CN108328572A - 氢气制备方法、系统与用于其中的溶液 - Google Patents

氢气制备方法、系统与用于其中的溶液 Download PDF

Info

Publication number
CN108328572A
CN108328572A CN201710084325.6A CN201710084325A CN108328572A CN 108328572 A CN108328572 A CN 108328572A CN 201710084325 A CN201710084325 A CN 201710084325A CN 108328572 A CN108328572 A CN 108328572A
Authority
CN
China
Prior art keywords
hydrogen
solution
triethylamine
ruthenium
formic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710084325.6A
Other languages
English (en)
Other versions
CN108328572B (zh
Inventor
吴东昆
林家豪
彭钧圣
陈怡廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spring Foundation of NCTU
Original Assignee
Spring Foundation of NCTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spring Foundation of NCTU filed Critical Spring Foundation of NCTU
Publication of CN108328572A publication Critical patent/CN108328572A/zh
Application granted granted Critical
Publication of CN108328572B publication Critical patent/CN108328572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/226Sulfur, e.g. thiocarbamates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00018Construction aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00709Type of synthesis
    • B01J2219/00711Light-directed synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/76Dehydrogenation
    • B01J2231/763Dehydrogenation of -CH-XH (X= O, NH/N, S) to -C=X or -CX triple bond species
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

一种氢气制备方法,具有以下步骤。将作为仿产氢酶活性分子的光催化剂的钌氮杂二硫错合物加入溶液中。将有机酸反应物加入所述溶液中。将P‑配体加入所述溶液中。将电子提供者加入所述溶液中。将光线照射至所述溶液,以产生氢气。

Description

氢气制备方法、系统与用于其中的溶液
技术领域
本发明是有关于一种氢气制备方法、系统与用于其中的溶液,且特别是一种使用钌氮杂二硫错合物(nitrogen-substituted derivative of alkyldithiolate rutheniumcomplex)作为仿产氢酶活性分子的光催化剂(biomimetic enzyme of photocatalyticfor hydrogen generation)的氢气制备方法、系统与用于其中的溶液。
背景技术
除核燃料外,氢气的燃烧热为每公斤142,351千焦耳,是汽油燃烧热的3倍,也是所有化石燃料、化工燃料和生物燃料中最高的。氢气的燃点低,燃烧速度快,且燃烧后会生成水,对大气并无污染。氢气在燃烧后产生的热能可以进一步地在热力发动机中产生机械功,且在燃料电池中,氢气可以与氧气发生电化学反应而能产生电能,故氢气可作为一种干净环保的能源燃料。再者,用氢气代替煤或石油,不需要对现有技术的供能设备作重大的改造,例如,对于汽车内燃机而言,仅需稍加改装,即可以使用。
现有技术产生氢气的方法种类繁多,大概说明如下。多数产生氢气的方法是对天然气进行重组,例如,将甲烷蒸气重组或将甲烷在空气中燃烧的部分氧化,来获得氢气。然而,对天然气进行重组来产生氢气的方法需外加能源及需提供高压或高温的反应环境。另外,通过将水电解,亦可以产生氢气,但此做法需外加电力来进行电解反应。
气化产生氢气的方法是将煤或生物质以气化的方式转化为合成气的终产物后,再对终产物处理来产生氢气。对再生液体重组产生氢气的方法是将生物质转化为乙醇或生物油后再转化为合成气的终产物后,再对终产物处理来产生氢气。然而,气化产生氢气与对再生液体重组产生氢气的方法都需外加能源及需提供高压或高温的反应环境。
另外,还有利用核能所产生的热能来电解水产生氢气的方法,但此方法所产生的核废料及相关污染难以清除。除此之外,还有利用生长绿藻、绿藻及某些微生物对水进行裂解以产生氢气或直接由其内含生物质中萃取氢气的方法,但是此类的方法需相当大的土地面积以养殖绿藻、蓝绿藻及微生物,且产生氢气的效率欠佳。甚至,还有利用特殊的半导体材料在太阳光下进行水的裂解以产生氢气的方法,不过,半导体材料制备过程仍会对环境产生污染。
发明内容
有鉴于上述熟知技术的问题,本发明的目的就是提供一种氢气制备方法、系统及用于其中的溶液。
根据本发明至少一目的,提供一种氢气制备方法,具有以下步骤。将作为仿产氢酶活性分子的光催化剂的钌氮杂二硫错合物加入溶液中。将有机酸反应物加入所述溶液中。将P-配体(P-ligand)的加入所述溶液中。将电子提供者加入所述溶液中。将光线照射至所述溶液,以产生氢气。
根据本发明至少一目的,提供一种氢气制备系统,包括反应室。反应室包括容器与透镜。容器用以放置溶液。透镜用以将日光的光线集中照射至所述溶液,以产生氢气。所述溶液的多个溶质包括作为仿产氢酶活性分子的光催化剂的钌氮杂二硫错合物、有机酸反应物、P-配体与电子提供者。
根据本发明至少一目的,提供一种用于氢气制备方法或系统中的溶液,包括多个溶质与溶剂。多个溶质包括作为仿产氢酶活性分子的光催化剂的钌氮杂二硫错合物、作为反应物的甲酸、作为P-配体的三(邻甲苯基)(Tri(o-tolyl)phosphine)与作为电子提供者的三乙基胺(triethylamine)。另外,溶剂为二甲基甲酰胺(dimethylformamide,DMF)。
如上所述,依本发明提供的氢气制备方法、系统与用于其中的溶液,其可具有下述优点中的一个或多个:
(1)提升氢气产生效率。
(2)利用菲涅尔透镜以集中太阳光光源,增进太阳光能使用效率,解决须外加人造电能或热能能源于反应中,节省能源费用。
(3)增进氢经济循环,且所产生二氧化碳可经碳捕捉回收达到节能减碳目的。
附图说明
图1为本发明实施例的氢气制备反应的示意图。
图2为本发明实施例的氢气制备方法的流程图。
图3为本发明实施例的氢气制备系统的示意图。
图4为本发明实施例的氢气制备方法的氢气产量对应于时间的曲线图。
具体实施方式
为利于了解本发明的技术特征、内容与优点及其所能达成的功效,将本发明配合附图,并以实施例的表达形式详细说明如下,而其中所使用的附图,其主旨仅为示意及辅助说明书之用,未必为本发明实施后的真实比例与精准配置,故不应就附图的比例与配置关系局限本发明在实际实施上的专利范围,事先说明。
需注意的是,虽然“第一”、“第二”、“第三”等用语在文中用来描述各种组件,但这些被描述的组件不应被此类用语所限制。此类用语仅用于从一个组件区分另一个组件。因此,以下所讨论的“第一”组件皆能被写作“第二”组件,而不偏离本发明的启示。
本发明实施例提供一种可以在常温常压的环境下通过日光照射即可以生产氢气的氢气制备方法、系统与用于其中的溶液。本发明实施例是将有机酸反应物、仿产氢酶活性分子的光催化剂、P-配体(P-ligand)与电子提供者作为溶质一并加入至溶液中,通过日光照射所述溶液后,即可以将有机酸类的反应物分解为氢气与其他气体,但不含一氧化碳。然后,通过气体分离设备或方法,可以进一步地获取氢气,以完成氢气的制备。除此之外,由于产生的气体不会包含一氧化碳(CO),本发明实施例的氢气制备方法与系统产生的气体可以直接在氢燃料机作为动力来源。
在本发明实施例中,上述仿产氢酶活性分子的光催化剂为钌氮杂二硫错合物。另外,有机酸反应物可以是甲酸,P-配体可以是三(邻甲苯基)膦,电子提供者可以是三乙基胺,溶液的溶剂为二甲基甲酰胺,以及其他气体为二氧化碳(CO2)。另外,本发明实施例并不限制有机酸反应物、P-配体、电子提供者与溶液的溶质的类型。
换言之,本发明所属技术领域具有通常知识者可以选择化学特性相似于甲酸的有机酸反应物、化学特性相似于三(邻甲苯基)膦的P-配体、化学特性相似于三乙基胺的电子提供者与化学特性相似于二甲基甲酰胺的溶液之溶质,来使得钌氮杂二硫错合物于所述溶液中作为仿产氢酶活性分子的光催化剂,以将有机酸反应物分解并产生氢气。
另外,在本发明实施例中,为了使得日光能够集中地照射上述溶液,还可以使用菲涅尔透镜将日光的光线集中,以加速氢气的产生。当然,本发明实施例并不限制透镜须为菲涅尔透镜(Fresnel lens),亦即,本发明所属技术领域具有通常知识者也可以选用其他类型的聚光透镜来使用。在本发明实施例中,日光是作为能量来源,以增加氢气的产生速率,由于使用日光作为能量来源,故不再需要额外地外加其他能源来催化反应。另外,本发明并不限制照射的光线得为日光的光线,其他类型的光线亦可以使用,但以接近紫外线(ultraviolet)的波长的光线为佳。
首先,请参照图1,图1为本发明实施例的氢气制备反应的示意图。在图1中,氢气制备反应是发生在常温常压的环境1下,且所述常温与常压是指约27摄氏度与约一大气压,但是本发明并不限制氢气制备反应发生的环境必定得为常温常压的环境1,其他诸如高温与/高压的环境亦可以使得氢气制备反应发生。在此实施例中,氢气制备反应的反应速率可接近天然产氢酶的产氢的速率,另外产生的气体不会有一氧化碳,故可以直接在氢燃料机作为动力来源。
在图1中,透过菲涅尔透镜17将太阳16的日光的光线集中照射至具有甲酸11、钌氮杂二硫错合物12与P-配体13的溶液,以将甲酸11分解为氢气14与二氧化碳15。在此实施例中,甲酸11是作为反应物,钌氮杂二硫错合物12是作为仿产氢酶活性分子的光催化剂,以及P-配体13可以是三(邻甲苯基)膦。另外,在此实施例中,溶液中还具有电子提供者,例如为三乙基胺。除此之外,溶液的溶剂例如为二甲基甲酰胺,且不以此为限。
上述钌氮杂二硫错合物12可以包括以下化学结构式的的错合物的至少其中之一,例如,钌氮杂二硫错合物12包括化学结构式(2)之外的其他化学结构式(1)~(3)的错合物,或者仅具有化学结构式(1)的错合物。总而言之,本发明不以钌氮杂二硫错合物12的类型与组合为限制。
[Ru3(CO)9(μ-SCH2CH(NHCO2(C(CH3)3))CH2S)]化学结构式(1)
[Ru2(CO)6(μ-SCH2CH(NHCO2(C(CH3)3))CH2S)]化学结构式(2)
[Ru2(CO)5(μ-SCH2CH(NHCO2(C(CH3)3))CH2S)]化学结构式(3)
[Ru3(CO)9(μ-SCH2CH(NHCO2CH3))CH2S)]化学结构式(4)
另外一方面,前述化学结构式(1)~化学结构式(4)的错合物可以用通用化学式[(Ru)X(CO)Y(μ-SCH2CH(NHZ)CH2S]来表示,其中X为1至6的整数,Y为1至9的整数,Z可以是CO2(C(CH3)3)或CO2CH3或其他取代的官能基。换言之,氮杂二硫错合物12可以是通用化学式[(Ru)X(CO)Y(μ-SCH2CH(NHZ)CH2S]的错合物。
接着,请参照图2,图2为本发明实施例的氢气制备方法的流程图。首先,在步骤S21中,将作为仿产氢酶活性分子的光催化剂的钌氮杂二硫错合物加入溶液中,其中溶液的溶剂为约1毫升(ml)的二甲基甲酰胺,且钌氮杂二硫错合物约为1微摩尔(μmol)。
然后,在步骤S22中,将作为反应物的甲酸加入溶液中。接着,在步骤S23中,将作为P-配体的三(邻甲苯基)膦加入溶液中,其中三(邻甲苯基)膦约为3微摩尔。接着,在步骤S24中,将作为电子提供者的三乙基胺加入溶液中,其中溶液的反应体积为5毫升,且5毫升中的4毫升为摩尔数比为5:2的甲酸与三乙基胺的混合液(甲酸:三乙基胺)。在此请注意,虽然通过上述内容,可以知悉,步骤S22与S24是可同时执行,但本发明实际上并不限制步骤S21~S24的步骤的执行顺序,另外,上述甲酸与三乙基胺的摩尔数比、三(邻甲苯基)膦的摩尔数与钌氮杂二硫错合物的摩尔数比等都不用以限制本发明。最后,在步骤S25中,通过菲涅尔透镜集中光线照射溶液,以产生氢气,光线可以是日光的光线,集中照射至溶液的光线实际上是作为能量来源,以催化反应从而增加氢气的产生速率。
接着,请参照图3,图3为本发明实施例的氢气制备系统的示意图。氢气制备系统3包括甲酸储存槽31、钌氮杂二硫错合物储存槽32、三(邻甲苯基)膦储存槽33、三乙基胺储存槽34、泵送设备35、反应室36、气阀设备37、气体分离设备38与氢气储存槽39。甲酸储存槽31、钌氮杂二硫错合物储存槽32、三(邻甲苯基)膦储存槽33与三乙基胺储存槽34分别用来储存甲酸、钌氮杂二硫错合物、三(邻甲苯基)膦与三乙基胺。
泵送设备35具有多个泵送单元,以分别将甲酸储存槽31、钌氮杂二硫错合物储存槽32、三(邻甲苯基)膦储存槽33与三乙基胺储存槽34储存的甲酸、钌氮杂二硫错合物、三(邻甲苯基)膦与三乙基胺送至反应室36的容器361中。反应室36的还具有菲涅尔透镜362,用以将太阳40的日光的光线集中照射至容器361中的溶液363,其中溶液363的溶质包括甲酸、钌氮杂二硫错合物、三(邻甲苯基)膦与三乙基胺,且溶液363的溶剂为二甲基甲酰胺。较佳者,氢气制备系统3还可以包括二甲基甲酰胺储存槽(图未绘出),并且泵送设备35可以将其储存的二甲基甲酰胺送到反应室36的容器361中。
反应室36的环境可以是常温常压的环境,且无须设置压力控制设备与加热设备来进行加压与加热。反应室36中的溶液363的甲酸在钌氮杂二硫错合物被日光的光线照射的情况下,会开始催化甲酸分解为氢气与二氧化碳。气阀设备37透过阀门的控制,可以让产生的氢气与二氧化碳自反应室36中排出至气体分离设备38。气体分离设备38可以通过物理或化学的方式将氢气与二氧化碳分离,且分离出来的氢气可以被送往氢气储存槽39储存。氢气储存槽39中的氢气可以被各种应用的设备(图未绘出)提取出来,作为能源燃料使用。
接着,请参照图4,图4为本发明实施例的氢气制备方法的氢气产量对应于时间的曲线图。本发明图2的实施例的步骤S21~S24所制备的溶液在4种不同环境下产生的氢气产量对应于时间的曲线如图4的4条曲线所示。在图4中,单纯地将溶液加热到90摄氏度或单纯使用500瓦氙气灯照射溶液时,其在70分钟的反应时间内,并没有显著的氢气产量(如方形与圆形标注的曲线所示)。将溶液加热到90摄氏度并使用500瓦氙气灯照射溶液,虽然可以使氢气产量增加,且增快氢气的产生速率(如三角形标注的曲线所示),但是相较于使用菲涅尔透镜集中日光的光线照射溶液来产生氢气的方式(如倒三角形标注的曲线所示),其氢气的产生速率仍然不佳。由图4可以得知,使用菲涅尔透镜集中日光的光线照射溶液来产生氢气的方式较其他三者更优,且相较于现有技术来说,在较佳情况下,其产生氢气的转化效率约为现有技术的转化效率的4倍。
接着,请参照表一,表一列出本发明实施例的氢气制备方法的其他实施例的氢气转化效率的结果,其中表一中的钌氮杂二硫错合物为前述化学结构式(1)的错合物。
表一
综合以上所述,本发明实施例提供一种可以在常温常压的环境下通过日光照射即可以生产氢气的氢气制备方法、系统与用于其中的溶液,其不需要额外的加热或加压设备,故可以减少氢气的制造成本。另外,产生的气体中不会包含一氧化碳,故可以直接将产生的气体用在氢燃料机作为动力来源。
以上所述仅为举例,而不作为限制。任何未脱离本发明的精神与范畴,而对其进行的等效修改或变更,均应包括在本申请专利范围中。

Claims (10)

1.一种氢气制备方法,其特征在于,包括以下步骤:
将作为仿产氢酶活性分子的光催化剂的钌氮杂二硫错合物加入一溶液中;
将有机酸反应物加入该溶液中;
将P-配体加入该溶液中;
将电子提供者加入该溶液中;以及
将光线照射至该溶液,以产生氢气。
2.如权利要求1所述的氢气制备方法,其特征在于,所述有机酸反应物为甲酸,所述P-配体为三(邻甲苯基),所述电子提供者为三乙基胺,以及所述溶液的溶剂为二甲基甲酰胺。
3.如权利要求2所述的氢气制备方法,其特征在于,所述溶液共5毫升,其中所述二甲基甲酰胺为1毫升,所述钌氮杂二硫错合物为1微摩尔,所述三(邻甲苯基)为3微摩尔,所述溶液的另外4毫升为所述甲酸与所述三乙基胺的混合液,且该混合液中,所述甲酸与所述三乙基胺的摩尔数比为5:2。
4.如权利要求1~3中任意一项所述的氢气制备方法,其特征在于,其中通过菲涅尔透镜将所述光线集中照射至所述溶液,且所述光线为日光的光线。
5.一种氢气制备系统,其特征在于,包括:
反应室,包括:
容器,用以放置溶液;以及
透镜,用以将日光的光线集中照射至该溶液,以产生氢气;
其中该溶液的多个溶质包括作为仿产氢酶活性分子的光催化剂的钌氮杂二硫错合物、有机酸反应物、P-配体与电子提供者。
6.如权利要求5所述的氢气制备系统,其特征在于,其中所述有机酸反应物为甲酸,所述P-配体为三(邻甲苯基),所述电子提供者为三乙基胺,以及所述溶液的溶剂为二甲基甲酰胺。
7.如权利要求6所述的氢气制备系统,其特征在于,还包括:
多个储存槽,用以储存所述甲酸、三(邻甲苯基)、三乙基胺与二甲基甲酰胺;以及
泵送设备,具有多个泵送单元,用以将所述甲酸、三(邻甲苯基)、三乙基胺与二甲基甲酰胺分别自该储存槽送至所述反应室。
8.如权利要求5所述的氢气制备系统,其特征在于,还包括:
气阀设备,通过阀门的控制,让所述氢气与二氧化碳自所述反应室中排出至气体分离设备;
该气体分离设备,用以将所述氢气与二氧化碳分离;以及
氢气储存槽,用以储存分离的所述氢气。
9.如权利要求5~8中任意一项所述的氢气制备系统,其特征在于,其中所述透镜为菲涅尔透镜。
10.一种用于权利要求1~4任意一项所述的氢气制备方法或权利要求5~9任意一项所述的氢气制备系统中的溶液,其特征在于,包括:
多个溶质,包括作为仿产氢酶活性分子的光催化剂的钌氮杂二硫错合物、作为反应物的酸、作为P-配体的三(邻甲苯基)与作为电子提供者的三乙基胺;以及
溶剂,为二甲基甲酰胺。
CN201710084325.6A 2017-01-19 2017-02-16 氢气制备方法、系统与用于其中的溶液 Active CN108328572B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW106101975 2017-01-19
TW106101975A TWI607963B (zh) 2017-01-19 2017-01-19 氫氣製備方法、系統與用於其中的溶液

Publications (2)

Publication Number Publication Date
CN108328572A true CN108328572A (zh) 2018-07-27
CN108328572B CN108328572B (zh) 2021-07-23

Family

ID=61230790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710084325.6A Active CN108328572B (zh) 2017-01-19 2017-02-16 氢气制备方法、系统与用于其中的溶液

Country Status (3)

Country Link
US (1) US10710878B2 (zh)
CN (1) CN108328572B (zh)
TW (1) TWI607963B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7076113B2 (ja) * 2020-01-14 2022-05-27 飯田グループホールディングス株式会社 蟻酸生成方法及び蟻酸生成システム
TWI803821B (zh) * 2021-01-29 2023-06-01 國立陽明交通大學 氫氣製備方法、光催化劑複合物及動力模組系統

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541668A (zh) * 2006-10-18 2009-09-23 洛桑聚合联合学院 由甲酸生产氢气
US20110042227A1 (en) * 2009-08-24 2011-02-24 Javier Jesus Concepcion Corbea Ruthenium or Osmium Complexes and Their Uses as Catalysts for Water Oxidation
CN102786812A (zh) * 2011-05-16 2012-11-21 财团法人交大思源基金会 用于染料敏化太阳能电池的钌错合物光敏染料
US20130244865A1 (en) * 2010-11-25 2013-09-19 National University Corporation Okayama University Metal Complex Compound, Hydrogen Production Catalyst and Hydrogenation Reaction Catalyst Each Comprising the Metal Complex Compound, and Hydrogen Production Method and Hydrogenation Method Each Using the Catalyst
CN103466545A (zh) * 2013-09-30 2013-12-25 中国大唐集团科学技术研究院有限公司 光化学循环制氢法及其制氢体系
CN105562093A (zh) * 2015-12-22 2016-05-11 苏州大学 光催化剂及其制备方法、光催化分解水制氢催化剂及其制备方法与氢气的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2079170B (en) * 1980-07-08 1985-01-03 Engelhard Min & Chem Catalysts for the photolytic production of hydrogen from water
US6863781B2 (en) * 2002-02-26 2005-03-08 Massachusetts Institute Of Technology Process for photocatalysis and two-electron mixed-valence complexes
FR2923732B1 (fr) * 2007-11-16 2011-03-04 Nicolas Ugolin Procede utilisant l'energie thermique solaire couplee a des plasmas pour produire un carburant liquide et du dihydrogene a partir de biomasse ou de charbon fossile (procede p-sl et p-sh)
WO2010051268A1 (en) * 2008-10-31 2010-05-06 Dow Global Technologies Inc. Olefin metathesis process employing bimetallic ruthenium complex with bridging hydrido ligands
DE102011007661A1 (de) * 2011-04-19 2012-10-25 Leibniz-Institut Für Katalyse E.V. An Der Universität Rostock Verfahren zur Wasserstoffgewinnung durch katalytische Zersetzung von Ameisensäure
US9205420B2 (en) * 2011-04-22 2015-12-08 President And Fellows Of Harvard College Nanostructures, systems, and methods for photocatalysis
CN102924532B (zh) * 2011-08-09 2015-10-28 中国科学院理化技术研究所 铁氢化酶模拟化合物及其制备方法、含其的光催化产氢体系及制备氢气的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541668A (zh) * 2006-10-18 2009-09-23 洛桑聚合联合学院 由甲酸生产氢气
US20110042227A1 (en) * 2009-08-24 2011-02-24 Javier Jesus Concepcion Corbea Ruthenium or Osmium Complexes and Their Uses as Catalysts for Water Oxidation
US20130244865A1 (en) * 2010-11-25 2013-09-19 National University Corporation Okayama University Metal Complex Compound, Hydrogen Production Catalyst and Hydrogenation Reaction Catalyst Each Comprising the Metal Complex Compound, and Hydrogen Production Method and Hydrogenation Method Each Using the Catalyst
CN102786812A (zh) * 2011-05-16 2012-11-21 财团法人交大思源基金会 用于染料敏化太阳能电池的钌错合物光敏染料
CN103466545A (zh) * 2013-09-30 2013-12-25 中国大唐集团科学技术研究院有限公司 光化学循环制氢法及其制氢体系
CN105562093A (zh) * 2015-12-22 2016-05-11 苏州大学 光催化剂及其制备方法、光催化分解水制氢催化剂及其制备方法与氢气的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AARON K. JUSTICE ET AL.: "Diruthenium Dithiolato Cyanides: Basic Reactivity Studies and a Post Hoc Examination of Nature’s Choice of Fe verus Ru for Hydrogenogenesis", 《INORG. CHEM.》 *
PETER A. SUMMERS ET AL.: "Photochemical Dihydrogen Production Using an Analogue of the Active Site of [NiFe] Hydrogenase", 《INORG. CHEM.》 *

Also Published As

Publication number Publication date
TWI607963B (zh) 2017-12-11
US10710878B2 (en) 2020-07-14
TW201827333A (zh) 2018-08-01
CN108328572B (zh) 2021-07-23
US20180201505A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
Acar et al. Transition to a new era with light-based hydrogen production for a carbon-free society: An overview
Razi et al. A critical evaluation of potential routes of solar hydrogen production for sustainable development
Nikolaidis et al. A comparative overview of hydrogen production processes
Simakov Renewable synthetic fuels and chemicals from carbon dioxide: fundamentals, catalysis, design considerations and technological challenges
Dutta Review on solar hydrogen: Its prospects and limitations
Centi et al. Towards solar fuels from water and CO2
Abbasi et al. ‘Renewable’hydrogen: prospects and challenges
Turner et al. Renewable hydrogen production
Sørensen Hydrogen and fuel cells: emerging technologies and applications
Harriman Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry
Acar et al. Clean hydrogen and power from impure water
JP6861038B2 (ja) 水素供給システムおよび水素供給方法
CN108328572A (zh) 氢气制备方法、系统与用于其中的溶液
Batrice et al. Powering the next industrial revolution: transitioning from nonrenewable energy to solar fuels via CO 2 reduction
Hossain et al. Prospects and challenges of renewable hydrogen generation in Bangladesh
JP7133819B1 (ja) 水素供給システム及び水素供給方法
Ashitha et al. Splitting of water: biological and non-biological approaches
Puga Photocatalytic Hydrogen Production in the Context of Sustainable Energy
JP2019001760A (ja) ギ酸生成デバイスの作成方法、ギ酸生成デバイス、ギ酸生成装置及び水素供給システム
CN208627261U (zh) 光伏水分解系统与光热催化系统耦合制备有机燃料的装置
Bhatia et al. Hydrogen production through microbial electrolysis
CN102712019B (zh) 通过可再生能、材料资源和养分的一体化生产实现可持续经济发展
Kumar et al. Overview of Hydrogen Production Methods from Solar Energy
Kupferberg Solar Fuels Synthesis Using Self-Assembling Chromophore Hydrogels
Dabodiya et al. Devices Development and Deployment Status for Commercial Usage: H 2 Production and CO 2 Utilization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant