CN108328639A - 一种碳酸钙骨棒状纳米颗粒的制备方法 - Google Patents

一种碳酸钙骨棒状纳米颗粒的制备方法 Download PDF

Info

Publication number
CN108328639A
CN108328639A CN201810116524.5A CN201810116524A CN108328639A CN 108328639 A CN108328639 A CN 108328639A CN 201810116524 A CN201810116524 A CN 201810116524A CN 108328639 A CN108328639 A CN 108328639A
Authority
CN
China
Prior art keywords
feed liquid
deionized water
calcium oxide
method described
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810116524.5A
Other languages
English (en)
Other versions
CN108328639B (zh
Inventor
唐洁净
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Eagle New Material Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810116524.5A priority Critical patent/CN108328639B/zh
Publication of CN108328639A publication Critical patent/CN108328639A/zh
Application granted granted Critical
Publication of CN108328639B publication Critical patent/CN108328639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/181Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Glanulating (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种碳酸钙骨棒状纳米颗粒的制备方法,包括如下步骤:将氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀,料液在微波下处理,料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾,离心分离,取清液,高速离心,去离子水洗涤,干燥,得碳酸钙骨棒状纳米颗粒。

Description

一种碳酸钙骨棒状纳米颗粒的制备方法
技术领域
本发明属于碳酸钙材料制备领域,具体涉及一种制备碳酸钙骨棒状纳米颗粒的方法。
背景技术
碳酸钙被广泛用于橡胶、塑料、涂料、造纸、油墨、胶點剂、密封胶等行业,还可应用于牙膏、食品、医药、词料、建材、化纤等行业。碳酸钙的晶型包括方解石、文石、球霰石三种类型,其中方解石结构最稳定,文石和球霰石均属于非稳态。
碳酸钙作为一种重要的塑料填料,其粒径、颗粒均一性、比表面积和表面状态都将影响其与基体高分子的亲和性以及填充改性材料的力学性能的性质,如何得到易分散、粒度均一、表面活性高的纳米碳酸钙仍然是行业内追求的目标。
发明内容
本发明的技术方案是为了克服已有技术的不足之处,提出一种制备碳酸钙骨棒状纳米颗粒的方法。
本发明提出了一种碳酸钙骨棒状纳米颗粒的制备方法,包括如下步骤:
1)将粒径为1-1.5μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;
2)将步骤1)得到的料液在微波下处理40-50min;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥,得碳酸钙骨棒状纳米颗粒。
其中,所述复合表面活性剂由十二烷基二甲基苄基氯化铵和十二烷基二甲基氨基乙酸组成。
其中,微波的功率为500-600W。
其中,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3-0.5∶0.1-0.3。
其中,步骤1)中,氧化钙与去离子水的质量比为1∶250-400。
其中,步骤3)中,料液与二氧化碳的进料比为1g∶200-400mL。
其中,步骤4)中,控制离心转数为4000-6000rpm。
其中,步骤3)中,超声功率为150-200W。
其中,步骤4)中,高速离心转数为8000-12000rpm。
本发明采用微波条件控制氧化钙颗粒的水化,使氧化钙表层不断形成氢氧化钙并溶解到水溶液中,复合表面活性剂与钙离子发生作用,并诱导其在碳化反应中形成骨棒状的纳米颗粒。通过调控微波功率和时间,可以调节溶液中氧化钙颗粒水化的速度,进而调节溶液中钙离子的浓度。溶液中的氢氧化钙在超声喷雾的条件下与二氧化碳反应,料液在湍流条件下被大量二氧化碳气体冲击、裹挟,在超声作用下被二氧化碳分散为极小的液滴,超声促进了气液相物料在接触的瞬间发生反应,并有利于在反应过程中避免颗粒的团聚。采用复合表面活性剂结合于颗粒表面,在稳定颗粒、避免团聚的同时,诱导碳酸钙形成骨棒状。
本发明的有益效果:本方法采用二氧化碳作为料液雾化的气体,相比于雾化后再与二氧化碳气体接触,得到的产物颗粒尺寸更加均一。微波法活化结合超声喷雾下的瞬时反应,使得颗粒表面活性点多,反应快,导致颗粒表面凸凹不平,较相同尺寸、形貌的颗粒比表面积明显增大。得到长度约为80-120nm的骨棒状碳酸钙。
具体实施方式
下面结合实施例,进一步说明本发明。
实施例1
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3∶0.1;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥,得碳酸钙骨棒状纳米颗粒,其长度约为115nm,尺寸较均一。
实施例2
1)将粒径为1.5μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶400,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.5∶0.3;
2)将步骤1)得到的料液在微波下处理50min,微波功率为600W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶400mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥,得碳酸钙骨棒状纳米颗粒,其长度约为92nm,尺寸较均一。
实施例3
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3∶0.1;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥,得氧化钙/碳酸钙核壳纳米颗粒。
实施例4
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶150,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3∶0.1;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例5
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶500,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3∶0.1;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例6
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3∶0.1;
2)将步骤1)得到的料液在微波下处理40min,微波功率为400W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例7
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3∶0.1;
2)将步骤1)得到的料液在微波下处理40min,微波功率为700W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例8
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3∶0.1;
2)将步骤1)得到的料液在微波下处理30min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例9
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3∶0.1;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶100mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例10
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3∶0.1;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶500mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例11
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.1∶0.1;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例12
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.7∶0.1;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例13
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3∶0.05;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例14
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3∶0.5;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例1-14得到的产物的形貌见表1。
表1
实施例15
采用实施例1的工艺、参数,仅将实施例1中超声雾化的载气替换为氮气,使雾化后的液体与二氧化碳气体逆流接触。得到产物为尺寸不均一的球状颗粒。

Claims (9)

1.一种碳酸钙骨棒状纳米颗粒的制备方法,其特征在于,包括如下步骤:
1)将粒径为1-1.5μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;
2)将步骤1)得到的料液在微波下处理40-50min;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥,得碳酸钙骨棒状纳米颗粒。
2.根据权利要求1所述的方法,其特征在于:所述复合表面活性剂由十二烷基二甲基苄基氯化铵和十二烷基二甲基氨基乙酸组成。
3.根据权利要求1所述的方法,其特征在于:微波的功率为500-600W。
4.根据权利要求2所述的方法,其特征在于:氧化钙与十二烷基二甲基苄基氯化铵、十二烷基二甲基氨基乙酸的摩尔比为1∶0.3-0.5∶0.1-0.3。
5.根据权利要求1所述的方法,其特征在于:步骤1)中,氧化钙与去离子水的质量比为1∶250-400。
6.根据权利要求1所述的方法,其特征在于:步骤3)中,料液与二氧化碳的进料比为1g∶200-400mL。
7.根据权利要求1所述的方法,其特征在于:步骤4)中,控制离心转数为4000-6000rpm。
8.根据权利要求1所述的方法,其特征在于:步骤3)中,超声功率为150-200W。
9.根据权利要求1所述的方法,其特征在于:步骤4)中,高速离心转数为8000-12000rpm。
CN201810116524.5A 2018-01-28 2018-01-28 一种碳酸钙骨棒状纳米颗粒的制备方法 Active CN108328639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810116524.5A CN108328639B (zh) 2018-01-28 2018-01-28 一种碳酸钙骨棒状纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810116524.5A CN108328639B (zh) 2018-01-28 2018-01-28 一种碳酸钙骨棒状纳米颗粒的制备方法

Publications (2)

Publication Number Publication Date
CN108328639A true CN108328639A (zh) 2018-07-27
CN108328639B CN108328639B (zh) 2020-04-28

Family

ID=62928240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810116524.5A Active CN108328639B (zh) 2018-01-28 2018-01-28 一种碳酸钙骨棒状纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN108328639B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475199A (zh) * 2009-01-21 2009-07-08 山东海泽纳米材料有限公司 一种碳酸钙纳米串珠的工业制备方法
CN102219250A (zh) * 2011-03-28 2011-10-19 济南大学 一种纳米硫酸钡颗粒的制备方法
CN103351016A (zh) * 2013-06-27 2013-10-16 浙江理工大学 一种制备球粒状多孔碳酸钙颗粒的方法
EP2796412A1 (en) * 2013-04-24 2014-10-29 Università Del Salento - Dipartimento Di Ingegneria Dell'Innovazione Synthesis of nano-sized CaCO3 particles by spray dryer
CN106587125A (zh) * 2016-11-30 2017-04-26 华东理工大学 一种轻质碳酸钙的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475199A (zh) * 2009-01-21 2009-07-08 山东海泽纳米材料有限公司 一种碳酸钙纳米串珠的工业制备方法
CN102219250A (zh) * 2011-03-28 2011-10-19 济南大学 一种纳米硫酸钡颗粒的制备方法
EP2796412A1 (en) * 2013-04-24 2014-10-29 Università Del Salento - Dipartimento Di Ingegneria Dell'Innovazione Synthesis of nano-sized CaCO3 particles by spray dryer
CN103351016A (zh) * 2013-06-27 2013-10-16 浙江理工大学 一种制备球粒状多孔碳酸钙颗粒的方法
CN106587125A (zh) * 2016-11-30 2017-04-26 华东理工大学 一种轻质碳酸钙的制备方法

Also Published As

Publication number Publication date
CN108328639B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN106587125B (zh) 一种轻质碳酸钙的制备方法
WO2017025961A1 (en) Process and system for homogenously distributing an additive within a matrix
CN108862355A (zh) 一种微通道法制备硫酸钡颗粒的方法
CN108299811A (zh) 一种碳酸钙棒状纳米颗粒复合材料的制备方法
CN108328639A (zh) 一种碳酸钙骨棒状纳米颗粒的制备方法
CN111017973B (zh) 一种利用超声气溶胶制备中空纳米碳酸钙的方法
CN102219250B (zh) 一种纳米硫酸钡颗粒的制备方法
CN108358227A (zh) 一种碳酸钙骨棒状纳米颗粒组装结构的制备方法
CN108455646A (zh) 一种碳酸钙骨棒状纳米颗粒复合材料的制备方法
CN108190934A (zh) 一种碳酸钙棒状纳米颗粒的制备方法
CN108101092A (zh) 一种碳酸钙棒状纳米颗粒组装结构的制备方法
CN108249466A (zh) 一种氧化钙-碳酸钙核壳纳米颗粒的制备方法
WO2024001298A1 (zh) 一种形貌、尺寸可调控的羟基磷灰石微球及其制备方法
CN108455643B (zh) 一种碳酸钙哑铃状纳米颗粒组装结构的制备方法
CN108314072A (zh) 一种具有碳酸钙壳层的核壳纳米颗粒的制备方法
CN107117639B (zh) 一种超声辅助制备球霰石型碳酸钙纳米组装结构的方法
CN108101094A (zh) 一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法
CN102910663A (zh) 一种连续制备纳米碳酸钙装置
CN108264077A (zh) 一种具有碳酸钙壳层的核壳纳米颗粒组装结构的制备方法
CN107188998A (zh) 一种碳酸钙/聚合物核壳结构的制备方法
CN108455645A (zh) 一种碳酸钙花生状纳米颗粒复合材料的制备方法
CN108101093B (zh) 一种碳酸钙哑铃状纳米颗粒的制备方法
CN108455644A (zh) 一种碳酸钙花生状纳米颗粒的制备方法
CN107162033B (zh) 一种球霰石型碳酸钙纳米颗粒自组装膜的制备方法
CN108390031B (zh) 一种具有碳酸钙壳层的核壳纳米颗粒复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200318

Address after: Yi Nong Zhen Dong Lian Cun (Dong Wan Cun), Xiaoshan District, Hangzhou City, Zhejiang Province

Applicant after: HANGZHOU XIONGYING FINE CHEMICAL Co.,Ltd.

Address before: 315400 room 1, 315, international business center, China Plastics City, Ningbo, Zhejiang, Yuyao

Applicant before: NINGBO PLASTIC METAL PRODUCT Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Yi Nong Zhen Dong Lian Cun (Dong Wan Cun), Xiaoshan District, Hangzhou City, Zhejiang Province

Patentee after: Hangzhou Eagle New Material Co.,Ltd.

Address before: Yi Nong Zhen Dong Lian Cun (Dong Wan Cun), Xiaoshan District, Hangzhou City, Zhejiang Province

Patentee before: Hangzhou Eagle New Material Co.,Ltd.

Address after: Yi Nong Zhen Dong Lian Cun (Dong Wan Cun), Xiaoshan District, Hangzhou City, Zhejiang Province

Patentee after: Hangzhou Eagle New Material Co.,Ltd.

Address before: Yi Nong Zhen Dong Lian Cun (Dong Wan Cun), Xiaoshan District, Hangzhou City, Zhejiang Province

Patentee before: HANGZHOU XIONGYING FINE CHEMICAL Co.,Ltd.

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation method for calcium carbonate bone rod-shaped nanoparticles

Effective date of registration: 20231231

Granted publication date: 20200428

Pledgee: Zhejiang Xiaoshan Rural Commercial Bank Co.,Ltd. Yinong Branch

Pledgor: Hangzhou Eagle New Material Co.,Ltd.

Registration number: Y2023330003162