CN108290859A - 喹啉衍生物的盐型、晶型及其制备方法和中间体 - Google Patents

喹啉衍生物的盐型、晶型及其制备方法和中间体 Download PDF

Info

Publication number
CN108290859A
CN108290859A CN201680054765.0A CN201680054765A CN108290859A CN 108290859 A CN108290859 A CN 108290859A CN 201680054765 A CN201680054765 A CN 201680054765A CN 108290859 A CN108290859 A CN 108290859A
Authority
CN
China
Prior art keywords
crystal form
compound
solvent
map
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680054765.0A
Other languages
English (en)
Other versions
CN108290859B (zh
Inventor
吴颢
龙超峰
林军
陈小新
廖勇刚
刘卓伟
韦昌青
陈俐娟
陈曙辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGDONG XIANQIANG PHARMACEUTICAL Co.,Ltd.
Medshine Discovery Inc
Original Assignee
Medshine Discovery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medshine Discovery Inc filed Critical Medshine Discovery Inc
Publication of CN108290859A publication Critical patent/CN108290859A/zh
Application granted granted Critical
Publication of CN108290859B publication Critical patent/CN108290859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种喹啉衍生物的晶型、盐型、盐型的晶型及其制备方法。

Description

喹啉衍生物的盐型、晶型及其制备方法和中间体 技术领域
本发明涉及一种喹啉衍生物的晶型、盐型、盐型的晶型及其制备方法。
背景技术
Hedgehog蛋白最初是在果蝇中发现的分泌的信号蛋白,它们是高度疏水的蛋白质,其在胚胎发育中起着至关重要的作用。已在人类中鉴别了三种同源hedgehog蛋白,分别为Sonic hedgehog(Shh)、Indian hedgehog(Ihh)和Desert hedgehog(Dhh)。其中Shh不仅在胚胎发育中至关重要,许多证据显示它在包括基底细胞癌等一些癌症的致癌机制上也有重要的作用(Caro,I.and J.A.Low,Clin Cancer Res,2010.16(13):3335-9)。Shh在体内合成一个分子量为45kDa的前体蛋白,通过自切除作用产生一个分子量为20kDa的N一端片断,这个N一端片断具各了体内所知的所有生物活性,包括激活细胞内的hedgehog信息通路,其通路主要成员包括patched(PTCH),类G蛋白偶和受体致癌基因smoothened(SMO)以及转录因子Gli等(Bale,A.E.and K.P.Yu,Hum Mol Genet,2001.10(7):757-62)。基底细胞癌hedgehog信息通路的变异分析结果显示大多数变异发生在PTCH-1和SMO上(Von Hoff,D.D.,et al.,N Engl J Med,2009.361(12):1164-72)。PTCH-1是个有着12次跨膜结构的膜蛋白,它是Shh的直接作用受体。在没有Shh的情况下PTCH-1与SMO相作用,SMO为7次跨膜结构蛋白,抑制SMO的生物活力。Shh与PTCH-1的结合导致PTCH-1脱离SMO,使SMO摆脱受抑制状态。Gli转录因子受控于SMO,它起着基因转录的开关作用,其中主要的成员包括Glil,Gli2和Gli3。整个hedgehog通路对胚胎正常发育起着重要的作用。扰乱了这一信息通路将会导致严重的畸形,比如天然致畸化合物cyclopamine就是一个hedgehog抑制剂。在通常条件下,成人体内hedgehog蛋白的浓度非常低。在hedgehog蛋白浓度很低的情况下,PTCH-1与SMO相结合并抑制其生物活力,因而整个通路处于没有活力,或活力很低的状态。当细胞分泌hedgehog蛋白后,hedgehog蛋白与PTCH-1受体的结合使其脱离SMO,从而失去对SMO的抑制作用。SMO进一步激活转录因子Gli-1从而调控基因转录和细胞生长。越来越多的证据表明,大部分基底细胞癌的病因是由于突变或其他原因导致过高的hedgehog信息传导通路活力。因此抑制过高的hedgehog信息传导通路的活力,刚一能抑制癌细胞的生长从而达到治疗基底细胞癌或由相同机制引起的其他癌症。SMO的组成性活化导致癌症(例如BCC)以及解除Ptch对其的抑制可以使SMO致癌的证据说明了SMO拮杭剂作为治疗剂在治疗所述病症中的用途(Stone等人,(1996)Nature 384:129)。一系列科学和临床试验结果显示hedgehog抑制剂能有效地治疗多种癌症。最新临床试验数据显示hedgehog抑制剂GDC-0449能有效地治疗基底细胞癌和髓母细胞癌(LorussoPM.et al.Clin Cancer Res.2011;17(8):2502-11),并于2012年1月得到FDA认证,或由相同机制引起的其他癌症,例如基底细胞痣综合征(BCNS)(Goldberg LH.et al.Arch Dermatol.2011Mar 21.)。生物化学研究表明GDC-0449的抑制点是在SMO上,抑制了SMO的活力就抑制了整个hedgehog通路的活力,从而达到抗癌的目的。 除了基底细胞癌和髓母细胞癌两种癌症,还有许多其他癌症也和hedgehog信息传导通路的超高活力有关系,包括胰腺癌、肠胃癌、直肠癌、卵巢癌及前列腺癌,还有部分血癌等(De Smaele E.et al.Curr Opin Investig Drugs.2010;11(6):707-18)。因此研发hedgehog抑制剂作为新型抗癌药物的前景非常广泛。
尽管现有技术中已经存在一些SMO抑制剂,但是它们在活性、溶解性、药代动力学、成药性的等方面有待改进。
申请号CN201410110890.1记载了一类新的喹啉衍生物,其可作为hedgehog通路的抑制剂、特别是作为SMO抑制剂。可用于治疗包括癌症在内的hedgehog通路有关病症。
其结构如式(B-1)所示:
发明内容
本发明提供化合物1的A晶型,其XRPD图谱如图1所示,
本发明的一些方案中,A晶型XRPD解析数据如表1所示。
表1A晶型XRPD解析数据
NO. 2-Theta d(A) I% NO. 2-Theta d(A) I%
1 3.855 22.9005 100.0 8 14.384 6.1528 1.4
2 7.737 11.4167 5.8 9 14.739 6.0051 3.5
3 9.697 9.1132 0.8 10 19.490 4.5507 14.8
4 10.161 8.6981 8.5 11 20.043 4.4265 4.0
5 10.618 8.3249 2.0 12 20.401 4.3497 20.9
6 12.037 7.3467 12.8 13 22.745 3.9063 2.1
7 12.785 6.9181 1.2 14 23.140 3.8405 2.4
本发明的一些方案中,上述化合物1的A晶型,其差示扫描量热曲线在111.41℃±2℃、126.08℃±2℃和146.06℃±2℃处具有吸热峰的起始点。
本发明的一些方案中,上述化合物1的A晶型,其DSC图谱如图2所示。
本发明的一些方案中,上述化合物1的A晶型,其热重分析曲线在135.65±2℃失重0.7658%±0.2%。
本发明的一些方案中,上述化合物1的A晶型,其TGA图谱如图3所示。
本发明还提供了化合物1的B晶型,其XRPD图谱如图4所示。
本发明的一些方案中,B晶型XRPD解析数据如表2所示。
表2 B晶型XRPD解析数据
NO. 2-Theta d(A) I% NO. 2-Theta d(A) I%
1 5.853 15.0878 67.0 19 22.934 3.8746 18.1
2 9.307 9.4946 4.7 20 23.425 3.7945 80.2
3 10.547 8.3807 100.0 21 23.956 3.7115 26.3
4 11.415 7.7451 47.9 22 24.313 3.6579 29.7
5 11.671 7.5761 54.9 23 25.040 3.5533 8.7
6 12.459 7.0989 2.3 24 25.832 3.4461 9.3
7 13.899 6.3664 26.8 25 27.470 3.2442 2.6
8 14.275 6.1995 88.3 26 28.120 3.1707 2.9
9 15.120 5.8547 99.6 27 28.714 3.1065 6.4
10 15.556 5.6915 10.0 28 29.364 3.0391 13.1
11 17.053 5.1953 6.8 29 29.777 2.9979 1.9
12 18.652 4.7533 15.4 30 30.462 2.9321 1.8
13 19.085 4.6463 11.7 31 31.099 2.8734 5.9
14 20.068 4.4209 20.5 32 32.717 2.7349 3.5
15 20.602 4.3076 10.7 33 33.638 2.6621 1.8
16 21.156 4.1961 18.0 34 37.325 2.4072 1.8
17 21.747 4.0833 75.5 35 38.863 2.3154 2.0
18 22.318 3.9801 38.9 - - - -
本发明的一些方案中,上述化合物1的B晶型,其差示扫描量热曲线在165.73℃±2℃处具有吸热峰的起始点。
本发明的一些方案中,上述化合物1的B晶型,其DSC图谱如图5所示。
本发明的一些方案中,上述化合物1的B晶型,其热重分析曲线在120.00±2℃失重达0.2383%±0.2%,在247.60±2℃失重达0.2005%±0.2%。
本发明的一些方案中,上述化合物1的B晶型,其TGA图谱如图6所示。
本发明还提供了B晶型的制备方法,其包括将化合物1的A晶型加入到酯类溶剂、醇类溶剂或酯类溶解和醇类溶剂的混合溶剂中,加热至回流溶解,然后缓慢降温结晶制得。
本发明的一些方案中,上述酯类溶解选自甲酸丙酯、甲酸异丙酯、甲酸丁酯、甲酸异丁酯、乙酸乙酯、乙酸异丙酯、乙酸异丙酯。
本发明的一些方案中,上述醇类溶剂选自甲醇、乙醇、正丙醇、异丙醇、正丁醇、叔丁醇。
本发明的一些方案中,上述酯类溶剂和醇类溶剂的混合溶剂中,酯类溶剂和醇类溶剂的体积比为0.1:1~12。
本发明的一些方案中,上述酯类溶剂和醇类溶剂的混合溶剂中,酯类溶剂和醇类溶剂的体积比为1:2~8。
本发明提供了下式所示化合物2,
本发明提供了化合物2的C晶型,其XRPD图谱如图7所示。
本发明的一些方案中,C晶型XRPD图谱解析数据如表3所示。
表3 C晶型XRPD解析数据
NO. 2-Theta d(A) I% NO. 2-Theta d(A) I%
1 5.775 15.2906 48.5 17 20.056 4.4236 25.1
2 6.012 14.6893 100.0 18 20.391 4.3517 7.2
3 9.838 8.9828 5.7 19 20.804 4.2661 16.0
4 10.292 8.5876 5.6 20 21.301 4.1678 8.0
5 10.784 8.1973 6.5 21 21.950 4.0460 4.5
6 11.336 7.7994 11.4 22 22.638 3.9246 10.4
7 11.872 7.4485 21.5 23 23.429 3.7938 9.7
8 12.366 7.1520 2.1 24 23.781 3.7385 20.1
9 14.413 6.1403 15.5 25 24.591 3.6171 5.6
10 14.849 5.9610 9.8 26 25.776 3.4535 3.7
11 16.286 5.4381 6.5 27 26.639 3.3434 2.3
12 16.860 5.2544 8.0 28 27.473 3.2439 4.5
13 17.824 4.9721 3.8 29 27.926 3.1923 3.9
14 18.733 4.7329 9.5 30 28.689 3.1090 3.2
15 19.345 4.5846 12.9 31 29.721 3.0035 4.6
16 19.661 4.5116 4.4 32 30.271 2.9501 3.6
本发明的一些方案中,上述化合物2的C晶型,其差示扫描量热曲线在57.33℃±5℃和212.56℃±5℃处具有吸热峰的起始点。
本发明的一些方案中,上述化合物2的C晶型,其DSC图谱如图8所示。
本发明的一些方案中,上述化合物2的C晶型,其热重分析曲线在120.00±3℃失重达5.110%±0.5%。
本发明的一些方案中,上述化合物2的C晶型,其TGA图谱如图9所示。
本发明提供了C晶型的制备方法,其包括化合物1溶解到有机溶剂中,缓慢滴加硫酸水溶液,搅拌析晶制得。
本发明的一些方案中,上述机溶剂选自丙酮、甲乙酮、环己酮。
本发明的一些方案中,化合物1与硫酸的摩尔比选自1:2~4。
本发明还提供了上述A晶型、B晶型、化合物2及C晶型在制备治疗与SMO受体相关疾病药物上的应用。
定义和说明:
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本领域任何合成路线规划中的一个重要考量因素是为反应性官能团(如本发明中的氨基)选择合适的保护基。对于经过训练的从业者来说,Greene and Wuts的(Protective Groups In Organic Synthesis,Wiley and Sons,1991)是这方面的权威。本发明引用的所有参考文献整体上并入本发明。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。反应一般是在惰性氮气下、无水溶剂中进行的。质子核磁共振数据记录在Bruker Avance III 400(400MHz)分光仪上,化学位移以四甲基硅烷低场处的(ppm)表示。质谱是在安捷伦1200系列加6110(&1956A)上测定。LC/MS或Shimadzu MS包含一个DAD:SPD-M20A(LC)和Shimadzu Micromass 2020检测器。质谱仪配备有一个正或负模式下操作的电喷雾离子源(ESI)。
本发明采用下述缩略词:DCM代表二氯甲烷;PE代表石油醚;EA代表乙酸乙酯;DMF代表 N,N-二甲基甲酰胺;DMAC代表N,N-二甲基乙酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;tol代表甲苯;THF代表四氢呋喃;EtOH代表乙醇;MeOH代表甲醇;NMP代表N-甲基吡咯烷酮;2-METHF代表2-甲基四氢呋喃;i-PrOH代表2-丙醇;Bn代表苄基;Cbz代表苄氧羰基,是一种胺保护基团;Boc代表叔丁基羰基是一种胺保护基团;Fmoc代表笏甲氧羰基,是一种胺保护基团;Alloc代表烯丙氧羰基,是一种胺保护基团;Teoc代表三甲基硅乙氧羰基,是一种胺保护基团;Boc2O代表二-叔丁基二碳酸酯;HCl(g)代表氯化氢气体;H2SO4代表硫酸;HOAc代表乙酸;TFA代表三氟乙酸;DIPEA代表二异丙基乙基胺;DIEA代表二异丙基乙基胺;NMM代表N-甲基吗啡啉;DBU代表1,8-二氮杂二环十一碳-7-烯;Et3N代表三乙胺;LDA代表二异丙基胺锂;NaHMDS代表双(三甲基硅基)氨基钠;KHMDS代表双(三甲基硅基)氨基钾;LiAlH4代表四氢铝锂;t-BuOK代表叔丁醇钾;H2O2代表过氧化氢;NH4Cl代表氯化铵;BaSO4代表硫酸钡;CaCO3代表碳酸钙;SnCl2代表氯化亚锡;Zn(BH4)2代表硼氢化锌;PPh3代表三苯基膦;HMDS代表六甲基二硅胺烷;Pd/C代表钯碳;PtO2代表二氧化铂;Pd(OH)2代表氢氧化钯;Pd2(dba)3代表三(二亚苄基丙酮)二钯;Pd(PPh3)4代表四三苯基膦钯;Pd(dppf)Cl2代表1,1'-双(二苯基磷)二茂铁氯化钯;Pd(PPh3)2Cl2代表二氯双(三苯基膦)钯(II);Pd(OAc)2代表醋酸钯;PdCl2代表氯化钯;CuI代表碘化亚铜;CuBr代表溴化亚铜;CuCl代表氯化亚铜;Cu代表铜粉;Cu2O代表氧化亚铜;Xantphos代表4,5-双(二苯基磷)-9,9-二甲基氧杂蒽;Sphos代表2-二环己基亚膦基-2',6'-二甲氧基联苯;Xphos代表2-二环己基磷-2',4',6'-三异丙基联苯;Ruphos代表2-双环己基膦-2',6'-二异丙氧基-,1,1'-联苯;Brettphos代表2-(二环己基膦基)-3,6-二甲氧基-2'-4'-6'-三异丙基-1,1'-联苯。
化合物经手工或者软件命名,市售化合物采用供应商目录名称。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:布鲁克D8advance X-射线衍射仪
测试条件:详细的XRPD参数如下:
X-ray发生器:Cu,kα,
管电压:40kV,管电流:40mA.
发射狭缝:1deg.
限高狭缝:10mm
散射狭缝:1deg.
接受狭缝:0.15mm
单色器:固定的单色器
扫描范围:2-40deg.
扫描速度:10deg/min
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA Q2000差示扫描量热仪
测试条件:取样品(~1mg)置于DSC铝锅内进行测试,方法为:25℃-350℃,升温速率为10℃/min。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA Q5000IR热重分析仪
测试条件:取样品(2~5mg)置于TGA铂金锅内进行测试,方法为:室温-350℃,升温速率为10℃/min。
附图说明
图1为A晶型的Cu-Kα辐射的XRPD谱图。
图2为A晶型的DSC图谱。
图3为A晶型的TGA图谱。
图4为B晶型的Cu-Kα辐射的XRPD谱图。
图5为B晶型的DSC图谱。
图6为B晶型的TGA图谱。
图7为C晶型的Cu-Kα辐射的XRPD谱图。
图8为C晶型的DSC图谱。
图9为C晶型的TGA图谱。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例1
化合物1及A晶型的制备
第一步:将原甲酸三甲酯(55kg,137.11mol)和2,2-二甲基-1,3-二氧六环-4,6-二酮(4kg,27.75mol)加入到30L反应釜中,加热到100℃。体系回流三小时后加入2-溴代苯胺(3.80kg,22.09摩尔)。整个反应回流15小时,LCMS检测显示反应完成。蒸出多余的溶剂,将所得固体用乙醇(1L)洗涤,烘干。得到目标产物5-((2-溴苯胺基)亚甲基)-2,2-二甲基-1,3-二氧六环-4,6-二酮(48kg,产率89.94%)为黄色固体。
第二步:将5-((2-溴苯胺基)亚甲基)-2,2-二甲基-1,3-二氧六环-4,6-二酮(1kg,3.07mol)溶剂在二苯醚(4升)中,然后加热到185℃,在这个温度下搅拌10分钟。然后将混合物加热到250℃并继续搅拌30分钟。停止加热,冷却至75℃,TLC显示反应完成,将混合物过滤,固体用正庚烷(5L)洗涤得到8-溴-4-羟基喹啉(580g,2.59mol,收率84.32%)为黄色固体。
第三步:将8-溴-4-羟基喹啉(2kg,8.93mol),(4-氰基苯基)硼酸(1.31kg,8.93mol),Pd(dppf)Cl2(130.68克,178.60毫摩尔)和碳酸钠(1.89kg,17.86mol)的混合物中加入四氢呋喃(10L),DMF(2升)和水(2升)。将混合物加热到78℃。3小时后,加入4升水然后将混合物过滤。固体用水(2L)洗涤,在50℃真空干燥箱烘干三天得到产物4-(4-羟基喹啉-8-基)苯甲腈(1.90kg,收率86.40%)为黄色固体。
第四步:在30L的反应釜里,加入DMF(10L)和4-(4-羟基喹啉-8-基)苯甲腈(2.2kg,8.93摩尔),室温搅拌,然后在5分钟内缓慢加入NIS(2.01kg,8.93摩尔)。半小时后采样用LCMS检测,显示反应完成。 加入20L冰水搅拌后过滤。固体用水洗(5L×3)。产物用50℃是真空干燥箱烘三天得4-(4-羟基-3-碘-8-喹啉基)苯甲腈(2.55kg,收率76.73%)为黄色固体。
第五步:在30L反应釜中,将4-(4-羟基-3-碘-8-喹啉基)苯甲腈(2.55kg,6.85mol)溶解在DMF(13L)中,于20℃在氮气保护下滴加三溴化磷(1.85kg,6.85mol)。混合物在20℃下搅拌1小时。LCMS检测反应完成。用饱和碳酸钠溶液将体系中和至pH=7~8。减压过滤后将固体用水(10L)洗涤。得到固体用50℃是真空干燥箱烘三天得4-(4-溴-3-碘-8-喹啉)苯甲腈(2.95kg,6.78mol)为黄色固体。
第六步:4-(4-溴-3-碘-8-喹啉)苯甲腈(3.5kg,8.04摩尔),(2S,6R)-2,6-二甲基-4-(5(4,4,5,5-四甲基-1,3,2-二氧硼烷-2-基)-2-吡啶基]吗啉(3.07kg,9.65mol),在四氢呋喃(30.00L)中加热到65℃。所有反应物全部溶解后,加入Na2CO3(1.70kg,16.08摩尔)和Pd(dppf)Cl2(294.14g,402.00mmol,0.05eq),然后再加入DMF(5L)和水(L 4)的混合物.整个反应在在65℃反应6小时。LCMS检测反应完全,后冷至室温。用乙酸乙酯(10L)提取,水相用二氯甲烷DCM(5L×2)提取。有机相用硫酸钠干燥后浓缩。粗品用硅胶柱纯化(乙酸乙酯:二氯甲烷:正庚烷比例为1∶1∶1)后得到4-(4-溴-3-(6-((2S,6R)-2,6-二甲基吗啡啉-4-基)-3-吡啶基)-8-喹啉)苯甲腈(2.68kg,收率66.75%)为黄色固体。
第七步:将4-(4-溴-3-(6-((2S,6R)-2,6-二甲基吗啡啉-4-基)-3-吡啶基)-8-喹啉)苯甲腈(2.68kg,5.37mol)溶剂在甲苯(25L)中加热至60℃待溶解完全.将环丙基硼酸(1.84kg,21.47摩尔),正丁基二(1-金刚烷基)膦(192.41g,536.64mmol),碳酸铯(3.5kg,10.73mol)和Pd(OAc)2(60.24g,268.32mmol)加入反应体系后升温至80℃反应1小时。LCMS检测反应完全,将体系冷却后加入水(15L)稀释.用乙酸乙酯(20L*2)提取.有机相用盐水(5L×2)洗涤,用硫酸钠干燥,然后浓缩.粗产物由柱层析(正庚烷:乙酸乙酯=5:1)纯化后得到目标产物(2kg,收率80.86%)的白色固体,为A晶型。
B晶型制备
将1kg A晶型溶于2L乙酸乙酯,加热溶清后,回流下缓慢加入12L乙醇,加完后保持溶液澄清,搅拌下自然冷却过夜,有大量黄色固体析出,过滤,滤饼用2L 0℃乙醇淋洗,抽干后得到850g黄色固体,即为B晶型。
C晶型制备
将游离碱化合物1(1.19kg,2.58mol,1当量)溶解在丙酮(12L)中,缓慢加入硫酸(3M,1.72升,2eq)持续约30分钟,然后将混合物在25℃下搅拌1.5小时。将混合物过滤,固体干燥后在35℃下真空干燥 48小时的目标产物盐(1.56kg,收率92.07%)为黄色固体,即为C晶型。
A晶型在不同溶剂中的溶解度试验
称取约2mg样品到1.5mL的液相小瓶中,分别用移液枪逐级加入如下溶剂,手动振摇溶解。该测试是在室温下进行,通过肉眼来判断溶解情况,溶解度结果见表4。
表4 A晶型在不同溶剂中的溶解度结果
编号 溶剂 溶解度(mg/mL) 编号 溶剂 溶解度(mg/mL)
1 甲醇 3.5~4.5 14 甲苯 51.0~68.5
2 乙醇 <2 15 正庚烷 <2
3 异丙醇 <2 16 环己烷 <2
4 正丁醇 2.5~3.0 17 二氧六环 25.0~33.5
5 乙腈 20.0~25.0 18 <2
6 丙酮 20.0~25.5 19 甲醇-水(1:1) <2
7 甲基乙基酮 53.5~71.5 20 甲醇-水(3:1) <2
8 4-甲基-2-戊酮 50.0~66.5 21 乙醇-水(1:1) <2
9 乙酸乙酯 52.5~70.0 22 乙醇-水(3:1) <2
10 乙酸异丙酯 34.0~41.5 23 乙腈-水(1:1) <2
11 甲基叔丁基醚 6.5~8.0 24 丙酮-水(1:2) <2
12 四氢呋喃 33.5~40.5 25 异丙醇-水(1:1) <2
13 2-甲基四氢呋喃 53.0~71.0 - - -
A晶型在不同溶剂中的稳定性试验
取50mg的A晶型多份,分别加入下表中的单一或混合溶剂,25℃条件下搅拌。如果化合物全部溶解,自然挥发除去溶剂;若为混悬液,则持续搅拌3天。收集所有样品中的固体,XRPD检测其晶型状态。结果见表5。
表5 A晶型在不同溶剂中的稳定性实验
序号 溶剂 溶剂加入量(mL) 外观(2天) 结果
1 甲醇 0.6 混悬液 B晶型
2 正丁醇 0.6 混悬液 B晶型
3 乙腈 0.5 混悬液 B晶型
4 丙酮 0.5 混悬液 A晶型
5 甲基乙基酮 0.3 自然挥发除去溶剂后析出固体 B晶型
6 乙酸乙酯 0.2 混悬液 B晶型
7 甲基叔丁基醚 0.6 混悬液 A/B混晶
8 四氢呋喃 0.2 混悬液 A晶型
9 甲苯 0.3 自然挥发除去溶剂后析出固体 B晶型
10 1,4-二氧六环 0.2 混悬液 A晶型
11 乙腈:水=4:1 0.5 混悬液 B晶型
12 丙酮:水=4:1 0.5 混悬液 A晶型
C晶型在不同溶剂中的稳定性试验
取适量的C晶型多份,分别加入0.2mL的下表中的单一或混合溶剂,40℃条件下搅拌过夜。搅拌16小时后,若样品为溶液状态,自然挥发除去溶剂;若样品仍为混悬液,则离心样品。收集所有样品中的固体,XRPD检测其晶型状态。结果见表6。
表6 C晶型在不同溶剂中的稳定性实验
序号 溶剂 外观(16hrs) 结果
1 甲醇 自然挥发除去溶剂后析出固体 C晶型
2 正丁醇 混悬液 C晶型
3 乙腈 混悬液 C晶型
4 乙酸乙酯 混悬液 C晶型
5 乙腈:水=4:1 自然挥发除去溶剂后析出固体 C晶型
A晶型在高温,高湿及强光照条件下的固体稳定性试验
称取A晶型样品约10mg,置于玻璃样品瓶的底部,摊成薄薄一层。60℃及92.5%相对湿度条件下放置的样品用铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触;强光照(5Klux)条件下放置的样品用螺纹瓶盖密封。不同条件下放置的样品于第10天取样检测,检测结果与0 天的初始检测结果进行比较,试验结果见下表7所示:
表7化合物晶型I的固体稳定性试验
试验条件 取样时间(天) 外观 含量(%) 总杂质(%)
- 0 白色粉末 98.9 0.10
60℃(敞口) 10 白色粉末 98.5 0.11
92.5%RH(敞口) 10 白色粉末 99.5 0.10
强光照(密闭) 10 白色粉末 99.4 0.11
C晶型在不同温度和湿度条件下的物理稳定性试验
取C晶型置于玻璃样品瓶的底部,摊成薄薄一层,铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触。制备的样品分别置于60℃,92.5%RH(相对湿度),25℃/60%RH及40℃/75%RH的条件下,考察样品10天的物理稳定性。在第10天,取出所有样品,恢复至室温,观察样品外观变化,并用XRPD检测样品晶型。通过与0天样品的晶型进行比较,判断C晶型的固体物理稳定性。表8为C晶型的固体物理稳定性实验结果。
表8 C晶型在不同温度和湿度条件下固体物理稳定性试验(10天)
C晶型在高温、高湿及强光照条件下的固体稳定性试验
称取C晶型样品约18.75mg,置于玻璃样品瓶的底部,摊成薄薄一层。60℃及92.5%RH条件下放置的样品用铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触,强光照(5Klux)条件下放置的样品用螺纹瓶盖密封。不同条件下放置的样品于第5和10天取样检测,检测结果与第0天的初始检测结果进行比较,试验结果见下表9所示:
表9 C晶型固体稳定性试验
体外活性评价
实验目的:
将具有Gli反应元件的萤光素酶(Gli-Luc)报告基因稳定转染到C3H10T1/2细胞,在Shh-N刺激条件下,通过检测细胞内报告基因表达情况从而判断Hedgehog信号通路抑制剂的活性。本实验以化合物的IC50值为指标,来评价化合物对Hedgehog信号通路的抑制作用。
实验材料:
细胞系:C3H10T1/2/Gli-Luc稳转细胞株
C3H10T1/2/Gli-Luc细胞培养基(DMEM/高糖HyClone,#SH30022.01B;10%血清Hyclone,#SV30087;
0.4%Hygromycin B Roche,#13398200)
0.25%Trypsin-EDTA(Gibco,#25200)
PBS(KH2PO4 0.24g,Na2HPO4 1.44g,NaCl 8.0g,KCl 0.2g,加水至1L调PH 7.4)
Shh-N,HEK293/SHH-N稳转细胞培养上清
裂解液(Promega,#E1531)
反应液(Promega,#E1501)
384孔板,Greiner#781074
96孔培养板,Greiner#655180
96孔微孔板,碧云天#FPT019
CO2培养箱,Thermo#3423
洁净工作台,AIRTECH#A10051560
倒置显微镜,Nikon#TS100
离心机,湘仪#L530
Therom VarioSkan Flash多功能读数仪
实验步骤和方法
取对数生长期C3H10T1/2/Gli-Luc细胞,在96孔板中按照每孔20000个细胞铺板,将细胞置37℃, 5%CO2的培养箱中培养过夜。次日,将化合物按下列方式进行稀释:阳性化合物GDC0449(1mM)和待测化合物(1mM)按1:3和1:10分别用DMSO进行连续系列稀释至7个化合物浓度,第8个为DMSO对照,再用新鲜培养基将其稀释100倍。取培养过夜的细胞,除去培养基,每孔加入80μL新鲜培养基,然后加入20μL梯度稀释过的阳性化合物和待测化合物,及100μL含30nM Shh-N的条件培养基,每个浓度做2个复孔,同时设置阳性和阴性参照孔(即Shh Ctrl:80μL新鲜培基+20μL含1%DMSO培基+100μL含30nM Shh-N的条件培养基;Unstimulated Ctrl:180μL新鲜培基+20μL含1%DMSO培基),细胞置CO2培养箱继续培养24小时。
检测细胞内荧光素酶活性:取出96孔板细胞,弃去培养基,用PBS清洗细胞两遍,随后每孔加入20μL裂解液(Promega E1531),室温振荡裂解30min。取5μL细胞裂解液转移至384孔板(Greiner 781074)中,随后每孔加25μL荧光素酶反应液(Promega E1501),经快速混合后立即放进VarioSkan Flash多功能读数仪中读取相对光单位(RLU)值。
数据分析:使用GraphPad公司的Prism 5进行数据分析。以对数化的化合物浓度对代表荧光素酶活性的RLU读数作图,并用下列方程进行曲线方程拟合得出IC50值,Y(RLU读数)=最小读数+(最大读数-最小读数)/(1+10^(对数化化合物浓度-LogIC50))。
表10.化合物对hedgehog通路的抑制活力的IC50值或化合物在某浓度下的抑制率
受试化合物 生物活性
化合物1 A
注:A≤50nM。
结论:化合物1对hedgehog通路的抑制作用显著。

Claims (22)

  1. 化合物1的A晶型,其XRPD图谱如图1所示,
  2. 根据权利要求1所述化合物1的A晶型,其差示扫描量热曲线在111.41℃±2℃、126.08℃±2℃和146.06℃±2℃处具有吸热峰的起始点。
  3. 根据权利要求2所述化合物1的A晶型,其DSC图谱如图2所示。
  4. 根据权利要求1所述化合物1的A晶型,其热重分析曲线在135.65±2℃失重0.7658%±0.2%。
  5. 根据权利要求4所述化合物1的A晶型,其TGA图谱如图3所示。
  6. 化合物1的B晶型,其XRPD图谱如图4所示。
  7. 根据权利要求6所述化合物1的B晶型,其差示扫描量热曲线在165.73℃±2℃处具有吸热峰的起始点。
  8. 根据权利要求7所述化合物1的B晶型,其DSC图谱如图5所示。
  9. 根据权利要求6所述化合物1的B晶型,其热重分析曲线在120.00±2℃失重达0.2383%±0.2%,在247.60±2℃失重达0.2005%±0.2%。
  10. 根据权利要求6所述化合物1的B晶型,其TGA图谱如图6所示。
  11. 根据权利要求6所述B晶型的制备方法,其包括将化合物1的A晶型加入到酯类溶剂、醇类溶剂或酯类溶解和醇类溶剂的混合溶剂中,加热至回流溶解,然后缓慢降温结晶制得。
  12. 根据权利要求11所述制备方法,其中所述酯类溶解选自甲酸丙酯、甲酸异丙酯、甲酸丁酯、甲酸异丁酯、乙酸乙酯、乙酸异丙酯、乙酸异丙酯;
    醇类溶剂选自甲醇、乙醇、正丙醇、异丙醇、正丁醇、叔丁醇。
  13. 根据权利要求11所述制备方法,其中,酯类溶剂和醇类溶剂的混合溶剂中,酯类溶剂和醇类溶剂的体积比为0.1:1~12,优选自1:2~8。
  14. 下式所示化合物2,
  15. 化合物2的C晶型,其XRPD图谱如图7所示。
  16. 根据权利要求15所述化合物2的C晶型,其差示扫描量热曲线在57.33℃±5℃和212.56℃±5℃处具有吸热峰的起始点。
  17. 根据权利要求16所述化合物2的C晶型,其DSC图谱如图8所示。
  18. 根据权利要求15所述化合物2的C晶型,其热重分析曲线在120.00±3℃失重达5.110%±0.5%。
  19. 根据权利要求18所述化合物2的C晶型,其TGA图谱如图9所示。
  20. 根据权利要求15所述C晶型的制备方法,其包括化合物1溶解到有机溶剂中,缓慢滴加硫酸水溶液,搅拌析晶制得。
  21. 根据权利要求20所述制备方法,其中有机溶剂选自丙酮、甲乙酮、环己酮;
    化合物1与硫酸的摩尔比选自1:2~4。
  22. 根据权利要求1所述A晶型、权利要求6所述B晶型、权利要求15所述化合物2及权利要求15所述C晶型在制备治疗与SMO受体相关疾病药物上的应用。
CN201680054765.0A 2015-09-21 2016-09-21 喹啉衍生物的盐型、晶型及其制备方法和中间体 Active CN108290859B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510605455 2015-09-21
CN2015106054550 2015-09-21
PCT/CN2016/099537 WO2017050224A1 (zh) 2015-09-21 2016-09-21 喹啉衍生物的盐型、晶型及其制备方法和中间体

Publications (2)

Publication Number Publication Date
CN108290859A true CN108290859A (zh) 2018-07-17
CN108290859B CN108290859B (zh) 2020-11-10

Family

ID=58385665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680054765.0A Active CN108290859B (zh) 2015-09-21 2016-09-21 喹啉衍生物的盐型、晶型及其制备方法和中间体

Country Status (3)

Country Link
CN (1) CN108290859B (zh)
TW (1) TWI694999B (zh)
WO (1) WO2017050224A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190337A1 (zh) * 2020-03-27 2021-09-30 广东众生药业股份有限公司 一种作为smo抑制剂化合物的盐型、晶型及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028958A2 (en) * 2004-09-02 2006-03-16 Genentech, Inc. Pyridyl inhibitors of hedgehog signalling
CN104470902A (zh) * 2012-07-19 2015-03-25 南京英派药业有限公司 N-(3-杂芳基芳基)-4-芳基芳基甲酰胺和类似物作为Hedgehog通路抑制剂及其应用
CN104945377A (zh) * 2014-03-24 2015-09-30 南京明德新药研发股份有限公司 作为smo抑制剂的喹啉衍生物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028958A2 (en) * 2004-09-02 2006-03-16 Genentech, Inc. Pyridyl inhibitors of hedgehog signalling
CN104470902A (zh) * 2012-07-19 2015-03-25 南京英派药业有限公司 N-(3-杂芳基芳基)-4-芳基芳基甲酰胺和类似物作为Hedgehog通路抑制剂及其应用
CN104945377A (zh) * 2014-03-24 2015-09-30 南京明德新药研发股份有限公司 作为smo抑制剂的喹啉衍生物

Also Published As

Publication number Publication date
TW201718564A (zh) 2017-06-01
CN108290859B (zh) 2020-11-10
TWI694999B (zh) 2020-06-01
WO2017050224A1 (zh) 2017-03-30

Similar Documents

Publication Publication Date Title
TWI746178B (zh) 製備作為jak激酶抑制劑之萘啶化合物之方法
CN108368113A (zh) 二氢吡啶并环化合物的晶型、制备方法和中间体
JP2017039738A (ja) ベンゾジアゼピンブロモドメイン阻害剤
TWI713655B (zh) 吡啶並[1,2-a]嘧啶酮類似物的晶型及其製備方法和中間體
CN114380798A (zh) Pim激酶抑制剂的盐
AU2016369835B2 (en) Pyrido[1,2-a]pyrimidone analog, crystal form thereof, intermediate thereof and preparation method therefor
ES2960702T3 (es) Formas cristalinas C y E del compuesto de pirazin-2(1H)-ona y método de preparación de las mismas
ES2784826T3 (es) Forma cristalina de un compuesto de 4H-pirazol[1,5-]benzimidazol, procedimiento de preparación de la misma e intermediario de la misma
JP6974618B2 (ja) Fgfr及びvegfr阻害剤としての化合物の塩形態、結晶形およびその製造方法
WO2019114741A1 (zh) 作为Akt抑制剂的盐型及其晶型
CN108290859A (zh) 喹啉衍生物的盐型、晶型及其制备方法和中间体
TWI820182B (zh) 四氫哌喃基胺基-吡咯并嘧啶酮化合物的固體形式
TWI716463B (zh) 4H-吡唑並[1,5-a]苯並咪唑類化合物的鹽型、晶型及其製備方法和中間體
ES2926469T3 (es) Cristales de un derivado de benzoxazol
KR102048391B1 (ko) 1,2,5-티아디아졸리딘-1,1-이산화물의 염형, 결정형 및 그 제조 방법과 중간체
WO2022262841A1 (zh) 一种螺环化合物的盐型、晶型及其制备方法
WO2024153219A1 (zh) 一种三氮唑类化合物的可药用盐、晶型及其制备方法
WO2020088677A1 (zh) 一种血管紧张素ii受体2拮抗剂的盐型、晶型及其制备方法
EA047601B1 (ru) Способы получения соли ингибитора киназы pim

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200512

Address after: 523325 Information Industry Park, Shilong Industrial Zone, Shilong Town, Dongguan, Guangdong, West Lake

Applicant after: MEDSHINE DISCOVERY Inc.

Applicant after: GUANGDONG XIANQIANG PHARMACEUTICAL Co.,Ltd.

Address before: 523325 Information Industry Park, Shilong Industrial Zone, Shilong Town, Dongguan, Guangdong, West Lake

Applicant before: MEDSHINE DISCOVERY Inc.

GR01 Patent grant
GR01 Patent grant