CN108329911A - 一种氮磷掺杂的碳量子点的制备方法 - Google Patents

一种氮磷掺杂的碳量子点的制备方法 Download PDF

Info

Publication number
CN108329911A
CN108329911A CN201710044423.7A CN201710044423A CN108329911A CN 108329911 A CN108329911 A CN 108329911A CN 201710044423 A CN201710044423 A CN 201710044423A CN 108329911 A CN108329911 A CN 108329911A
Authority
CN
China
Prior art keywords
quantum dot
carbon quantum
nitrogen phosphorus
phosphorus doping
mpd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710044423.7A
Other languages
English (en)
Inventor
董伟
左淦丞
李军舰
潘夕郝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710044423.7A priority Critical patent/CN108329911A/zh
Publication of CN108329911A publication Critical patent/CN108329911A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0065Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the luminescent/fluorescent agent having itself a special physical form, e.g. gold nanoparticle
    • A61K49/0067Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the luminescent/fluorescent agent having itself a special physical form, e.g. gold nanoparticle quantum dots, fluorescent nanocrystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种氮磷掺杂的碳量子点的制备方法,先将间苯二胺和二乙烯三胺五甲叉膦酸溶解于甲醇中得到前驱体溶液,然后将前驱体溶液置于高压反应釜中,在100~250℃下反应,反应结束后透析分离,冻干得到氮磷掺杂的碳量子点。本发明方法简单,制备成本低,原料简单易得,重复性较好,碳量子点的荧光产率高达32%,制得的氮磷掺杂的碳量子点光学稳定,能够选择性地检测Fe3+,最低检测限达1.1×10‑7mol·L‑1,并且毒性低,具有良好的生物相容性,在生物成像方面具有很好的应用前景,能够用于纳米靶向诊断和靶向治疗等领域。

Description

一种氮磷掺杂的碳量子点的制备方法
技术领域
本发明属于离子检测技术领域,具体涉及一种氮磷掺杂的碳量子点的制备方法。
背景技术
碳量子点是一种新型的荧光碳材料,具有优异并可调的荧光性质以及良好的生物相容性。铁离子是人体内必不可少的的微量元素之一,人体中Fe3+含量过多或过少都将会导致各种疾病,因此找到一种能够灵敏且简便快捷的检测Fe3+含量的方法是十分必要的。目前,文献已公开了多种碳量子点作为检测Fe3+方面的应用,但是这些量子点没有好的生物相容性,不能很好的进入细胞内呈现出强的荧光,而且基本上为蓝色的荧光。文献1报道了一种用羊毛经过300℃高温水热合成的量子点,该量子点在水中可以检测Fe3+,但是该量子点的荧光发射峰波长比较低,出峰位置在407nm,呈现蓝色的荧光,但是蓝色的荧光对于细胞成像有很大的干扰,制约了此类量子点在生物中的应用(Wang R,et al.One-stepsynthesis of self-doped carbon dots with highly photoluminescence asmultifunctional biosensors for detection of iron ions and pH[J].Sensors&Actuators B Chemical,2016,241:73-79.)。文献2报道了一种由N-(膦羧甲基)亚氨基二乙酸和乙二胺通过微波法制得的N,P共掺杂的碳量子点,该量子点的量子产率为17.5%,其荧光发射峰出峰位置在430nm,呈现蓝色的荧光(Li H,et al.Microwave-assistedsynthesis of N,P-doped carbon dots for fluorescent cell imaging[J].Microchimica Acta,2016,183(2):821-826.)。文献3报道了一种5'-腺嘌呤核苷酸在180℃下经水热法制得的N,P共掺杂的碳量子点,该量子点最大激发波长为360nm,最大发射波长为430nm,量子产率为26.5%,可以选择性检测Fe3+(Su Y,et al.Preparation offluorescent N,P-doped carbon dots derived from adenosine 5′-monophosphate foruse in multicolor bioimaging of adenocarcinomic human alveolar basalepithelial cells[J].Microchimica Acta,2016:1-8.)。上述的量子点的荧光颜色均为蓝色且量子产率不高,由于蓝色的荧光对于细胞成像有很大的干扰,因此制约了其在生物中的应用。
发明内容
本发明的目的在于克服现有的碳量子点制备技术中所存在的生物相容性差和荧光激发波长较低的不足,提供了一种氮磷掺杂的碳量子点的制备方法,该方法制备的氮磷掺杂的碳量子点具有高的发光性,尺寸分布均匀,较高的激发波长,可以很好的检测Fe3+,生物相容性好。
为了实现了上述发明目的,本发明的技术方案如下:
一种氮磷掺杂的碳量子点的制备方法,包括以下步骤:
步骤1,以间苯二胺做为碳源和氮源,与二乙烯三胺五甲叉膦酸混合后溶解在甲醇中,得到前驱体溶液;
步骤2,将前驱体溶液置于高压反应釜中,于100~250℃下反应2~12h,反应结束后冷却至室温,得到悬浊液,透析分离后冻干,得到氮磷掺杂的碳量子点。
优选地,步骤1中,所述的前驱体溶液中,间苯二胺的浓度为0.1~2mol/L,二乙烯三胺五甲叉膦酸的浓度为0.1~2mol/L。
优选地,步骤2中,反应温度为180℃,反应时间为8~12h。
本发明方法简单,制备成本低,原料简单易得,重复性较好,碳量子点的荧光产率高达32%。本发明方法制得的氮磷掺杂的碳量子点光学稳定,能够选择性地检测Fe3+,最低检测限达1.1×10-7mol·L-1,并且毒性低,具有良好的生物相容性,在生物成像方面具有很好的应用前景,能够用于纳米靶向诊断和靶向治疗等领域。
附图说明
图1是实施例1制备的氮磷掺杂的碳量子点的AFM图。
图2是实施例1制备的氮磷掺杂的碳量子点的XPS图。
图3是实施例1制备的氮磷掺杂的碳量子点的MTT法检测图。
图4是实施例1制备的氮磷掺杂的碳量子点对不同离子的检测图。
具体实施方式
下面通过具体实施例和附图对本发明做进一步详细说明。
实施例1
步骤1:将间苯二胺和二乙烯三胺五甲叉膦酸混合,溶解在甲醇中,得到间苯二胺浓度为0.1mol/L,二乙烯三胺五甲叉膦酸浓度为1mol/L的前驱体溶液。
步骤2:将步骤1所得到的前驱体溶液置于高压反应釜中,180℃下反应8h,反应结束后冷却至室温,得到悬浊液,透析分离后冻干,得到氮磷掺杂的碳量子点。其相对量子产率(以荧光素为标准)为31.3%。
图1为制备的氮磷掺杂的碳量子点的AFM图,可以看出,N,P掺杂的碳量子点的尺寸均一,大约在3nm左右,并且分散均匀。图2为氮磷掺杂的碳量子点的XPS图,可以看出,在C1s分峰图中表明量子点表面有C=C(284.5eV),C-N(285.4eV),C-O(286.0eV)与C=O(288.1eV)等化学键。在N1s分峰图中表明量子点表面有N-H(398.4eV),C-N=C(400.5eV)和N-C/N-N/N-P(401.1eV)等含氮化学键。
实施例2
步骤1:将间苯二胺和二乙烯三胺五甲叉膦酸混合,溶解在甲醇中,得到间苯二胺浓度为1mol/L,二乙烯三胺五甲叉膦酸浓度为1mol/L前驱体溶液。
步骤2:将步骤1所得到的前驱体溶液置于高压反应釜中,180℃下反应8h,反应结束后冷却至室温,得到悬浊液,透析分离后冻干,得到氮磷掺杂的碳量子点。其相对量子产率(以荧光素为标准)为33.3%。
实施例3
步骤1:将间苯二胺和二乙烯三胺五甲叉膦酸混合,溶解在甲醇中,得到间苯二胺浓度为2mol/L,二乙烯三胺五甲叉膦酸浓度为1mol/L前驱体溶液。
步骤2:将步骤1所得到的前驱体溶液置于高压反应釜中,180℃下反应8h,反应结束后冷却至室温,得到悬浊液,透析分离后冻干,得到氮磷掺杂的碳量子点。其相对量子产率(以荧光素为标准)为31.6%。
实施例4
步骤1:将间苯二胺和二乙烯三胺五甲叉膦酸混合,溶解在甲醇中,得到间苯二胺浓度为1mol/L,二乙烯三胺五甲叉膦酸浓度为0.1mol/L前驱体溶液。
步骤2:将步骤1所得到的前驱体溶液置于高压反应釜中,180℃下反应8h,反应结束后冷却至室温,得到悬浊液,透析分离后冻干,得到氮磷掺杂的碳量子点。其相对量子产率(以荧光素为标准)为30.3%。
实施例5
步骤1:将间苯二胺和二乙烯三胺五甲叉膦酸混合,溶解在甲醇中,得到间苯二胺浓度为1mol/L,二乙烯三胺五甲叉膦酸浓度为2mol/L前驱体溶液。
步骤2:将步骤1所得到的前驱体溶液置于高压反应釜中,180℃下反应8h,反应结束后冷却至室温,得到悬浊液,透析分离后冻干,得到氮磷掺杂的碳量子点。其相对量子产率(以荧光素为标准)为31.6%。
实施例6
步骤1:将间苯二胺和二乙烯三胺五甲叉膦酸混合,溶解在甲醇中,得到间苯二胺浓度为1mol/L,二乙烯三胺五甲叉膦酸浓度为1mol/L前驱体溶液。
步骤2:将步骤1所得到的前驱体溶液置于高压反应釜中,100℃下反应2h,反应结束后冷却至室温,得到悬浊液,透析分离后冻干,得到氮磷掺杂的碳量子点。其相对量子产率(以荧光素为标准)为2.8%。
实施例7
步骤1:将间苯二胺和二乙烯三胺五甲叉膦酸混合,溶解在甲醇中,得到间苯二胺浓度为1mol/L,二乙烯三胺五甲叉膦酸浓度为1mol/L前驱体溶液。
步骤2:将步骤1所得到的前驱体溶液置于高压反应釜中,250℃下反应12h,反应结束后冷却至室温,得到悬浊液,透析分离后冻干,得到氮磷掺杂的碳量子点。其相对量子产率(以荧光素为标准)为12.6%。
实施例8
步骤1:将间苯二胺和二乙烯三胺五甲叉膦酸混合,溶解在甲醇中,得到间苯二胺浓度为1mol/L,二乙烯三胺五甲叉膦酸浓度为1mol/L前驱体溶液。
步骤2:将步骤1所得到的前驱体溶液置于高压反应釜中,180℃下反应2h,反应结束后冷却至室温,得到悬浊液,透析分离后冻干,得到氮磷掺杂的碳量子点。其相对量子产率(以荧光素为标准)为14.6%。
实施例9
步骤1:将间苯二胺和二乙烯三胺五甲叉膦酸混合,溶解在甲醇中,得到间苯二胺浓度为1mol/L,二乙烯三胺五甲叉膦酸浓度为1mol/L前驱体溶液。
步骤2:将步骤1所得到的前驱体溶液置于高压反应釜中,180℃下反应12h,反应结束后冷却至室温,得到悬浊液,透析分离后冻干,得到氮磷掺杂的碳量子点。其相对量子产率(以荧光素为标准)为29.6%。
实施例10
将A549细胞按照每孔6000个细胞的密度接种在96孔板中,在37℃的5%CO2孵育箱培养24h,使用含有胎牛血清的不完全培养基分别配制10,25,50,100μg/mL的N,P掺杂的碳量子点溶液与细胞共同培养。对照组为不加N,P掺杂的碳量子点的细胞。孵育箱培养24h后,于每孔中加入20μL MTT溶液(5mg/mL),继续培养4h;然后去除旧培养基,在每孔中加入150μL DMSO(二甲基亚砜),振荡10min待沉淀物溶解后,使用Bio-Rad酶标仪在490nm波长下从测定各个孔的吸光值。细胞毒性测试结果如附图3。在附图4中当N,P掺杂的碳量子点浓度增加时,细胞存活率一定程度下有所降低,然而其最低细胞存活率仍高于83%。这说明制备的N,P掺杂的碳量子点毒性很低。
实施例11
1、N,P掺杂的碳量子点的阳离子识别性能研究
将N,P掺杂的碳量子点作为受体化合物,分别移取0.5mL受体化合物的水溶液(50μg/mL)于一系列10mL比色管中,然后再分别加入0.25mL的Fe3+,Ag+,Pb2+,Cd2+,Cr3+,Mg2+,Cu2 +,Zn2+,Ca2+,Ni2+,Hg2+和Co3+(4×10-3mol/mL),定容到5mL,此时N,P掺杂的碳量子点的浓度为5μg/mL。混合均匀后放置30分钟左右,观察各个受体化合物对离子的响应。
发现,当在受体化合物的水溶液中分别加入上述离子时,只有Fe3+的加入使受体的荧光发生猝灭。另外,N,P掺杂的碳量子点水溶液在365nm波长紫外光激发下在545nm处出有一个荧光发射峰,呈现绿色荧光。而Fe3+的加入使得溶液的荧光峰消失。其它阳离子的加入对荧光没有任何影响(见图4)。因此,该量子点能单一选择性检测Fe3+
2、N,P掺杂的碳量子点对Fe3+最低检测限的测定
在25℃时,根据Fe3+对受体化合物溶液的滴定实验,通过3sB/S计算,得到该受体化合物对Fe3+离子的最低检测限达1.1×10-7mol·L-1。由此说明该受体化合物在水中的Fe3+检测方面有潜在的应用价值。

Claims (3)

1.一种氮磷掺杂的碳量子点的制备方法,其特征在于,包括以下步骤:
步骤1,以间苯二胺做为碳源和氮源,与二乙烯三胺五甲叉膦酸混合后溶解在甲醇中,得到前驱体溶液;
步骤2,将前驱体溶液置于高压反应釜中,于100~250℃下反应2~12h,反应结束后冷却至室温,得到悬浊液,透析分离后冻干,得到氮磷掺杂的碳量子点。
2.根据权利要求1所述的氮磷掺杂的碳量子点的制备方法,其特征在于,步骤1中,所述的前驱体溶液中,间苯二胺的浓度为0.1~2mol/L,二乙烯三胺五甲叉膦酸的浓度为0.1~2mol/L。
3.根据权利要求1所述的氮磷掺杂的碳量子点的制备方法,其特征在于,步骤2中,反应温度为180℃,反应时间为8~12h。
CN201710044423.7A 2017-01-19 2017-01-19 一种氮磷掺杂的碳量子点的制备方法 Pending CN108329911A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710044423.7A CN108329911A (zh) 2017-01-19 2017-01-19 一种氮磷掺杂的碳量子点的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710044423.7A CN108329911A (zh) 2017-01-19 2017-01-19 一种氮磷掺杂的碳量子点的制备方法

Publications (1)

Publication Number Publication Date
CN108329911A true CN108329911A (zh) 2018-07-27

Family

ID=62922294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710044423.7A Pending CN108329911A (zh) 2017-01-19 2017-01-19 一种氮磷掺杂的碳量子点的制备方法

Country Status (1)

Country Link
CN (1) CN108329911A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477224A (zh) * 2021-08-09 2021-10-08 南京理工大学 一种有机膦改性羟基磷灰石的制备方法
CN114225911A (zh) * 2021-12-17 2022-03-25 陕西工业职业技术学院 一种基于马铃薯的氮磷共掺杂碳点@zif-8及其制备方法和应用
CN114620710A (zh) * 2022-01-18 2022-06-14 陕西科技大学 一种荧光碳量子点及氮-磷共掺杂荧光碳量子点的合成方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104787744A (zh) * 2014-01-16 2015-07-22 中国药科大学 一种以氨基酸为前驱体合成碳量子点的方法及其用于金属离子浓度的检测
CN106085426A (zh) * 2016-07-06 2016-11-09 北京化工大学 具有室温磷光性质的两亲性碳点及其合成方法与应用
CN106315557A (zh) * 2016-08-18 2017-01-11 常州大学 一种氮磷掺杂碳量子点的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104787744A (zh) * 2014-01-16 2015-07-22 中国药科大学 一种以氨基酸为前驱体合成碳量子点的方法及其用于金属离子浓度的检测
CN106085426A (zh) * 2016-07-06 2016-11-09 北京化工大学 具有室温磷光性质的两亲性碳点及其合成方法与应用
CN106315557A (zh) * 2016-08-18 2017-01-11 常州大学 一种氮磷掺杂碳量子点的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAHELI SARKAR ET AL.: "Amino acid functionalized blue and phosphorous-doped green fluorescent carbon dots as bioimaging probe", 《RSC ADVANCES》 *
张文宇等: "一步合成硫、氮共掺杂的碳量子点及其在Fe3+检测中的应用", 《发光学报》 *
王赛花等: "荧光碳量子点的制备及其在Fe3+检测中的应用", 《中国化学会第30届学术年会摘要集-第二十六分会:环境化学》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477224A (zh) * 2021-08-09 2021-10-08 南京理工大学 一种有机膦改性羟基磷灰石的制备方法
CN113477224B (zh) * 2021-08-09 2023-11-03 南京理工大学 一种有机膦改性羟基磷灰石的制备方法
CN114225911A (zh) * 2021-12-17 2022-03-25 陕西工业职业技术学院 一种基于马铃薯的氮磷共掺杂碳点@zif-8及其制备方法和应用
CN114225911B (zh) * 2021-12-17 2023-05-12 陕西工业职业技术学院 一种基于马铃薯的氮磷共掺杂碳点@zif-8及其制备方法和应用
CN114620710A (zh) * 2022-01-18 2022-06-14 陕西科技大学 一种荧光碳量子点及氮-磷共掺杂荧光碳量子点的合成方法与应用

Similar Documents

Publication Publication Date Title
Liu et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications
Wang et al. Fluorescent graphene-like carbon nitrides: synthesis, properties and applications
Wu et al. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots
Liu et al. Carbon dots prepared for fluorescence and chemiluminescence sensing
Wang et al. Deep eutectic solvent-assisted preparation of nitrogen/chloride-doped carbon dots for intracellular biological sensing and live cell imaging
Wang et al. Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications
Li et al. Highly N, P-doped carbon dots: rational design, photoluminescence and cellular imaging
Wang et al. A review of carbon dots in biological applications
Wu et al. Fluorescence-scattering dual-signal response of carbon dots@ ZIF-90 for phosphate ratiometric detection
Zhu et al. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding
Wang et al. Recent developments in lanthanide-based luminescent probes
Chen et al. Metal-free colorimetric detection of pyrophosphate ions by inhibitive nanozymatic carbon dots
Lu et al. High-quality water-soluble luminescent carbon dots for multicolor patterning, sensors, and bioimaging
Chen et al. Recent advances of electrochemiluminescent system in bioassay
Saraf et al. Probing highly luminescent europium-doped lanthanum orthophosphate nanorods for strategic applications
Yang et al. Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion
Liang et al. Hydrothermal growth of nitrogen-rich carbon dots as a precise multifunctional probe for both Fe3+ detection and cellular bio-imaging
Ma et al. Terbium–aspartic acid nanocrystals with chirality-dependent tunable fluorescent properties
CN108329911A (zh) 一种氮磷掺杂的碳量子点的制备方法
Chen et al. Lanthanide organic/inorganic hybrid systems: Efficient sensors for fluorescence detection
CN109796971B (zh) 一种氮掺杂红色荧光碳量子点及其制备方法和应用
Shen et al. A dual-responsive fluorescent sensor for Hg 2+ and thiols based on N-doped silicon quantum dots and its application in cell imaging
Chen et al. Luminescent dimeric oxalate-bridged Eu3+/Tb3+-implanted arsenotungstates: tunable emission, energy transfer, and detection of Ba2+ ion in aqueous solution
CN103834727A (zh) 一种荧光探针的制备方法及其应用
CN104386665B (zh) 一种单光子/双光子无定形碳点的制备及生物应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180727

RJ01 Rejection of invention patent application after publication