttc ttcactgccc tcatgacact cgtgctgcac 3120
atgaattccg tctagtttaa cagagtgctc atcattagat ctttcaacat tctcctcact 3180
atatgaagaa attctggata aatcagcaag tgaatctttc acattttgta tcccatcaga 3240
ttcatcaaag cacatggatg gctctgtccc tatttcttca actcttgctg aagcttcccg 3300
ggcgatggac tccagagcgg ccgcggggtg ggtttcccca ccacgtgtct ttacgaccct 3360
ccaatcagaa gagaggaaat tttcaatctt ttccaaaatt gcccctgctc cctgaagtgc 3420
aatacccaaa acactcccct gctgggcatt gattggccct ccccaccacg tgtccgtgcg 3480
ggtgccctac gcaagattct ctcctcttcc tcctctatat cccatcaatc attcacaggt 3540
aaaagaatta atgtatatct ttgataaaat aaatgagtaa aaactggacg gttgatggac 3600
cctgaatcaa atgagtgatt cccatggttt ctctttactt ttgcttcagg tccaatacaa 3660
aatgtattat accacttaca tttccttgta ataataacta aagtcatata cattaaaaat 3720
tgaagccaag ttttggaaat tagtataatg gaggaaagat cgtttttccc tttataaata 3780
ccttctctga gtcccccttg ctttcatttt tctgcatatc ttcttgttta gattgtggaa 3840
aagaaaagaa gtctaagaaa aaacccaaaa ggtagaaacc tctctgtttc tttcatcatc 3900
tccatcttct ctttgttttc ttatctgggt attgatcaaa atactcaaaa caccatctgg 3960
taatccaatc ttcagtgcct cactttttta gtccaattca tgtttttgac ttttgagtac 4020
tccacagcta gctagatcag caactgcttg atgtttgctg tcaaagaacc caaaaagcaa 4080
tgaacttaaa attttttagt ccatcagttc acaatttctt ttagtccaat tcatgttttt 4140
agctccacag ctagatcagc aactgtactt tgatgtttgt tgtcaaagaa cccaaagtgc 4200
aatgaactta ttaactctca gtccatcagt tcgcaatttc ttgagctagt tagctagttg 4260
tagtgtaaca ccacgctttt cttgatcaaa gctagatagg ggagattagt actatttaga 4320
aaccgtcttt tgattttcta atttgtacat aaagtttgat ccttttttgc ttgattgatg 4380
attctcattg tacattggcc tttttttttt ctttccccta cttgattgat gactctcatt 4440
gtggaaaaga aaagaagtct aagaaaaaac ccaaaagctg caactactag t 4491
<210> 8
<211> 48
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
agaaaaaacc caaaagctgc aactaatgac ccttcaagaa accagcgt 48
<210> 9
<211> 55
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ttgaacgatc ggggaaattc gagctcatta ttcacccagc agatagcgaa tatgt 55
<210> 10
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
gagatgggta ccgagctcga attcgatgaa gatttacaga atttatatgg accgccc 57
<210> 11
<211> 55
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
cctttgccaa catgggagtc caaggctata aaagctcttc gtacgacacc attgt 55

Claims (11)

1.催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法,其特征包括如下步骤:
1)选取编码磷酸泛酰巯基乙胺基转移酶的Sfp基因和编码靛蓝合成酶的bpsA基因,分别克隆在含植物启动子的质粒的植物启动子下游;
2)将步骤1)获得的质粒,在大肠杆菌中扩增,并转入土壤农杆菌;
3)利用土壤农杆菌介导把含Sfp和bpsA的DNA转入花卉中;
所述花卉为玫瑰或月季。
2.根据权利要求1所述的方法,其特征是所述Sfp基因的核苷酸序列为SEQ ID NO.1所示。
3.根据权利要求2所述的方法,其特征是所述Sfp基因所编码的磷酸泛酰巯基乙胺基转移酶的氨基酸序列为SEQ ID NO.2所示。
4.根据权利要求1所述的方法,其特征是所述bpsA基因的核苷酸序列为SEQ ID NO.3所示。
5.根据权利要求1所述的方法,其特征是所述bpsA基因所编码的靛蓝合成酶的氨基酸序列为SEQ ID NO.4所示。
6.根据权利要求1所述的方法,其特征是Sfp基因上游的植物启动子CHSp的核苷酸序列为SEQ ID NO.5所示。
7.根据权利要求1所述的方法,其特征是bpsA基因上游的植物启动子RhAGp的核苷酸序列为SEQ ID NO.6所示。
8.根据权利要求1所述的方法,其特征是所述含植物启动子的质粒为pBI121。
9.根据权利要求1所述的方法,其中所述Sfp基因来源于枯草芽孢杆菌(Bacillussubtilis)。
10.根据权利要求1所述的方法,其中所述bpsA基因来源于淡紫色链霉菌(Streptomyces lavendulae)。
11.根据权利要求1所述的方法,其中所述Sfp基因和bpsA基因的密码子根据所述花卉的密码子偏好性进行优化。
CN201810095829.2A 2018-01-31 2018-01-31 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法 Active CN108330146B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201810095829.2A CN108330146B (zh) 2018-01-31 2018-01-31 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法
JP2020541990A JP7194741B2 (ja) 2018-01-31 2018-11-23 グルタミンからインジゴイジンへの合成を触媒して青い花を得る遺伝子組み換え方法
CN201880088112.3A CN111788310A (zh) 2018-01-31 2018-11-23 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法
PCT/CN2018/117160 WO2019148944A1 (zh) 2018-01-31 2018-11-23 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法
EP18903578.5A EP3748005A4 (en) 2018-01-31 2018-11-23 TRANSGENIC METHOD OF OBTAINING BLUE FLOWERS BY CATALYSIS OF GLUTAMINE TO SYNTHEZE INDIGO
US16/966,719 US20230257760A1 (en) 2018-01-31 2018-11-23 Transgenic method of obtaining blue flowers by catalyzing glutamine to synthesize indigo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810095829.2A CN108330146B (zh) 2018-01-31 2018-01-31 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法

Publications (2)

Publication Number Publication Date
CN108330146A CN108330146A (zh) 2018-07-27
CN108330146B true CN108330146B (zh) 2020-06-02

Family

ID=62927522

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810095829.2A Active CN108330146B (zh) 2018-01-31 2018-01-31 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法
CN201880088112.3A Pending CN111788310A (zh) 2018-01-31 2018-11-23 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201880088112.3A Pending CN111788310A (zh) 2018-01-31 2018-11-23 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法

Country Status (5)

Country Link
US (1) US20230257760A1 (zh)
EP (1) EP3748005A4 (zh)
JP (1) JP7194741B2 (zh)
CN (2) CN108330146B (zh)
WO (1) WO2019148944A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108330146B (zh) * 2018-01-31 2020-06-02 天津大学 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法
CN109897864A (zh) * 2018-11-28 2019-06-18 云南省农业科学院花卉研究所 一种月季花香基因沉默的快速方法
CN114438005B (zh) * 2021-12-22 2023-10-27 福建师范大学 一种用于合成靛蓝色素重组菌的构建方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189856A (zh) * 1995-06-07 1998-08-05 卡尔金公司 子房组织转录因子的用途

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268546B1 (en) * 1989-07-19 2001-07-31 Calgene Llc Ovary-tissue transcriptional factors
CN1127015A (zh) * 1993-05-20 1996-07-17 国际花卉开发有限公司 转基因显花植物
KR101100930B1 (ko) 2003-08-13 2012-01-02 산토리 홀딩스 가부시키가이샤 꽃의 색상이 변경된 장미의 제조 방법
JP2007189969A (ja) * 2006-01-20 2007-08-02 Hiroshima Univ 青色素合成遺伝子
CN100497487C (zh) * 2006-11-10 2009-06-10 中国农业大学 生物合成靛蓝的方法
JP5285304B2 (ja) 2007-03-15 2013-09-11 石原産業株式会社 ツユクサのフラボノイド3’,5’−水酸化酵素遺伝子
EP2128255B1 (en) * 2007-03-29 2015-01-28 Suntory Holdings Limited Method for producing transgenic surface chimeric plant
AU2008323623B2 (en) * 2007-11-15 2015-01-22 Suntory Holdings Limited Genetically modified chrysanthemums
WO2015084189A1 (en) * 2013-12-05 2015-06-11 Victoria Link Limited Methods of detecting and measuring glutamine and analogues thereof, and methods related thereto
US20160168619A1 (en) * 2014-12-11 2016-06-16 Shufang Tao Colorimetric assay for l-glutamine and related assay kit
KR102437156B1 (ko) * 2015-11-24 2022-08-26 삼성전자주식회사 전자 장치의 상태에 따른 음성 신호 처리 방법 및 그 전자 장치
CN108330146B (zh) * 2018-01-31 2020-06-02 天津大学 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189856A (zh) * 1995-06-07 1998-08-05 卡尔金公司 子房组织转录因子的用途

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Cloning and Characterization of a Streptomyces Single Module Type Nonribosomal Peptide Synthetase Catalyzing a Blue Pigment Synthesis;Hitoshi Takahashi等;《Journal of Biological Chemistry》;20070119;第282卷(第12期);参见摘要 *
GENBANK登录号: DD118139.1;Process for production of rose with altered color;《GENBANK》;20151104;参见序列 *
GENBANK登录号: KT429820.1;Rosa hybrid cultivar Vendela AGAMOUS-like protein (RhAG) gene, p;《GENBANK》;20151020;参见序列 *
GENBANK登录号: WP_030237949.1;amino acid adenylation domain-containing protein;《GENBANK》;20170817;参见序列 *
GENBANK登录号:WP_069322372.1;4"-phosphopantetheinyl transferase;《GENBANK》;20180111;参见序列 *

Also Published As

Publication number Publication date
JP7194741B2 (ja) 2022-12-22
CN111788310A (zh) 2020-10-16
JP2021511810A (ja) 2021-05-13
WO2019148944A1 (zh) 2019-08-08
EP3748005A1 (en) 2020-12-09
EP3748005A4 (en) 2021-12-08
US20230257760A1 (en) 2023-08-17
CN108330146A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
Kobayashi et al. Identification of novel cis‐acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron‐deficiency‐inducible, root‐specific expression in heterogeneous tobacco plants
Harris et al. Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA
JP5598830B2 (ja) アントシアニンの3’位への芳香族アシル基転移酵素をコードする遺伝子を用いたアントシアニン色素の安定化ならびに青色化方法
US9074215B2 (en) Method for production of chrysanthemum plant having delphinidin-containing petals
CN108330146B (zh) 催化谷氨酰胺合成靛蓝获得蓝色花卉的转基因方法
KR100559061B1 (ko) 아실기 전이활성을 갖는 단백질을 암호화하는 유전자
Guo et al. Isopentenyl transferase gene (ipt) downstream transcriptionally fused with gene expression improves the growth of transgenic plants
ES2322770T3 (es) Genes que codifican sintasas de flavonas.
CN107723297A (zh) 蝴蝶兰R3‑MYBx1基因及其在花色调节中的应用
KR101259682B1 (ko) 미세조류 유래 베타카로틴 케톨레이제(ketolase)유전자 및 이를 이용한 케토형 카로티노이드 생산과 동시에 베타카로틴 증산하는 형질전환 식물체 제조 방법
Levy et al. Transient Agrobacterium-mediated gene expression in the Arabidopsis hydroponics root system for subcellular localization studies
Yu et al. Functional Analysis of Genes GlaDFR1 and GlaDFR2 Encoding Dihydroflavonol 4-Reductase (DFR) in Gentiana lutea L. Var. Aurantiaca (M. Laínz) M. Laínz
CN113122566B (zh) Hak基因在调控植物性状中的作用
CN112442494B (zh) 拟南芥与大豆中两个tk1类受体激酶基因及其应用
KR100417805B1 (ko) 박테리아 또는 진핵세포에 고온내성을 부여하는 식물유전자 gcyc1
Yu et al. Research Article Functional Analysis of Genes GlaDFR1 and GlaDFR2 Encoding Dihydroflavonol 4-Reductase (DFR) in Gentiana lutea L. Var. Aurantiaca (M. Laínz) M. Laínz
CN111139245A (zh) 基因cda1在调控叶绿体发育中的应用
CN116462744A (zh) 牡丹响应光信号调控花果性状的蛋白及编码基因PsCIP7与应用
KR20150136273A (ko) 전신 발현 프로모터 Br16
US9376688B2 (en) Method of producing cyclamen with multi-petaled flowers
CN116970053A (zh) 植物类胡萝卜素合成相关蛋白DcAPRR2及其编码基因与应用
CN110832080A (zh) 丙二酰基转移酶基因的应用
CN114891080A (zh) Mbw复合体及其在调控杨絮发育中的应用
CN101134965A (zh) 一种花特异性启动子、表达盒及其植物表达载体
Wu et al. Functional Validation of Chalcone Isomerase Rhchi Gene in Regulation of the Flower Color Formation in Rhododendron Hybridum Hort

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant