CN108295510B - 三维柔性多孔石墨炔海绵材料及其制备方法与应用 - Google Patents
三维柔性多孔石墨炔海绵材料及其制备方法与应用 Download PDFInfo
- Publication number
- CN108295510B CN108295510B CN201710020702.XA CN201710020702A CN108295510B CN 108295510 B CN108295510 B CN 108295510B CN 201710020702 A CN201710020702 A CN 201710020702A CN 108295510 B CN108295510 B CN 108295510B
- Authority
- CN
- China
- Prior art keywords
- porous graphite
- flexible porous
- dimensional flexible
- graphite alkyne
- sponge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/02—Separation of non-miscible liquids
- B01D17/0202—Separation of non-miscible liquids by ab- or adsorption
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2361/00—Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
- C08J2361/20—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
- C08J2361/26—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
- C08J2361/28—Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种三维柔性多孔石墨炔海绵材料及其制备方法与应用。所述制备方法,包括如下步骤:将三聚氰胺海绵置于分散有六炔基苯和碘化亚铜的溶液中,在惰性气氛中,依次经反应和热处理即得所述三维柔性多孔石墨炔海绵材料;所述溶液的溶剂为有机溶剂。本发明方法制备的三维柔性多孔石墨炔海绵材料具有亲油疏水的特性,可用于油水分离或含油污水处理中,其中的油可为柴油、汽油、食用油、硅油以及石油醚、二氯甲烷、甲苯、乙酸乙酯等不与水互溶的有机溶剂。本发明三维柔性多孔石墨炔海绵材料,能够作为多相体系中油相提取材料,表现出了优异的油水分离性能,具有提取效率高、循环次数多等特点。
Description
技术领域
本发明涉及一种三维柔性多孔石墨炔海绵材料及其制备方法与应用。
背景技术
近年来,随着石油化工企业的快速发展,石油泄漏、废弃的化学试剂等造成的水污染问题日益突出;现存的吸油材料大部分存在选择性低、提取效率低、吸油量小、循环使用寿命短等缺点。因此,制备高性能的吸油、吸有机溶剂材料变得尤为重要。活性炭、石墨烯等碳材料作为吸油材料已经被广泛研究(M.A.Lillo-Ródenas,D.Cazorla-Amorós,A.Linares-Solano,Carbon 2005,43,1758.H.Zhu,D.Chen,W.An,N.Li,Q.Xu,H.Li,J.Heand J.Lu,Small 2015,39,5222),然而石墨炔作为一种新的碳同素异形体,具有大的π共轭体系,均一的多孔结构,在能量存储、催化、半导体器件领域得到了广泛的应用,在多相体系中油相提取领域研究相对较少(C.S.Huang,S.L.Zhang,H.B.Liu,Y.G.Li,G.L.Cui,Y.L.Li,Nano Energy 2015,11,481;J.Y.Xiao,J.J.Shi,H.B.Liu,Y.Z.Xu,S.T.Lv,Y.H.Luo,D.M.Li,Q.B.Meng,Y.L.Li,Adv.Energy Mater.2015,5,1401943;H.T.Qi,P.Yu,Y.X.Wang,G.C.Han,H.B.Liu,Y.P.Yi,Y.L.Li,L.Q.Mao,J.Am.Chem.Soc.2015,137,5260)。
发明内容
本发明的目的是提供一种三维柔性多孔石墨炔海绵材料及其制备方法与应用,本发明提供的三维柔性多孔石墨炔海绵材料具有重量小、柔性便携、多相体系中油相提取效率高、循环次数多等特点,充分发挥其在油水多相体系中油相提取领域中的实际应用价值。
本发明所提供的三维柔性多孔石墨炔海绵材料的制备方法,包括如下步骤:
将三聚氰胺海绵置于分散有六炔基苯和碘化亚铜的溶液中,在惰性气氛中,依次经反应和热处理即得所述三维柔性多孔石墨炔海绵材料;
所述溶液的溶剂为有机溶剂。
上述的制备方法中,所述六炔基苯与所述有机溶剂的质量比可为1:5~20,具体可为1:6.7~12、1:6.7、1:8.9或1:12;
所述六炔基苯与所述碘化亚铜的质量比可为1:0.1~0.5,具体可为1:0.1~0.2、1:0.1、1:0.13或1:0.2。
上述的制备方法中,所述有机溶剂为四氢呋喃、吡啶或丙酮等。
上述的制备方法中,所述反应的温度可为40~80℃,具体可为50~60℃,时间为48~72h,具体可为60h。
上述的制备方法中,所述热处理的温度高于所述反应的温度,可为60~120℃,具体可为100℃,时间可为0.5~2h,具体可为0.5h。
上述的制备方法中,所述三聚氰胺海绵的尺寸规格为4×2×2cm~6×3×3cm。
上述方法制备的三维柔性多孔石墨炔海绵材料也属于本发明的保护范围,其具有亲油疏水的特性,可用于油水分离或含油污水处理中,其中的油可为柴油、汽油、食用油、硅油以及石油醚、二氯甲烷、甲苯、乙酸乙酯等不与水互溶的有机溶剂。
本发明三维柔性多孔石墨炔海绵材料,能够作为多相体系中油相提取材料,表现出了优异的油水分离性能,具有提取效率高、循环次数多等特点。
附图说明
图1为三聚氰胺海绵以及实施例1-3制备的三维柔性多孔石墨炔海绵的照片。
图2为本发明实施例3制备的三维柔性多孔石墨炔海绵的扫描电子显微镜图。
图3为本发明实施例3制备的三维柔性多孔石墨炔海绵的拉曼光谱。
图4为本发明实施例4的实验结果图。
图5为本发明实施例5的实验结果图。
图6为本发明实施例3制备的三维柔性多孔石墨炔海绵的水接触角图。
图7为本发明实施例7的实验结果图。
图8为本发明实施例8的实验结果图。
图9为本发明实施例3制备的三维柔性多孔石墨炔海绵的多相体系中油相提取效果图。
图10为本发明实施例3制备的三维柔性多孔石墨炔海绵吸油量柱状图。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中所用的六炔基苯可参考下述文献合成:G.X.Li,Y.L.Li,H.B.Liu,Y.B.Guo,Y.J.Li,D.B.Zhu,Chem.Commun.2010,46,3256-3258.。
一、三维柔性多孔石墨炔海绵材料的制备
实施例1、
将10mg六炔基苯溶于150mL四氢呋喃(六炔基苯与四氢呋喃的质量比为1:12)中,加入2mg碘化亚铜,倒入放有三聚氰胺海绵(图1a,4×2×2cm)的烧瓶中,氩气氛围下,于50~60℃范围内反应60h,得到三维柔性多孔石墨炔海绵,然后于100℃热处理0.5h,所得材料如图1b所示。
实施例2、
将15mg六炔基苯溶于150mL四氢呋喃(六炔基苯与四氢呋喃的质量比为1:8.9)中,加入2mg碘化亚铜,倒入放有三聚氰胺海绵(图1a,4×2×2cm)的烧瓶中,氩气氛围下,于50~60℃范围内反应60h,得到三维柔性石墨炔海绵,然后于100℃热处理0.5h,所得材料如图1c所示。
实施例3、
将20mg六炔基苯溶于150mL四氢呋喃(六炔基苯与四氢呋喃的质量比为1:6.7)中,加入2mg碘化亚铜,倒入放有三聚氰胺海绵(图1a,4×2×2cm)的烧瓶中,氩气氛围下,于50~60℃范围内反应60h,得到三维柔性石墨炔海绵,然后于100℃热处理0.5h,所得材料如图1d所示。
本实施例制备的三维柔性多孔石墨炔海绵材料的扫描电子显微镜图如图2所示,由图2可以看出,海绵骨架表面较为粗糙,表明石墨炔薄膜成功生长在海绵骨架上。
本实施例制备的三维柔性多孔石墨炔海绵材料的拉曼散射光谱如图3所示,由图3可以看出,图中的拉曼峰为石墨炔薄膜的特征峰,表明成功制备了三维柔性石墨炔海绵。
二、三维柔性多孔石墨炔海绵在多相体系中油相提取领域中的应用
实施例4、
将三聚氰胺海绵和本发明实施例3制备的三维柔性多孔石墨炔海绵分别放入盛有去离子水的烧杯中,可观察到,本发明三维柔性多孔石墨炔海绵漂浮在水面上,而三聚氰胺海绵沉入杯底,实验结果如图4所示,表明本发明制备的三维柔性多孔石墨炔海绵具有疏水性。
实施例5、
三聚氰胺海绵和本发明实施例3制备的三维柔性多孔石墨炔海绵水平置放于实验台上,分别滴一滴甲基蓝水溶液,本发明三维柔性多孔石墨炔海绵上有蓝色水滴,而三聚氰胺海绵将蓝色水溶液吸入海绵中,实验结果如图5所示,表明本发明制备的三维柔性多孔石墨炔海绵具有疏水性。
实施例6、
将本发明实施例3制备的三维柔性多孔石墨炔海绵进行两次接触角测试,滴加水的量分别为5微升和10微升,接触角分别为121°和125°,实验结果如图6所示,表明本发明三维柔性多孔石墨炔海绵具有较好的疏水性能。
实施例7、
将本发明实施例3制备的三维柔性多孔石墨炔海绵,进行吸油实验,分别去吸水面上和水下的油,油均能被吸净,实验结果如图7所示,表明本发明制备的三维柔性多孔石墨炔海绵具有较好的疏水亲油性。
实施例8、
将本发明实施例3制备的三维柔性多孔石墨炔海绵,放入橙色油(苝的乙酸乙酯溶液)和蓝色水(甲基蓝水溶液)的混合液中,然后取出海绵,进行挤压,挤压出的液体全部为橙色油,实验结果如图8所示,表明本发明制备的三维柔性多孔石墨炔海绵具有较好的油相提取能力。
实施例9、
将本发明实施例3制备的三维柔性多孔石墨炔海绵,放入提取装置中,倒入橙色油(苝的乙酸乙酯溶液)和蓝色水(甲基蓝水溶液)的乳液,橙色油和蓝色水完全分离,油相被提取出来,实验结果如图9所示,表明本发明制备的三维柔性多孔石墨炔海绵具有较好的油水分离能力。
实施例10、
将本发明实施例3制备的三维柔性多孔石墨炔海绵,分别放入二氯甲烷、三氯甲烷、乙酸乙酯、石油醚、甲苯、柴油、汽油、硅油和食用油中,测得吸油量如图10所示,表明本发明制备的三维柔性多孔石墨炔海绵具有较大的吸油量。
Claims (6)
1.一种三维柔性多孔石墨炔海绵材料的制备方法,包括如下步骤:
将三聚氰胺海绵置于分散有六乙炔基苯和碘化亚铜的溶液中,在惰性气氛中,依次经反应和热处理即得所述三维柔性多孔石墨炔海绵材料;
所述溶液的溶剂为有机溶剂;
所述六乙炔基苯与所述有机溶剂的质量比为1:5~20;
所述六乙炔基苯与所述碘化亚铜的质量比为1:0.1~0.5;
所述反应的温度为40~80℃,时间为48~72h;
所述热处理的温度为60~120℃,时间为0.5~2h。
2.根据权利要求1所述的制备方法,其特征在于:所述有机溶剂为四氢呋喃、吡啶或丙酮。
3.根据权利要求1或2所述的制备方法,其特征在于:所述三聚氰胺海绵的尺寸规格为4×2×2cm~6×3×3cm。
4.权利要求1-3中任一项所述方法制备的三维柔性多孔石墨炔海绵材料。
5.权利要求4所述三维柔性多孔石墨炔海绵材料在油水分离或含油污水处理中的应用。
6.权利要求4所述三维柔性多孔石墨炔海绵材料在制备或作为亲油疏水材料中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710020702.XA CN108295510B (zh) | 2017-01-12 | 2017-01-12 | 三维柔性多孔石墨炔海绵材料及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710020702.XA CN108295510B (zh) | 2017-01-12 | 2017-01-12 | 三维柔性多孔石墨炔海绵材料及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108295510A CN108295510A (zh) | 2018-07-20 |
CN108295510B true CN108295510B (zh) | 2020-06-16 |
Family
ID=62871765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710020702.XA Active CN108295510B (zh) | 2017-01-12 | 2017-01-12 | 三维柔性多孔石墨炔海绵材料及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108295510B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109019586B (zh) * | 2018-09-11 | 2021-07-27 | 北方民族大学 | 一种类石墨炔的制备方法 |
CN114950413B (zh) * | 2022-06-08 | 2023-02-28 | 中国科学院化学研究所 | 一种石墨炔改性亲水催化剂的制备方法及其在水相加氢中的应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103159894A (zh) * | 2011-12-19 | 2013-06-19 | 中国科学院大连化学物理研究所 | 超疏水微孔共轭聚合物和强疏水海绵吸附材料及其制备 |
CN103240065A (zh) * | 2013-05-03 | 2013-08-14 | 大连理工大学 | 一种有弹性的疏水材料、其合成方法及应用 |
CN106117521A (zh) * | 2016-06-24 | 2016-11-16 | 中国科学院化学研究所 | 一种碳炔薄膜及其制备方法与应用 |
-
2017
- 2017-01-12 CN CN201710020702.XA patent/CN108295510B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103159894A (zh) * | 2011-12-19 | 2013-06-19 | 中国科学院大连化学物理研究所 | 超疏水微孔共轭聚合物和强疏水海绵吸附材料及其制备 |
CN103240065A (zh) * | 2013-05-03 | 2013-08-14 | 大连理工大学 | 一种有弹性的疏水材料、其合成方法及应用 |
CN106117521A (zh) * | 2016-06-24 | 2016-11-16 | 中国科学院化学研究所 | 一种碳炔薄膜及其制备方法与应用 |
Non-Patent Citations (1)
Title |
---|
Robust Superhydrophobic Foam: A Graphdiyne-Based Hierarchical Architecture for Oil/Water Separation;Xin Gao;《Advanced Materials》;20160104;第28卷(第1期);第168-173页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108295510A (zh) | 2018-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | Self‐growth of MoS2 sponge for highly efficient photothermal cleanup of high‐viscosity crude oil spills | |
Wu et al. | Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions | |
CN103768960B (zh) | 一种石墨烯基膜的制备方法及其在油水分离中的应用 | |
Yang et al. | Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water | |
Li et al. | Rapid adsorption for oil using superhydrophobic and superoleophilic polyurethane sponge | |
Wang et al. | Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution | |
CN108311067A (zh) | 一种基于复合Janus微球的油水微乳液分离方法 | |
Ge et al. | A three-dimensional porous Co@ C/carbon foam hybrid monolith for exceptional oil–water separation | |
Liu et al. | A superhydrophobic sponge with hierarchical structure as an efficient and recyclable oil absorbent | |
CN108295510B (zh) | 三维柔性多孔石墨炔海绵材料及其制备方法与应用 | |
Cao et al. | Double‐Shelled Mn2O3 Hollow Spheres and Their Application in Water Treatment | |
Zhang et al. | Regeneration of mesoporous silica aerogel for hydrocarbon adsorption and recovery | |
JP2020200233A (ja) | 改善された炭素供給源を使用する多孔質炭素材料の調製方法 | |
Liu et al. | Cellulose-derived multifunctional nano-CuO/carbon aerogel composites as a highly efficient oil absorbent | |
Zhang et al. | A novel magnetic biochar from sewage sludge: synthesis and its application for the removal of malachite green from wastewater | |
Begum et al. | Adsorption and kinetic study of Cr (VI) on ZIF-8 based composites | |
Zhang et al. | Hybridization of Al2O3 microspheres and acrylic ester resins as a synergistic absorbent for selective oil and organic solvent absorption | |
Abolghasemi et al. | Fabrication of a hierarchical dodecyl sulfate-layered double hydroxide nanocomposite on porous aluminum wire as an efficient coating for solid-phase microextraction of phenols | |
Li et al. | Preparation of sponge-reinforced silica aerogels from tetraethoxysilane and methyltrimethoxysilane for oil/water separation | |
Wang et al. | A facile, low-cost route for the preparation of calcined porous calcite and dolomite and their application as heterogeneous catalysts in biodiesel production | |
Hou et al. | Exfoliated graphite blocks with resilience prepared by room temperature exfoliation and their application for oil-water separation | |
Dai et al. | Fabrication of novel ZIF‐67 composite microspheres for effective adsorption and solid‐phase extraction of dyes from water | |
Xi et al. | Low cost and robust soot dipped polyurethane sponge for highly efficient and recyclable oil and organic solvent cleanup | |
Yan et al. | Metal organic framework derived Zn/N co-doped hydrophilic porous carbon for efficient solid phase microextraction of polar phenols | |
Wang et al. | Hybrid electrospun porous fibers of poly (lactic acid) and nano ZIF‐8@ C600 as effective degradable oil sorbents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |