CN108295843B - 一种软模板法制备三维石墨烯负载纳米Pd催化剂及其在硝基苯加氢中的应用 - Google Patents

一种软模板法制备三维石墨烯负载纳米Pd催化剂及其在硝基苯加氢中的应用 Download PDF

Info

Publication number
CN108295843B
CN108295843B CN201810052031.XA CN201810052031A CN108295843B CN 108295843 B CN108295843 B CN 108295843B CN 201810052031 A CN201810052031 A CN 201810052031A CN 108295843 B CN108295843 B CN 108295843B
Authority
CN
China
Prior art keywords
catalyst
solution
ethanol
emulsion
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810052031.XA
Other languages
English (en)
Other versions
CN108295843A (zh
Inventor
刘平
陈炎亮
张志翔
李永昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201810052031.XA priority Critical patent/CN108295843B/zh
Publication of CN108295843A publication Critical patent/CN108295843A/zh
Application granted granted Critical
Publication of CN108295843B publication Critical patent/CN108295843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种软模板法制备三维石墨烯负载纳米Pd催化剂及其在硝基苯加氢中的应用,该方法以氧化石墨烯为载体前驱体,将其分散在水、乙醇和环己烷的乳液体系中,以抗坏血酸为还原剂将氧化石墨烯组装成三维结构。然后以三维石墨烯为载体制备高分散纳米Pd催化剂。将上述催化剂用于硝基苯的加氢反应,表现出很高的催化活性和稳定性,并且具有较高的回收率。该催化剂制备条件温和、过程简单、成本低廉,易于实现工业化生产。

Description

一种软模板法制备三维石墨烯负载纳米Pd催化剂及其在硝基 苯加氢中的应用
技术领域
本发明涉及贵金属加氢催化剂及其制备技术领域,特别涉及一种软模板制备三维石墨烯负载纳米Pd催化剂的方法以及在硝基苯加氢中的应用。
背景技术
目前,能高效选择催化加氢反应的催化剂有贵金属和非贵金属催化剂,贵金属具有负载量低、反应条件较温和、催化活性高等特点,但是单独的金属催化剂易于团聚,所以需要采用载体来对金属进行分散。常用的载体与金属的结合是物理吸附,还是会发生团聚,因此寻找一种能使金属纳米粒子牢固的负载并且达到高分散的载体是很有意义的。
作为碳材料家族中的新兴成员,石墨烯具有独特的二维(2D)蜂窝状晶格结构,其具有优异的电子性能和导热性,以及机械稳定性和极高的理论比表面积。这些性质使石墨烯成为装载金属的潜在理想的支持。然而也有一些问题暴露出来,如不同的负载位导致金属活性部位分布不均匀,以及损耗或不可避免的聚集造成金属粒径偏大,金属纳米粒子和GO较弱的相互作用力。此外,2D石墨烯的片层间的范德华力或π—π结合导致的重复堆垛对其性能造成破坏。这不利于石墨烯基金属催化剂的性能发挥。
组装二维平面石墨烯基材料被认为是一个很有潜力的途径来防止重复堆垛。获取三维石墨烯最简便的方法是使用3D硬模板方法:多孔金属泡沫(Ni泡沫辅助化学气相沉积法),固体纳米结构颗粒(二氧化硅球或聚合物颗粒)和凝固溶剂(冷冻干燥)通常用作硬模板以合成具有不同孔径和形态的多孔石墨烯。相比于硬模板,软模板的方法具有很多优点,如易加工,高效率和低成本。更重要的是,软模板方法总是与复杂的界面反应相关联,这可以为研究界面化学的基本原理提供一个极好的平台。同时,软模板法使用的乳液模板中胶粒之间的碰撞导致水核中物质交换,反应在水核中发生,水核的大小限制还能限制金属粒子的尺寸增长以便合成出超细纳米粒子,提高催化剂活性。
发明内容
本发明要解决的技术问题是针对二维石墨烯负载Pd纳米粒子易造成片层堆垛、回收利用率低、Pd金属粒径偏大等问题,提供一种相对简单、清洁、低成本的制备Pd纳米粒子/三维石墨烯加氢催化剂的方法,用于硝基苯的加氢反应。
本发明解决其技术问题所采用的催化剂合成的技术方案是:
一种软模板法制备三维石墨烯负载纳米Pd催化剂及其在硝基苯加氢中的应用,其特征在于所述催化剂按照下述步骤制备:
称取一定量氧化石墨加入去离子水、乙醇和环己烷的乳液体系中,氧化石墨浓度为0.5-4mg/mL,然后在室温下超声5-20min,得到分散的氧化石墨烯乳液;向上述步骤所得的乳液中加入60-100mg的抗坏血酸,将混合液在60-90℃水浴下处理0.25-2h;然后加入0.3-1mL浓度为0.02mol/L的PdCl2水溶液,在油浴中搅拌;将所得混合物离心分离,用去离子水、乙醇依次洗涤,真空干燥,即得到所述的催化剂。所述的油浴条件是:温度75-100℃,时间0.5-2.5h。
在研究中发现,在不加入任何交联剂以及高温高压的情况下,能够以乳液液滴为软模板实现Pd负载的三维还原氧化石墨烯的合成,且Pd纳米粒子能够高度分散于三维氧化石墨烯的表面。
该方法以简单的乳液体系为软模板借助抗坏血酸还原氧化石墨烯片自组装成三维石墨烯,通过乳液颗粒之间的碰撞进行物质交换,限制纳米粒子尺寸,实现Pd纳米粒子在三维还原氧化石墨烯上沉积。
此外,由于载体为三维还原氧化石墨烯,使得我们所制备的催化剂在后续的反应体系中具有很好的回收率。
该合成方法步骤简单、条件温和、且成本低廉,易于工业化生产。
本发明所述的催化剂在硝基苯的加氢反应中表现出极好的催化活性和复用性。
具体实施方式
本发明将就以下实施例作进一步说明,但应了解的是,这些实施例仅为例示说明之用,而不应被解释为本发明实施的限制。
实施例1
称取0.04g氧化石墨加入25mL乳液中(15mL去离子水、5mL乙醇、5mL环己烷),将其超声处理,超声频率为180W,室温超声1.5h,然后向溶液中加入80mg的抗坏血酸,水浴加热90℃反应0.5h,再加入0.5mL的0.02mol/L的PdCl2溶液,油浴100℃搅拌反应2h,反应结束后离心分离,用去离子水洗涤5次,乙醇洗涤2次,50℃真空干燥2h,得到所述的催化剂A。
实施例2
称取0.04g氧化石墨加入16.6mL乳液中(10mL去离子水、3.3mL乙醇、3.3mL环己烷),将其超声处理,超声频率为180W,室温超声1.5h,然后向溶液中加入80mg的抗坏血酸,水浴加热90℃反应0.5h,再加入0.5mL的0.02mol/L的PdCl2溶液,油浴搅拌100℃反应2h,反应结束后离心分离,用去离子水洗涤5次,乙醇洗涤2次,50℃真空干燥2h,得到所述的催化剂B。
实施例3
称取0.04g氧化石墨加入8mL乳液中(6mL去离子水、2mL乙醇、2mL环己烷),将其超声处理,超声频率为180W,室温超声1.5h,然后向溶液中加入80mg的抗坏血酸,水浴加热90℃反应0.5h,再加入0.5mL的0.02mol/L的PdCl2溶液,油浴搅拌100℃反应2h,反应结束后离心分离,用去离子水洗涤5次,乙醇洗涤2次,50℃真空干燥2h,得到所述的催化剂C。
实施例4
称取0.04g氧化石墨加入25mL乳液中(15mL去离子水、5mL乙醇、5mL环己烷),将其超声处理,超声频率为180W,室温超声1.5h,然后向溶液中加入80mg的抗坏血酸,水浴加热90℃反应0.5h,再加入0.4mL的0.02mol/L的PdCl2溶液,油浴搅拌100℃反应2h,反应结束后离心分离,用去离子水洗涤5次,乙醇洗涤2次,50℃真空干燥2h,得到所述的催化剂D。
实施例5
称取0.04g氧化石墨加入25mL乳液中(15mL去离子水、5mL乙醇、5mL环己烷),将其超声处理,超声频率为180W,室温超声1.5h,然后向溶液中加入80mg的抗坏血酸,水浴加热90℃反应0.5h,再加入0.7mL的0.02mol/L的PdCl2溶液,油浴搅拌100℃反应2h,反应结束后离心分离,用去离子水洗涤5次,乙醇洗涤2次,50℃真空干燥2h,得到所述的催化剂E。
实施例6
称取0.04g氧化石墨加入25mL乳液中(15mL去离子水、5mL乙醇、5mL环己烷),将其超声处理,超声频率为180W,室温超声1.5h,然后向溶液中加入80mg的抗坏血酸,水浴加热90℃反应1h,再加入0.5mL的0.02mol/L的PdCl2溶液,油浴搅拌90℃反应2h,反应结束后离心分离,用去离子水洗涤5次,乙醇洗涤2次,50℃真空干燥2h,得到所述的催化剂F。
实施例7
称取0.04g氧化石墨加入25mL乳液中(15mL去离子水、5mL乙醇、5mL环己烷),将其超声处理,超声频率为180W,室温超声1.5h,然后向溶液中加入80mg的抗坏血酸,水浴加热90℃反应2h,再加入0.5mL的0.02mol/L的PdCl2溶液,油浴搅拌75℃反应2h,反应结束后离心分离,用去离子水洗涤5次,乙醇洗涤2次,50℃真空干燥2h,得到所述的催化剂G。
实施例8
称取0.04g氧化石墨加入25mL乳液中(15mL去离子水、5mL乙醇、5mL环己烷),将其超声处理,超声频率为180W,室温超声1.5h,然后向溶液中加入80mg的抗坏血酸,水浴加热90℃反应0.5h,再加入0.5mL的0.02mol/L的PdCl2溶液,油浴搅拌100℃反应0.5h,反应结束后离心分离,用去离子水洗涤5次,乙醇洗涤2次,50℃真空干燥2h,得到所述的催化剂H。
未加软模板制备的对比催化剂X:
称取0.04g氧化石墨加入25mL加入25mL去离子水中,将其超声处理,超声频率为180W,室温超声1.5h,然后向溶液中加入80mg的抗坏血酸,水浴加热90℃反应0.5h,再加入0.5mL的0.02mol/L的PdCl2溶液,油浴100℃搅拌反应2h,反应结束后离心分离,用去离子水洗涤5次,乙醇洗涤2次,50℃真空干燥2h,得到所述的催化剂X。
将上述实施例中的催化剂应用于硝基苯加氢过程中,反应条件如下:
溶剂:乙醇;硝基苯/Pd(mol/mol):3.0×104;氢气压力:1.0MPa;反应温度:50℃;反应时间:15min。
其催化性能如表1所示。
从表1可以看出,相对于未添加软模板制备的催化剂,本发明所述的催化剂均具有很高的硝基苯加氢活性、苯胺选择性和较高的催化剂回收率。在50℃下,反应仅15min,催化剂A上硝基苯转化率可达100%,同时苯胺选择性可达98.5%。另外,所有所述催化剂的回收率均高于93%,很好地解决了石墨烯基催化剂的回收问题。
表1催化剂的催化性能
催化剂 硝基苯转化率(%) 苯胺选择性(%) 催化剂回收率(%)
X 47.6 71.5 88.3
A 100 98.5 98.2
B 98.2 95.4 95.7
C 68.8 81.7 96.3
D 61.7 80.5 97.1
E 100 97.2 96.1
F 99.1 95.9 96.4
G 97.2 94.9 96.7
H 95.5 93.1 93.9
对上述实施例1得到的催化剂A进行复用性能考察,该催化剂离心回收且经乙醇洗涤干燥后复用,性能如表2所示:
表2催化剂A的复用性能
复用次数 硝基苯转化率(%) 苯胺选择性(%)
1 100 98.5
2 98.2 96.6
3 96.8 94.7
4 96.3 93.9
5 97.1 94.2
6 96.9 94.9
表2显示催化剂使用6次后活性没有明显下降,复用性能好。
图1是未加软模板制备的催化剂X及上述实施例1得到的催化剂A的TEM(透射电镜)对比图。对上述实施例1得到的催化剂A及对比催化剂X进行TEM(透射电镜)表征,其粒子形貌、分布如图1所示。TEM结果显示未加软模板制备的三维石墨烯负载的Pd粒子虽然分散较为均匀,但粒径相对较大。采用软模板法制备的催化剂A上Pd纳米粒子在石墨烯载体上达到高分散,粒径约为3-6nm。这充分说明了软模板法的优势。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (3)

1.一种软模板法制备三维石墨烯负载纳米Pd催化剂的制备方法,其特征在于包括以下步骤:
(1)称取一定量氧化石墨加入去离子水、乙醇和环己烷的乳液体系中,氧化石墨浓度为0.5-4mg/mL,然后在室温下超声5-20min,得到分散的氧化石墨烯乳液;
(2)向步骤(1)所得的乳液中加入60-100mg的抗坏血酸,将混合液在60-90℃水浴下处理0.25-2h;然后加入0.3-1mL浓度为0.02mol/L的PdCl2水溶液,在油浴中搅拌;将所得混合物离心分离,用去离子水、乙醇依次洗涤,真空干燥,即得到所述的催化剂。
2.根据权利要求1所述的方法,其特征在于步骤(2)中所述的油浴条件是:温度75-100℃,时间0.5-2.5h。
3.权利要求1所述方法制备得到的催化剂在还原硝基苯制备苯胺反应中的应用。
CN201810052031.XA 2018-01-19 2018-01-19 一种软模板法制备三维石墨烯负载纳米Pd催化剂及其在硝基苯加氢中的应用 Active CN108295843B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810052031.XA CN108295843B (zh) 2018-01-19 2018-01-19 一种软模板法制备三维石墨烯负载纳米Pd催化剂及其在硝基苯加氢中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810052031.XA CN108295843B (zh) 2018-01-19 2018-01-19 一种软模板法制备三维石墨烯负载纳米Pd催化剂及其在硝基苯加氢中的应用

Publications (2)

Publication Number Publication Date
CN108295843A CN108295843A (zh) 2018-07-20
CN108295843B true CN108295843B (zh) 2020-05-26

Family

ID=62865849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810052031.XA Active CN108295843B (zh) 2018-01-19 2018-01-19 一种软模板法制备三维石墨烯负载纳米Pd催化剂及其在硝基苯加氢中的应用

Country Status (1)

Country Link
CN (1) CN108295843B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337923B (zh) * 2022-07-15 2023-11-10 湖南清河新材料有限公司 一种石墨烯基复合催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088678A1 (zh) * 2010-12-29 2012-07-05 海洋王照明科技股份有限公司 一种pt-ru纳米合金/石墨烯催化剂及其制备方法和应用
CN103570011A (zh) * 2013-10-28 2014-02-12 复旦大学 一种氮磷共掺杂的多孔石墨烯材料的制备方法
CN104001503A (zh) * 2014-05-23 2014-08-27 常州大学 一种氧化石墨烯负载纳米Pd加氢催化剂的制备方法
CN105561989A (zh) * 2015-12-17 2016-05-11 浙江工业大学 负载贵金属的石墨烯微球催化剂及其制备方法与应用
CN105964247A (zh) * 2016-06-12 2016-09-28 常州大学 一种三维还原氧化石墨烯负载纳米Pd加氢催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088678A1 (zh) * 2010-12-29 2012-07-05 海洋王照明科技股份有限公司 一种pt-ru纳米合金/石墨烯催化剂及其制备方法和应用
CN103570011A (zh) * 2013-10-28 2014-02-12 复旦大学 一种氮磷共掺杂的多孔石墨烯材料的制备方法
CN104001503A (zh) * 2014-05-23 2014-08-27 常州大学 一种氧化石墨烯负载纳米Pd加氢催化剂的制备方法
CN105561989A (zh) * 2015-12-17 2016-05-11 浙江工业大学 负载贵金属的石墨烯微球催化剂及其制备方法与应用
CN105964247A (zh) * 2016-06-12 2016-09-28 常州大学 一种三维还原氧化石墨烯负载纳米Pd加氢催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"纳米颗粒/碳复合材料的合成及性能研究";刘芷莹,;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20170315(第3期);第33页第1-2段、第37页第2段 *

Also Published As

Publication number Publication date
CN108295843A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
Zhang et al. Amine-functionalized GO as an active and reusable acid–base bifunctional catalyst for one-pot cascade reactions
CN104028293B (zh) 一种低温氮掺杂石墨烯负载纳米Pd加氢催化剂的制备方法
Huang et al. Three-dimensional amine-terminated ionic liquid functionalized graphene/Pd composite aerogel as highly efficient and recyclable catalyst for the Suzuki cross-coupling reactions
Sadjadi et al. Pd supported on magnetic carbon coated halloysite as hydrogenation catalyst: Study of the contribution of carbon layer and magnetization to the catalytic activity
Sadjadi et al. Palladated nanocomposite of halloysite–nitrogen-doped porous carbon prepared from a novel cyano-/nitrile-free task specific ionic liquid: An efficient catalyst for hydrogenation
CN103008012A (zh) 金属有机骨架结构材料负载铂催化剂、制备方法及其应用
CN103861657B (zh) 纳米银负载多孔二氧化硅的制备方法
Duan et al. Highly Efficient Reusable Sponge‐Type Catalyst Carriers Based on Short Electrospun Fibers
CN107774246B (zh) 一种中空介孔硅纳米胶囊核内负载钯催化剂的制备方法及其应用
Xie et al. Monolithic cellulose supported metal nanoparticles as green flow reactor with high catalytic efficiency
CN104549244B (zh) 一种铑纳米催化剂及其制备方法与应用
Li et al. Palladium nanoparticles anchored on amphiphilic Janus-type cellulose nanocrystals for Pickering interfacial catalysis
CN105618095A (zh) 多孔纳米碳化硅负载铂催化剂及制备和在α,β-不饱和醛选择加氢反应中的应用
Saeed et al. Reuseable monolithic nanoporous graphite-supported nanocatalysts (Fe, Au, Pt, Pd, Ni, and Rh) from pyrolysis and galvanic transmetalation of ferrocene-based polyamide aerogels
Ashiri et al. Preparation of a novel palladium catalytic hydrogel based on graphene oxide/chitosan NPs and cellulose nanowhiskers
Ulusal et al. Green preparation of Pd nanoparticles on SBA-15 via supercritical fluid deposition and application on Suzuki–Miyaura cross-coupling reaction
Zhang et al. Palladium nanoparticles hosted in graphene-based 2-dimension polyelectrolyte brushes for enhanced hydrogenation selectivity of o-chloronitrobenzene
CN112337462A (zh) 一种通过硝酸蒸汽法制备的原子级分散Pd催化剂及其应用
CN109453762A (zh) 一种改性黏土矿负载钯催化剂的制备方法和应用
CN108295843B (zh) 一种软模板法制备三维石墨烯负载纳米Pd催化剂及其在硝基苯加氢中的应用
Chen et al. Stable and recyclable Pd catalyst supported on modified silica hollow microspheres with macroporous shells for enhanced catalytic hydrogenation of NBR
CN113663674A (zh) 一种多孔微球的制备方法和应用及一种硝基化合物的还原方法
CN102847555B (zh) 高分子负载的Pd-Ni-B纳米催化剂、制备方法及其应用
CN110508277A (zh) 一种高分散钯纳米颗粒催化剂及其制备方法和应用
CN104437474A (zh) 有序介孔碳材料负载铂催化剂及其在芳香硝基化合物催化氢化中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant