CN108299383B - 钯催化一锅法合成二苯并噻吩类化合物的方法 - Google Patents

钯催化一锅法合成二苯并噻吩类化合物的方法 Download PDF

Info

Publication number
CN108299383B
CN108299383B CN201810065018.8A CN201810065018A CN108299383B CN 108299383 B CN108299383 B CN 108299383B CN 201810065018 A CN201810065018 A CN 201810065018A CN 108299383 B CN108299383 B CN 108299383B
Authority
CN
China
Prior art keywords
nmr
derivative
thiophenol
bromo
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810065018.8A
Other languages
English (en)
Other versions
CN108299383A (zh
Inventor
宋娟
吴昊
王昊天
丁克然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201810065018.8A priority Critical patent/CN108299383B/zh
Publication of CN108299383A publication Critical patent/CN108299383A/zh
Application granted granted Critical
Publication of CN108299383B publication Critical patent/CN108299383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种钯催化一锅法合成二苯并噻吩类化合物的方法,在N,N‑二甲基乙酰胺溶液中,以钯催化剂/配体为催化体系,加入无机碱,邻溴碘苯衍生物或碘苯衍生物与苯硫酚衍生物为原料,在氮气氛围下反应,分离得到二苯并噻吩类化合物。本发明以简单、经济、易得的原料为底物,以钯催化的串联反应实现了各种位置取代二苯并噻吩类化合物的合成,这类化合物在医药合成中间体以及有机光电材料科学中有很大的应用前景。

Description

钯催化一锅法合成二苯并噻吩类化合物的方法
技术领域
本发明属于有机合成技术领域,特别涉及一种灵活简便的二苯并噻吩及其衍生物的制备方法。
背景技术
二苯并噻吩类(DBTs)化合物具有极高的刚性分子结构和较大电子云密度,是良好的电子给体,容易形成D-π-D或A-π-A体系。对其导电性能的研究发现,DBT衍生物可以用于合成液晶聚合物、超导等新材料,是一种新型的有机光电材料。在新型电池等有机电子材料领域有着良好的应用前景。此外,二苯并噻吩(DBT)及其衍生物作为一类重要的有机合成中间体,在合成杀虫剂、医药、生物产品和硫靛染料等方面都有着极高的应用价值。DBT的传统合成方法是以联苯和硫为原料,在AlCl3催化下反应制得,但这种方法,不但生产步骤繁琐,而且相当费时,从投料反应到制备出成品需要三天时间,而且在后处理过程中,利用沸水洗脱AlCl3时极其困难。近来,随着过渡金属催化的碳氢活化的发展,通过过渡金属催化的二苯硫醚类化合物的碳氢键活化来制备二苯并噻吩的方法得到了迅速的发展。但是,这些方法所需的二苯硫醚衍生物,绝大多数都不是工业化生产的产品,需要预先合成或者预官能团化,因此大大限制了该方法的实际应用。因此,为了提高反应的应用性和实用性,我们必须寻找更加高效,便捷的DBT合成方法。
发明内容
本发明目的在于针对上述现有技术的不足,提供了钯催化一锅法合成二苯并噻吩类化合物的方法。
为了实现上述目的,本发明采用以下技术方案:一种钯催化一锅法合成二苯并噻吩类化合物的方法,在N,N-二甲基乙酰胺溶液中,以钯催化剂/配体为催化体系,加入无机碱,邻溴碘苯衍生物或碘苯衍生物与苯硫酚衍生物为原料,在氮气氛围下反应,分离得到二苯并噻吩类化合物。
进一步的,邻溴碘苯衍生物、苯硫酚衍生物、钯催化剂、膦配体、特戊酸铯的物质的量比为0.25:0.2:0.005:0.010:1.0。
进一步的,碘苯衍生物、邻溴苯硫酚衍生物、钯催化剂、膦配体、特戊酸铯的物质的量比为0.25:0.2:0.005:0.020:1.0。
进一步的,邻溴碘苯衍生物为邻溴碘苯、邻二溴苯、3-溴-4-碘甲苯、4-溴-3-碘甲苯、1-溴-4-氟-2-碘苯、2-溴-4-氟-1-碘苯、2-溴-4-氯-1-碘苯、1-溴-4-氯-2-碘苯、2-溴-4-氟-1-碘苯、2-溴-4-三氟甲基-1-碘苯、2-溴-4-硝基-1-碘苯中的一种。
进一步的,苯硫酚衍生物为对甲基苯硫酚、间甲基苯硫酚、对氟苯硫酚、对氯苯硫酚、对甲氧基苯硫酚、间甲氧基苯硫酚、1-萘硫醇、2-萘硫醇中的一种。
进一步的,钯催化剂为二氯二乙腈钯。
进一步的,配体为双(2-二苯基膦)苯醚。
进一步的,无机碱为特戊酸铯。
进一步的,反应温度为140℃,反应时间为24h。
本方法是以灵活可变的简单原料为底物,通过钯催化的串联反应一步构筑二苯并噻吩类衍生物。本方法操作简单,原料经济、易得,反应条件温和,不但完善了二苯并噻吩类衍生物合成的方法学,也将有机方法学与材料科学紧密结合起来,极大的提高了该反应的应用性和实用性。
本申请的有益效果:
(1)本发明制备方法简单,使用的原料灵活可变,并且简单易得,可商业购买。所使用的催化剂、配体、碱以及溶剂也是常见的,可通过商业购买获得。。
(2)本发明反应条件温和,可高效获得目标产物。
(3)本发明的底物适用性较好,兼容了硝基等基团,具有良好的拓展性。
(4)本发明在光电材料的合成和生物医药方面有很大的潜力。
(5)本发明改进了传统制备二苯并噻吩领域中,底物复杂或需要预官能团化的不足。
具体实施方式
下面的实施例为了使本领域普通技术人员更清楚的理解本发明,但不以任何方式限制本发明。本发明所用原料均是已知化合物,可以在市场获得。
实施例1
在干燥的Schlenk反应管中加入二氯二乙腈钯(0.005mmL)、双(2-二苯基膦)苯醚(0.010mmol)、特戊酸铯(1.0mmol)、对甲基苯硫酚(0.2mmol),体系置换三次,在纯净的氮气氛围。然后依次加入无水N,N-二甲基乙酰胺(2.0mL)、邻溴碘苯(0.25mmol),在140℃反应24小时后停止反应,冷却至室温,体系加入饱和氯化铵溶液淬灭反应。用乙酸乙酯萃取(20mLx3),柱层析分离得到二苯并噻吩衍生物,分离收率达到91%。
实施例2
在干燥的Schlenk反应管中加入二氯二乙腈钯(0.005mmL)、双(2-二苯基膦)苯醚(0.010mmol)、特戊酸铯(1.0mmol)、对甲基苯硫酚(0.2mmol),体系置换三次,在纯净的氮气氛围。然后依次加入无水N,N-二甲基乙酰胺(2.0mL)、邻二溴苯(0.25mmol),在140℃反应24小时后停止反应,冷却至室温,体系加入饱和氯化铵溶液淬灭反应。用乙酸乙酯萃取(20mLx3),柱层析分离得到二苯并噻吩衍生物,分离收率达到84%.
实施例3-10
除使用不同的邻溴碘苯衍生物外,其他反应条件相同,具体如下:
在干燥的Schlenk反应管中加入二氯二乙腈钯(0.005mmL)、双(2-二苯基膦)苯醚(0.010mmol)、特戊酸铯(1.0mmol)、对甲基苯硫酚(0.2mmol),体系置换三次,在纯净的氮气氛围。然后依次加入无水N,N-二甲基乙酰胺(2.0mL)、邻溴碘苯衍生物(0.25mmol),在140℃反应24小时后停止反应,冷却至室温,体系加入饱和氯化铵溶液淬灭反应。用乙酸乙酯萃取(20mLx3),柱层析分离得到二苯并噻吩衍生物。
实施例1至10中邻溴碘苯衍生物与对甲基苯硫酚反应见表1。
表1
Figure BDA0001556459750000031
实施例11
在干燥的Schlenk反应管中加入二氯二乙腈钯(0.005mmL)、双(2-二苯基膦)苯醚(0.010mmol)、特戊酸铯(1mmol)、邻甲基苯硫酚(0.2mmol),体系置换三次,在纯净的氮气氛围。然后依次加入无水N,N-二甲基乙酰胺(2.0mL)、邻溴碘苯(0.25mmol),在140℃反应24小时后停止反应,冷却至室温,体系加入饱和氯化铵溶液淬灭反应。用乙酸乙酯萃取(20mLx3),柱层析分离得到二苯并噻吩衍生物,分离收率达到88%。
实施例12-18
除了使用不同的芳基苯硫酚外其他反应条件相同,具体如下:
在干燥的Schlenk反应管中加入二氯二乙腈钯(0.005mmL)、双(2-二苯基膦)苯醚(0.010mmol)、特戊酸铯(1mmol)、芳基苯硫酚(0.2mmol),体系置换三次,在纯净的氮气氛围。然后依次加入无水N,N-二甲基乙酰胺(2.0mL)、邻溴碘苯(0.25mmol),在140℃反应24小时后停止反应,冷却至室温,体系加入饱和氯化铵溶液淬灭反应。用乙酸乙酯萃取(20mLx3),柱层析分离得到二苯并噻吩衍生物。
实施例12至18中邻溴碘苯与芳基苯硫酚见表2。
表2
Figure BDA0001556459750000041
实施例19
在干燥的Schlenk反应管中加入二氯二乙腈钯(0.005mmL)、双(2-二苯基膦)苯醚(0.020mmol)、特戊酸铯(1.0mmol)、邻溴苯硫酚(0.2mmol),体系置换三次,在纯净的氮气氛围。然后依次加入无水N,N-二甲基乙酰胺(2.0mL)、碘苯(0.25mmol),在140℃反应24小时后停止反应,冷却至室温,体系加入饱和氯化铵溶液淬灭反应。用乙酸乙酯萃取(20mLx3),柱层析分离得到二苯并噻吩衍生物,分离收率达到85%。
实施例20,21,23-27,29
除使用不同芳基碘苯外,其他反应条件相同,具体如下:
在干燥的Schlenk反应管中加入二氯二乙腈钯(0.005mmL)、双(2-二苯基膦)苯醚(0.020mmol)、特戊酸铯(1.0mmol)、邻溴苯硫酚(0.2mmol),体系置换三次,在纯净的氮气氛围。然后依次加入无水N,N-二甲基乙酰胺(2.0mL)、芳基碘苯(0.25mmol),在140℃反应24小时后停止反应,冷却至室温,体系加入饱和氯化铵溶液淬灭反应。用乙酸乙酯萃取(20mLx3),柱层析分离得到二苯并噻吩衍生物。
实施例22
在干燥的Schlenk反应管中加入二氯二乙腈钯(0.005mmL)、双(2-二苯基膦)苯醚(0.020mmol)、特戊酸铯(1.2mmol)、邻溴苯硫酚(0.2mmol),体系置换三次,在纯净的氮气氛围。然后依次加入无水N,N-二甲基乙酰胺(2.0mL)、对甲氧基碘苯(0.25mmol),在140℃反应24小时后停止反应,冷却至室温,体系加入饱和氯化铵溶液淬灭反应。用乙酸乙酯萃取(20mLx3),柱层析分离得到二苯并噻吩衍生物,分离收率达到60%。
实施例28
在干燥的Schlenk反应管中加入二氯二乙腈钯(0.005mmL)、双(2-二苯基膦)苯醚(0.020mmol)、特戊酸铯(1.0mmol)、邻溴苯硫酚(0.2mmol),体系置换三次,在纯净的氮气氛围。然后依次加入无水N,N-二甲基乙酰胺(2.0mL)、对硝基溴苯(0.25mmol),在140℃反应24小时后停止反应,冷却至室温,体系加入饱和氯化铵溶液淬灭反应。用乙酸乙酯萃取(20mLx3),柱层析分离得到二苯并噻吩衍生物,分离收率达到75%。
实施例19至29芳基碘苯和邻溴苯硫酚见表3。
表3
Figure BDA0001556459750000061
以上所有实施案例得到的产物均通过1H-NMR,13C-NMR表征得到印证,所有未知样品通过高分辨质谱(HRMS)确认。具体如下:
实施例1和2的核磁数据:1H NMR(400MHz,CDCl3)δ8.15-8.09(m,1H),7.96(s,1H),7.87-7.80(m,1H),7.73(d,J=8.2Hz,1H),7.47-7.41(m,2H),7.29(d,J=8.2Hz,1H),2.53(s,3H);13C NMR(101MHz,CDCl3)δ139.76,136.35,135.65,135.39,134.07,128.18,126.48,124.16,122.79,122.37,121.74,121.43,21.47。
实施例3:1H NMR(400MHz,CDCl3)δ7.97(d,J=8.1Hz,1H),7.89–7.87(m,1H),7.68(d,J=8.1Hz,1H),7.60(dd,J=1.5,0.7Hz,1H),7.24–7.20(m,2H),2.50(s,3H),2.47(s,3H).ppm;13C NMR(101MHz,CDCl3)δ140.01,136.63,136.08,135.71,133.97,133.05,127.68,125.69,122.78,122.36,121.45,121.09,21.55(d,J=18.4Hz)。
实施例4:1H NMR(400MHz,CDCl3)δ8.04(dd,J=8.7,5.2Hz,1H),7.88(s,1H),7.70(d,J=8.2Hz,1H),7.51(dd,J=8.8,2.4Hz,1H),7.28(d,J=1.2Hz,1H),7.16(td,J=8.8,2.4Hz,1H),2.53(s,3H);13C NMR(101MHz,CDCl3)δ162.97,160.52,141.06,136.24,134.97,134.51,131.84,127.89,122.44,121.53,112.74,109.26,21.52.19F NMR(377MHz,CDCl3)δ-114.71.HRMS:(ESI)Calcd for C13H9FS[M+]:216.0409found:216.0422。
实施例5:1H NMR(400MHz,CDCl3)7.99(d,J=8.4Hz,1H),7.89(d,J=1.7Hz,1H),7.79(d,J=1.9Hz,1H),7.70(d,J=8.3Hz,1H),7.38(dd,J=8.5,1.9Hz,1H),7.28(dd,J=8.2,1.7Hz,1H),2.52(s,3H);13C NMR(101MHz,CDCl3)140.96,136.33,134.84,134.49,133.92,132.25,128.43,124.86,21.46.HRMS(ESI)Calcd for C13H9ClS[M+]:232.0113found:232.0105。
实施例6:1H NMR(400MHz,CDCl3)7.92(s,2H),7.70(d,J=7.7Hz,2H),7.25(d,J=7.6Hz,2H),2.51(s,6H);13C NMR(101MHz,CDCl3)δ136.75,135.56,133.88,128.00,122.39,121.65,21.44。
实施例7:1H NMR(400MHz,CDCl3)δ8.32(s,1H),7.95(s,1H),7.87(d,J=8.4Hz,1H),7.71(d,J=8.2Hz,1H),7.62(d,J=8.4Hz,1H),7.30(d,J=8.2Hz,1H),2.52(s,3H);13CNMR(101MHz,CDCl3)δ143.24,136.83,135.34,134.80 129.09,126.72,125.97,123.14,122.76,122.47,121.98,118.42,21.40.HRMS(ESI)Calcd for C14H9F3S[M+]:266.0377found:266.0378。
实施例8:1H NMR(400MHz,CDCl3)δ8.95(s,1H),8.28(d,J=7.9Hz,1H),8.03(s,1H),7.92(d,J=8.4Hz,1H),7.76(d,J=7.8Hz,1H),7.38(d,J=7.5Hz,1H),2.56(s,3H);13CNMR(101MHz,CDCl3)δ146.49,145.29,137.26,135.79,135.44,134.71,129.79,123.12,122.69,122.36,120.91,21.51.HRMS(ESI)Calcd for C14H9NO2S[M+]:243.0354found:243.0361。
实施例9:1H NMR(400MHz,CDCl3)δ8.02(ddd,J=8.7,5.2,0.9Hz,1H),7.86(dt,J=1.7,0.9Hz,2H),7.78–7.67(m,4H),7.50(dd,J=8.8,2.4Hz,1H),7.31–7.24(m,2H),7.20–7.12(m,2H),2.51(s,6H);13C NMR(101MHz,CDCl3)δ162.50,160.07,141.01,137.70,136.75,136.18,135.15,134.91,134.80,134.44,134.25,131.80,128.76,128.80,127.83,123.79,122.55,122.39,121.96,121.47,114.73,112.67,109.19,107.67,21.45,21.43.HRMS:(ESI)Calcd for C13H9FS[M+]:216.0409found:216.0422。
实施例10:1H NMR(400MHz,CDCl3)δ8.03(d,J=2.0Hz,1H),7.95(d,J=8.4Hz,1H),7.85(s,2H),7.76(d,J=1.8Hz,1H),7.71–7.65(m,3H),7.37–7.34(m,2H),7.29–7.24(m,2H),2.50(s,6H).13C NMR(101MHz,CDCl3)δ140.91,137.82,137.10,136.72,136.28,134.79,134.64,134.44,134.39,133.87,132.20,130.40,128.81,128.39,126.65,124.82,123.69,122.44,122.40,122.37,122.11,121.87,121.69,121.30,21.44,21.42.HRMS(ESI)Calcd for C13H9ClS[M+]:232.0113found:232.0105。
实施例11:1H NMR(400MHz,CDCl3)δ8.17–8.10(m,1H),8.00(d,J=7.9Hz,1H),7.90–7.83(m,1H),7.48–7.42(m,2H),7.39(t,J=7.6Hz,1H),7.27(d,J=7.2Hz,1H),2.58(s,3H);13C NMR(101MHz,CDCl3)δ139.51,139.18,136.17,135.32,132.22,126.97,126.51,124.69,124.32,122.82,121.76,119.03,20.51。
实施例12:A:1H NMR(400MHz,CDCl3)δ8.10–8.05(m,1H),8.00(d,J=8.1Hz,1H),7.83–7.78(m,1H),7.62(dt,J=1.5,0.8Hz,1H),7.42–7.38(m,2H),7.24(ddd,J=8.1,1.6,0.7Hz,1H),2.48(s,3H);B:1H NMR(400MHz,CDCl3)δ8.37–8.33(m,1H),7.89–7.85(m,1H),7.72(ddd,J=8.0,1.2,0.6Hz,1H),7.47–7.43(m,3H),7.36–7.31(m,1H),2.90(s,3H);13CNMR(101MHz,CDCl3)δ139.59,139.07,136.81,136.55,135.52,134.88,133.72,133.12,126.93,126.64,126.16,126.06,125.82,125.76,125.03,124.21,124.12,122.73,122.69,121.52,121.19,121.18,120.44,22.62,21.66。
实施例13:1H NMR(400MHz,CDCl3)δ8.05(dd,J=8.7,5.2Hz,1H),7.89(s,1H),7.71(d,J=8.1Hz,1H),7.52(dd,J=8.7,2.3Hz,1H),7.26(s,1H),7.17(td,J=8.8,2.3Hz,1H),2.53(s,3H).13C NMR(101MHz,CDCl3)δ157.54,140.48,136.49,135.36,131.19,126.61,124.05,123.35,122.89,121.47,115.71,104.81,55.59。
实施例14:1H NMR(400MHz,CDCl3)δ8.04(dd,J=7.7,6.1Hz,1H),7.81(d,J=7.3Hz,1H),7.41(dq,J=13.4,7.2Hz,1H),7.33(d,J=2.2Hz,1H),7.05(dd,J=8.7,2.3Hz,1H),3.91(s,3H);13C NMR(101MHz,CDCl3)δ159.02,140.94,138.57,135.45,129.07,125.48,124.38,122.64,122.25,120.73,113.42,105.79,55.61。
实施例15:
1H NMR(400MHz,CDCl3)δ8.08–8.02(m,1H),7.85–7.72(m,3H),7.47–7.43(m,2H),7.19(td,J=8.7,2.5Hz,1H);13C NMR(101MHz,CDCl3)δ162.11,159.70,140.67,136.83,134.67,126.92,124.39,123.77,122.84,121.65,114.91,107.78。
实施例16:1H NMR(400MHz,CDCl3)δ8.09(dd,J=7.7,2.0Hz,2H),7.84(dd,J=5.9,2.7Hz,1H),7.74(d,J=8.5Hz,1H),7.47(dd,J=6.5,3.2Hz,2H),7.40(dd,J=8.5,1.9Hz,1H).13C NMR(101MHz,CDCl3)δ140.19,137.53,136.92,134.56,130.67,127.37,126.94,124.66,123.79,122.94,121.80,121.50。
实施例17:1H NMR(400MHz,CDCl3)δ9.00(d,J=8.5Hz,1H),8.85(d,J=8.3Hz,1H),8.59(s,1H),8.28–8.23(m,2H),8.04–7.97(m,2H),7.92–7.86(m,2H),7.73(ddd,J=8.4,6.9,1.4Hz,1H),7.58(dtd,J=8.1,7.0,1.2Hz,1H),7.52–7.45(m,5H).13C NMR(101MHz,CDCl3)δ140.08,139.68,138.58,137.61,136.67,135.08,132.51,133.11,131.88,130.77,130.60,129.42,128.99,128.38,127.83,127.66,127.11,127.03,125.94,125.20,125.12,124.87,124.79,124.69,124.50,123.19,123.16,122.81,121.92,121.05,120.59,119.97。
实施例18:1H NMR(400MHz,CDCl3)δ8.25–8.09(m,3H),7.97(ddd,J=6.8,3.7,2.6Hz,3H),7.87(d,J=8.6Hz,1H),7.59(dddd,J=21.1,8.2,7.0,1.3Hz,2H),7.54–7.42(m,2H);13C NMR(101MHz,CDCl3)δ139.02,137.27,136.54,132.60,132.33,128.92,128.88,126.71,126.25,126.13,125.44,124.51,124.46,122.93,121.57,119.63。
实施例19:1H NMR(400MHz,CDCl3)δ8.22(dd,J=5.9,3.2Hz,2H),7.92(dd,J=5.9,3.3Hz,2H),7.52(ddd,J=6.0,3.2,0.9Hz,4H).13C NMR(101MHz,CDCl3)δ139.40,135.51,126.67,124.32,122.78,121.54。
实施例20:A:1H NMR(400MHz,CDCl3)δ8.10–8.05(m,1H),8.00(d,J=8.1Hz,1H),7.83–7.78(m,1H),7.62(dt,J=1.5,0.8Hz,1H),7.42–7.38(m,2H),7.24(ddd,J=8.1,1.6,0.7Hz,1H),2.48(s,3H);B:1H NMR(400MHz,CDCl3)δ8.37–8.33(m,1H),7.89–7.85(m,1H),7.72(ddd,J=8.0,1.2,0.6Hz,1H),7.47–7.43(m,3H),7.36–7.31(m,1H),2.90(s,3H);13CNMR(101MHz,CDCl3)δ139.59,139.07,136.81,136.55,135.52,134.88,133.72,133.12,126.93,126.64,126.16,126.06,125.82,125.76,125.03,124.21,124.12,122.73,122.69,121.52,121.19,121.18,120.44,22.62,21.66。
实施例21:1H NMR(400MHz,CDCl3)δ8.15–8.09(m,1H),7.96(s,1H),7.87–7.80(m,1H),7.73(d,J=8.2Hz,1H),7.47–7.41(m,2H),7.29(d,J=8.2Hz,1H),2.53(s,3H);13C NMR(101MHz,CDCl3)δ139.76,136.35,135.65,135.39,134.07,128.18,126.48,124.16,122.79,122.37,121.74,121.43,21.47
实施例22:1H NMR(400MHz,CDCl3)δ8.05(dd,J=8.7,5.2Hz,1H),7.89(s,1H),7.71(d,J=8.1Hz,1H),7.52(dd,J=8.7,2.3Hz,1H),7.26(s,1H),7.17(td,J=8.8,2.3Hz,1H),2.53(s,3H);13C NMR(101MHz,CDCl3)δ157.54,140.48,136.49,135.36,131.19,126.61,124.05,123.35,122.89,121.47,115.71,104.81,55.59。
实施例23:1H NMR(400MHz,CDCl3)δ8.08–8.02(m,1H),7.85–7.72(m,3H),7.47–7.43(m,2H),7.19(td,J=8.7,2.5Hz,1H).ppm;13C NMR(101MHz,CDCl3)δ162.11,159.70,140.67,136.83,134.67,126.92,124.39,123.77,122.84,121.65,114.91,107.78。
实施例24:1H NMR(400MHz,CDCl3)δ8.12(ddd,J=7.2,2.5,1.5Hz,1H),8.04(dt,J=7.6,1.2Hz,1H),7.90–7.85(m,1H),7.51–7.43(m,3H),7.41(td,J=7.7,1.0Hz,1H);13CNMR(101MHz,CDCl3)δ139.31,138.83,137.17,135.73,128.20,127.27,126.23,125.59,124.72,122.90,122.09,119.73。
实施例25:1H NMR(400MHz,CDCl3)δ8.09(dd,J=7.7,2.0Hz,2H),7.84(dd,J=5.9,2.7Hz,1H),7.74(d,J=8.5Hz,1H),7.47(dd,J=6.5,3.2Hz,2H),7.40(dd,J=8.5,1.9Hz,1H).13C NMR(101MHz,CDCl3)δ140.19,137.53,136.92,134.56,130.67,127.37,126.94,124.66,123.79,122.94,121.80,121.50。
实施例26:1H NMR(400MHz,CDCl3)δ8.24–8.11(m,2H),7.89–7.79(m,1H),7.80–7.72(m,1H),7.52(dd,J=8.4,1.9Hz,1H),7.48–7.39(m,2H),1.44(s,9H);13C NMR(101MHz,CDCl3)δ147.65,139.83,136.47,135.75,135.36,126.43,124.85,124.14,122.84,122.26,121.38,117.81,34.82,31.64。
实施例27,28:1H NMR(400MHz,CDCl3)δ8.99(s,1H),8.35–8.19(m,2H),8.05–7.84(m,2H),7.67–7.47(m,2H);13C NMR(101MHz,CDCl3)δ146.06,145.39,140.22,135.90,134.51,128.23,125.38,123.12,123.07,122.21,121.08,117.00。
实施例29:1H NMR(400MHz,CDCl3)δ8.25–8.09(m,3H),7.97(ddd,J=6.8,3.7,2.6Hz,2H),7.87(d,J=8.6Hz,1H),7.59(dddd,J=21.1,8.2,7.0,1.3Hz,2H),7.54–7.42(m,2H);13C NMR(101MHz,CDCl3)δ139.02,137.27,136.54,132.60,132.33,128.92,128.88,126.71,126.25,126.13,125.44,124.51,124.46,122.93,121.57,119.63。

Claims (1)

1.一种钯催化一锅法合成二苯并噻吩类化合物的方法,其特征在于:在N,N-二甲基乙酰胺溶液中,以钯催化剂/配体为催化体系,加入无机碱,邻溴碘苯衍生物或邻二溴苯与苯硫酚衍生物为原料,在氮气氛围下反应,分离得到二苯并噻吩类化合物;
所述钯催化剂为二氯二乙腈钯;
所述配体为双(2-二苯基膦)苯醚;
所述无机碱为特戊酸铯;
所述反应温度为140℃,反应时间为24h;
所述邻溴碘苯衍生物、苯硫酚衍生物、钯催化剂、膦配体、特戊酸铯的物质的量比为0.25:0.2:0.005:0.010:1.0;
所述邻二溴苯、苯硫酚衍生物、钯催化剂、膦配体、特戊酸铯的物质的量比为0.25:0.2:0.005:0.020:1.0;
所述邻溴碘苯衍生物为邻溴碘苯、3-溴-4-碘甲苯、4-溴-3-碘甲苯、1-溴-4-氟-2-碘苯、2-溴-4-氟-1-碘苯、2-溴-4-氯-1-碘苯、1-溴-4-氯-2-碘苯、2-溴-4-三氟甲基-1-碘苯、2-溴-4-硝基-1-碘苯中的一种;
所述苯硫酚衍生物为对甲基苯硫酚、间甲基苯硫酚、对氟苯硫酚、对氯苯硫酚、对甲氧基苯硫酚、间甲氧基苯硫酚、1-萘硫醇、2-萘硫醇中的一种。
CN201810065018.8A 2018-01-23 2018-01-23 钯催化一锅法合成二苯并噻吩类化合物的方法 Active CN108299383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810065018.8A CN108299383B (zh) 2018-01-23 2018-01-23 钯催化一锅法合成二苯并噻吩类化合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810065018.8A CN108299383B (zh) 2018-01-23 2018-01-23 钯催化一锅法合成二苯并噻吩类化合物的方法

Publications (2)

Publication Number Publication Date
CN108299383A CN108299383A (zh) 2018-07-20
CN108299383B true CN108299383B (zh) 2023-02-14

Family

ID=62866029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810065018.8A Active CN108299383B (zh) 2018-01-23 2018-01-23 钯催化一锅法合成二苯并噻吩类化合物的方法

Country Status (1)

Country Link
CN (1) CN108299383B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114591290A (zh) * 2022-03-31 2022-06-07 陕西维世诺新材料有限公司 一种取代苯并[b]萘苯[2,3-d]噻吩衍生物的制备方法及衍生物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105198690A (zh) * 2015-09-17 2015-12-30 南京邮电大学 卤素调控的各种位置取代芴类化合物的制备方法
WO2017043757A1 (ko) * 2015-09-09 2017-03-16 삼성에스디아이 주식회사 유기 화합물, 유기 광전자 소자 및 표시 장치
CN106928237A (zh) * 2017-01-24 2017-07-07 北京绿人科技有限责任公司 N杂双咔唑类化合物及其制备方法、中间体和应用以及有机电致发光器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043757A1 (ko) * 2015-09-09 2017-03-16 삼성에스디아이 주식회사 유기 화합물, 유기 광전자 소자 및 표시 장치
CN105198690A (zh) * 2015-09-17 2015-12-30 南京邮电大学 卤素调控的各种位置取代芴类化合物的制备方法
CN106928237A (zh) * 2017-01-24 2017-07-07 北京绿人科技有限责任公司 N杂双咔唑类化合物及其制备方法、中间体和应用以及有机电致发光器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Photostimulated Reactions of eDihalobenzenes with Nucleophiles Derived from the 2-Naphthyl System. Competition between Electron Transfer, Fragmentation, and Ring Closure Reactions";Maria T. Baumgartner等;《J. Org. Chem.》;19931231;第58卷;2593-2598页 *

Also Published As

Publication number Publication date
CN108299383A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
Spencer et al. Palladium-mediated intramolecular formation of a CS bond: Application to the selective syntheses of six-and seven-membered sulfur-containing heterocycles
Pàmies et al. Copper-catalysed asymmetric conjugate addition of organometallic reagents to enones using S, O-ligands with a xylofuranose backbone
Orlov et al. Exclusive Selectivity in the One-Pot Formation of C–C and C–Se Bonds Involving Ni-Catalyzed Alkyne Hydroselenation: Optimization of the Synthetic Procedure and a Mechanistic Study
CN108299383B (zh) 钯催化一锅法合成二苯并噻吩类化合物的方法
Kadikova et al. 2-Zincoethylzincation of 2-alkynylamines and 1-alkynylphosphines catalyzed by titanium (IV) isopropoxide and ethylmagnesium bromide
Kazakova et al. Trifluoromethylated allyl alcohols: acid-promoted reactions with arenes and unusual ‘dimerization’
Serra et al. Enantioselective alkylation of aromatic aldehydes with (+)-camphoric acid derived chiral 1, 3-diamine ligands
Prakash et al. Superacid catalyzed hydroxyalkylation of aromatics with ethyl trifluoropyruvate: a new synthetic route to Mosher’s acid analogs
CN111848675A (zh) 四氢喹啉骨架手性膦-氮配体及其制备方法和应用
CN108689892B (zh) 3-磺酰化-二氢茚酮类化合物及其制备方法
Zhang et al. Synthesis of multisubstituted allenes via Palladium-catalyzed cross-coupling reaction of propargyl acetates with an organoaluminum reagent
CN113683559B (zh) 一种制备杂环邻碘硫醚的方法
Slocum et al. Halogen/lithium exchange in hydrocarbon media; basic and continuous reactor studies
CN109232564B (zh) 一种分子碘促进的一锅法合成3位硫基取代咪唑并[1,2-a]吡啶化合物的方法
Adams et al. Facile alkyne coupling reactions in dirhenium carbonyl complexes
RU2456295C1 (ru) СПОСОБ ПОЛУЧЕНИЯ (АЦЕТИЛАЦЕТОНАТО-κ2-О,О')(БИС-АЦЕТОНИТРИЛ)ПАЛЛАДИЯ ТЕТРАФТОРБОРАТА
CN114605300B (zh) 一种芳基硒氰酸酯类化合物的合成方法
CN106631898B (zh) 一种脒类化合物的制备方法
CN111777479A (zh) 一种手性含氮杂芳环化合物的催化不对称合成方法
CN109678862A (zh) 一种多取代二苯乙烯基吲哚衍生物的制备方法
CN108947995A (zh) 一种多取代噁二嗪衍生物的制备方法
CN112939850B (zh) 一种利用醛、芳基硼酸、乙腈的串联反应合成吡啶环结构的方法
Rassadin et al. Convenient Synthesis of Ethenylcyclopropane and Some 2-Cyclopropylcyclopropane Derivatives
Maruyama et al. (Sila) Difluoromethylation of Fluorenyllithium with CF3H and CF3TMS
CN113024342B (zh) 一种区域和立体选择性合成(e)-2,4,4-三取代共轭二烯烃的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant