CN108289021B - 参考信号的传输方法和设备 - Google Patents

参考信号的传输方法和设备 Download PDF

Info

Publication number
CN108289021B
CN108289021B CN201710067326.XA CN201710067326A CN108289021B CN 108289021 B CN108289021 B CN 108289021B CN 201710067326 A CN201710067326 A CN 201710067326A CN 108289021 B CN108289021 B CN 108289021B
Authority
CN
China
Prior art keywords
reference signal
sequence
zadoff
frequency
chu sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710067326.XA
Other languages
English (en)
Other versions
CN108289021A (zh
Inventor
胡远洲
丁梦颖
董朋朋
王宗杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to KR1020197021837A priority Critical patent/KR20190098237A/ko
Priority to EP18736550.7A priority patent/EP3554165B1/en
Priority to PCT/CN2018/071613 priority patent/WO2018127137A1/zh
Publication of CN108289021A publication Critical patent/CN108289021A/zh
Priority to US16/505,298 priority patent/US11018830B2/en
Application granted granted Critical
Publication of CN108289021B publication Critical patent/CN108289021B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0238Channel estimation using blind estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Abstract

本申请提出了一种参考信号的传输方法和设备,该方法包括:发送设备将频域的参考信号变换到时域以生成时域的参考信号,其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列与Zadoff‑Chu序列和所述参考信号序列的长度相关,所述Zadoff‑Chu序列的长度值大于最大可分配的频域资源包含的最小时频资源单元的个数;所述发送设备发送所述时域的参考信号。本申请的参考信号的传输方法,使得参考信号的PAPR/RCM能满足性能需求,同时可以降低对参考信号的盲检次数,提升系统性能。

Description

参考信号的传输方法和设备
技术领域
本发明实施例涉及通信领域,尤其涉及无线通信系统中的参考信号的传输方法和设备。
背景技术
在无线通信系统中,参考信号(Reference Signal,RS),又称作导频信号,是由发送设备在预定义的资源上发送给接收设备的一种预定义的信号。接收设备可以根据接收到的参考信号得到信道相关的信息,完成信道估计或信道测量。信道测量结果可以用于资源调度和链路自适应,信道估计结果可以用于接收设备对数据进行解调。一般情况下,为了准确的得到信道相关信息,不同的参考信号需要正交。通常可以采用时分、频分或码分等方式来提供相互正交的多个参考信号。在长期演进(long term evolution,LTE)系统中,上行参考信号包括上行解调参考信号(demodulation reference signal,DMRS)和上行探测参考信号(sounding reference signal,SRS),下行参考信号包括小区特定参考信号(cellspecific reference signal,CRS)、下行DMRS、信道状态信息参考信号(channel stateinformation reference signal,CSI-RS)、多媒体广播多播单频网参考信号(multimediabroadcast multicast service single frequency network reference signal,MBSFNRS)以及定位参考信号(positioning reference signal,PRS)。参考信号特别是上行参考信号有低峰均比(peak-to-average power ratio,PAPR)和低原始立方度量(raw cubicmetric,RCM)的需求,避免经过功率放大器(power amplifier,PA)后的参考信号比数据畸变更严重从而降低解调性能。因此,LTE系统中的上行参考信号序列了采用扎道夫-朱(Zadoff-Chu,ZC)序列以使得上行参考信号具有低PAPR/RCM的特性。
在动态时分双工(time division duplex,TDD)子帧结构的应用场景中,相邻小区的上下行子帧配置可能不同,例如,在小区C1中,当前子帧配置为上行子帧,而在相邻的小区C2中,当前子帧可能配置为下行子帧。此时,小区C1中的小区边缘用户设备U1发送上行数据会对小区C2中的小区边缘用户设备U2的下行接收产生严重干扰。用户设备U2可以通过盲检U1的参考信号,进而对U1的参考信号进行干扰消除。如果最大可能的分配带宽为110个资源块(resource block,RB),有35种不同的带宽分配方式,则需要盲检很多次才能确定干扰的参考信号,盲检开销很大。
发明内容
本申请提供了一种参考信号的生成方法、传输方法和设备,使得参考信号的PAPR/RCM能满足性能需求,同时可以降低对参考信号的盲检次数,提升系统性能。
第一方面,提供了一种频域参考信号的生成方法,包括:根据ZC序列和参考信号序列的长度确定参考信号序列,该ZC序列的长度值大于最大可分配的频域资源所包含的最小时频资源单元的个数;将参考信号序列映射到频域资源组上生成频域参考信号。
通过该方法生成的参考信号具有低PAPR/RCM特性,对该参考信号进行盲检时所需要尝试的ZC序列与参考信号的资源分配大小无关,能够降低盲检次数,从而降低了盲检开销。该参考信号的生成可以在发送设备的模块中实施,也可以在接收设备的模块中实施。
在第一方面的一种可能的实现方式中,所述参考信号序列还根据所述频域资源组在最大可分配的频域资源中的位置确定。根据该实现方式所生成的参考信号序列,是从ZC序列中截取一段与频域资源组的位置完全对应的序列,从而使得在盲检该参考信号时,无需尝试各种可能的频域资源组的位置,可以进一步降低盲检次数,从而降低盲检开销,提升系统性能。
在第一方面的一种可能的实现方式中,所述参考信号序列还根据所述频域资源组中相邻的两个最小时频资源单元的间隔确定。通过该实现方式,使得参考信号生成方法也适用于频域资源组中的最小视频资源单元是梳状分布的场景。
在第一方面的一种可能的实现方式中,所述Zadoff-Chu序列为Xq(m),Xq(m)根据
Figure BDA0001221035010000021
确定;其中,j为虚数单位,m为所述Zadoff-Chu序列元素的序号,m为整数且0≤m≤Nzc-1,Nzc为所述Zadoff-Chu序列的长度值,q为所述ZC序列的根的取值,q与Nzc互质。
在第一方面的一种可能的实现方式中,所述Zadoff-Chu序列长度Nzc为21157,所述Zadoff-Chu序列的根q的取值为以下中的一个:1149,1203,1215,1345,1827,1873,1962,2040,2276,2927,2931,3196,3201,3223,3406,3787,5596,6247,6276,6426,7736,7749,7768,8693,8767,8779,8970,9216,9983,9996,11161,11174,11941,12187,12378,12390,12464,13389,13408,13421,14731,14881,14910,15561,17370,17751,17934,17956,17961,18226,18230,18881,19117,19195,19284,19330,19812,19942,19954,20008。
在第一方面的一种可能的实现方式中,所述Zadoff-Chu序列长度Nzc为131969,所述Zadoff-Chu序列的根q的取值为以下中的一个:2908,5919,8108,9176,11359,12842,13721,18287,19123,21435,22441,25895,27039,30666,36263,38169,40822,42738,44949,51705,54664,59740,61399,67366,68376,70570,78403,82997,86400,95108,其中,所述频域资源组的带宽大于等于3个RB。。
在第一方面的一种可能的实现方式中,所述Zadoff-Chu序列长度Nzc为479971,所述Zadoff-Chu序列的根q的取值为以下中的一个:24335,35852,49443,65019,76272,88558,102028,126841,139505,150710,169872,181751,197023,210577,222328,253191,264402,276530,296245,307534,329261,340466,352513,368238,387393,402362,413569,424829,437224,448552。
在第一方面的一种可能的实现方式中,所述Zadoff-Chu序列长度Nzc为119993,所述Zadoff-Chu序列的根q的取值为以下中的一个:2197,3470,4396,6191,7683,9025,10362,11745,13755,14512,17680,18691,20638,23545,24419,25507,30658,37305,40689,52894,58095,67099,71288,79123,82688,89335,108248,110302,112310,116074。
第二方面,提供了一种参考信号的传输方法,包括:发送设备将频域的参考信号变换到时域以生成时域的参考信号,其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列根据Zadoff-Chu序列和所述参考信号序列的长度确定,所述Zadoff-Chu序列的长度值大于最大可分配的频域资源包含的最小时频资源单元的个数;所述发送设备发送所述时域的参考信号。
在第二方面的一种可能的实现方式中,发送设备通过第一方面或第一方面的任意可能的实现方式中的方法生成上述频域的参考信号。
第三方面,提供了一种参考信号的传输方法,包括:接收设备接收所述时域的参考信号;所述接收设备将时域的参考信号变换到频域以生成频域的参考信号,其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列根据Zadoff-Chu序列和所述参考信号序列的长度确定,所述Zadoff-Chu序列的长度值大于最大可分配的频域资源包含的最小时频资源单元的个数。
在第三方面的一种可能的实现方式中,接收设备通过第一方面或第一方面的任意可能的实现方式中的方法生成上述频域的参考信号。
第四方面,提供了一种设备,包括执行第一方面或第一方面的任意可能的实现方式中的方法的模块。
第五方面,提供了一种通信装置,包括处理单元、发送单元,以执行第二方面或第二方面的任意可能的实现方式中的方法。
第六方面,提供了一种通信装置,包括处理器、存储器和收发器,以执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种通信装置,包括处理单元、发送单元,以执行第三方面或第三方面的任意可能的实现方式中的方法。
第八方面,提供了一种通信装置,包括处理器、存储器和收发器,以执行第三方面或第三方面的任意可能的实现方式中的方法。
第九方面,提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第三方面或第三方面的任意可能的实现方式中的方法。
第十二方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
第十三方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
第十四方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第三方面或第三方面的任意可能的实现方式中的方法。
附图说明
图1为本申请的实施例应用的通信系统的架构示意图;
图2为本申请的实施例提供的一种参考信号生成方法示意图;
图3为本申请的实施例提供的一种ZC序列通过循环扩展或截断生成参考信号序列的示意图;
图4为本申请的实施例提供的一种参考信号序列的生成方法的示意图;
图5为本申请的实施例提供的另一种参考信号序列的生成方法的示意图;
图5A为本申请的实施例提供的又一种参考信号序列的生成方法的示意图;
图6为本申请的实施例提供的一种参考信号传输方法示意图;
图7为本申请的实施例提供的另一种参考信号传输方法示意图;
图8为本申请的实施例提供的一种通信装置的结构示意图;
图9为本申请的实施例提供的另一种通信装置的结构示意图;
图10为本申请的实施例提供的另一种通信装置的结构示意图;
图11为本申请的实施例提供的另一种通信装置的结构示意图。
具体实施方式
本申请各实施例中的发送设备和接收设备可以为以无线方式进行数据传输的任意一种发送端的设备和接收端的设备。发送设备和接收设备可以是任意一种具有无线收发功能的设备,包括但不限于:基站NodeB、演进型基站eNodeB、第五代(the fifthgeneration,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点以及用户设备(user equipment,UE)。其中,UE也可以称之为终端Terminal、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。UE可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,或者可以通过自组织或免授权的方式接入分布式网络,UE还可以通过其它方式接入无线网络进行通信,UE也可以与其它UE直接进行无线通信,本申请的实施例对此不作限定。
本申请的实施例中的发送设备和接收设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例中的UE可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
图1是本申请的实施例应用的通信系统的架构示意图。如图1所示,该通信系统包括核心网设备110、基站120、UE 130和UE 140通过无线连接或有线连接或其它方式连接,UE130和UE 140可以是静止的也可以是移动的。图1只是示意图,该通信系统中还可以包括其它网络设备和/或其它终端设备,在图1中未予以画出。
本申请的实施例可以适用于下行数据传输,也可以适用于上行数据传输,还可以适用于设备到设备(device to device,D2D)的数据传输。对于下行数据传输,发送设备是基站,对应的接收设备是UE。对于上行数据传输,发送设备是UE,对应的接收设备是基站。对于D2D的数据传输,发送设备是UE,对应的接收设备也是UE。本申请的实施例对此不做限定。
在LTE系统中,用户设备(user equipment,UE)之间的资源复用有两种方式,一种是UE之间的时频资源完全不重叠,通过时分或频分的方式进行资源复用;另一种是UE之间的时频资源完全重叠,通过空分的方式进行资源复用。当UE之间的资源是通过时分或频分方式进行复用时,不同UE的参考信号也通过时分或频分方式实现正交;当UE之间的资源是通过空分的方式进行复用时,不同UE的参考信号可以通过时分、频分、时域或频域的正交覆盖码(orthogonal cover code,OCC)实现相互正交,或者也可以通过相同序列的不同的线性相位旋转实现相互正交。
在第五代(5th generation,5G)移动通信系统的新空口(new radio,NR)中,对于多个UE或多个发射端口共享相同或者部分相同的时频资源的场景,提出分块参考信号(blockreference signals)的方法,用以改善不同UE或不同发射端口的参考信号之间的正交性。分块参考信号的方案将每个UE的参考信号分成多个块,不同UE的参考信号在块内保证正交进而保证不同UE的参考信号整体正交。引入分块参考信号之后,两个UE的时频资源可以以块大小为粒度进行资源共享,而不要求空分复用的两个UE的时频资源完全重叠,从而使得UE之间的资源分配更加灵活。
在动态TDD子帧结构的应用场景中,相邻小区的上下行子帧配置可能不同,例如,小区C1当前子帧配置为上行子帧,而在小区C1的邻小区C2中,当前子帧配置为下行子帧。假设U1和U2两个UE的地理位置相邻,但U1的服务小区为C1,U2的服务小区为C2,此时,U1发送上行数据时会对U2的下行接收产生严重干扰。为了提高U2接收数据的成功率,U2可以对来自U1的干扰信号进行干扰抑制或干扰消除。为了完成对干扰信号的干扰抑制或干扰消除,U2可以对来自U1的参考信号进行测量和估计。
在LTE系统中,传输带宽所包含的最小时频资源单元的个数n必须满足等式n=2x1·3x2·5x3,其中,x1、x2和x3为大于等于零的整数。以系统带宽为20MHz的LTE系统为例,共有35种不同的资源分配方式。不同的资源分配大小所对应的参考信号序列为不同长度的ZC序列的循环扩展,有关循环扩展在后面的图3中有详细描述。参考信号序列只与资源分配的大小有关,而与资源分配的位置无关。U2的参考信号所占的频域资源可能与U1的参考信号所占的频域资源部分重叠或完全重叠,由于U2并不知道U1的参考信号所处的起始位置以及所采用的参考信号序列,因此U2需要盲检遍历各种可能的资源分配大小以及资源分配位置,盲检的开销非常大。
为了降低盲检参考信号序列的开销,本申请的实施例提供了一种参考信号的生成方法、传输方法以及设备。本申请的实施例提供的参考信号序列均通过从一个固定长度的ZC序列中截取,而该ZC序列与资源分配大小无关,从而使得U2在盲检U1的参考信号时,无需尝试各种可能的资源分配大小所对应的ZC序列,从而降低了盲检开销。进一步地,本申请的实施例提供的参考信号序列从ZC序列中截取的时候,与资源分配位置完全对应,从而使得U2在盲检U1的参考信号时,无需尝试U1各种可能的资源分配位置,从而能进一步降低盲检开销,提升系统性能。
图2为本申请的实施例提供的一种基于ZC序列生成频域参考信号的方法,通过该方法生成的参考信号应用于通信系统时,能大大降低对参考信号的盲检次数,提升系统性能。
S210,根据ZC序列和参考信号序列的长度确定参考信号序列,该ZC序列的长度值大于最大可分配的频域资源所包含的最小时频资源单元的个数。
其中,最大可分配的频域资源为可以分配给一条无线链路的最大的频域资源,最小时频资源单元在不同的系统中可能有不同的定义,例如,在LTE系统中,最小时频资源单元称为资源元素(resource element,RE),是一个时域符号内的一个子载波资源。以20MHz带宽的LTE系统为例,可以分配给一条无线链路的最大的频域资源为100个资源块(resource block,RB),所包含的最小时频资源单元的个数为1200,此时最大可分配的频域资源包含的最小时频资源单元个数即为1200。
具体地,该参考信号序列是从该ZC序列中截取出来的、长度等于该参考信号序列的长度的序列。有关如何从ZC序列中截取参考信号序列可以参考后面图3中的相关描述。
该参考信号序列的长度等于承载该参考信号序列的频域资源组中包括的最小时频资源单元的个数,即频域资源组的带宽与参考信号序列的长度对应。承载该参考信号序列的频域资源组也可以称为该参考信号的频域资源。可以理解的是,频域资源组的大小可以与最大可分配的频域资源的大小相同,也可以小于最大可分配的频域资源的大小。这里频域资源组的大小是指该频域资源组中包含的最小时频资源单元的个数。上述频域资源组在大小相同的情况下,还可以有不同的频率偏移,如图4所示,参考信号2和参考信号3的频域资源的带宽都是8个RB,但参考信号3的频域资源相对于参考信号2的频域资源偏移了12个RB。
S220,将参考信号序列映射到频域资源组上生成频域参考信号。
最大可分配的频域资源中的任意一个频域资源组上的参考信号序列均可以通过上述方法获得,并将获得的参考信号序列映射到对应的频域资源组上,生成频域参考信号。
下面对参考信号的生成过程进行更具体的描述。
ZC序列Xq(m)可以用公式(1)表示:
Figure BDA0001221035010000071
其中,m为ZC序列元素的序号,m为整数且0≤m≤Nzc-1,j为虚数单位,q为所述ZC序列的根,Nzc为所述ZC序列的长度,q与Nzc互质。可以理解的是,在本申请中,对于数组或序列的编号,例如上述m的取值,可以有不同的编号方式,可以从1开始可以从零开始计数,本申请的实施例对此不做限定。
由q确定的ZC序列也可以称为长度为Nzc的第q个ZC根序列(the qth root ZCsequence)。ZC序列具有良好的自相关性,即序列有很大的自相关峰。对于长度相同但根不同的两个ZC序列之间具有良好的互相关性,即互相关的值很小。在现有的LTE系统中,ZC序列的长度取值为质数,但在本申请的实施例中,Nzc也可以为非质数。
由公式(1)定义的ZC序列,实质上是一个长度为Nzc的ZC序列的集合,序列集合中可以包含不同的q的取值下的ZC序列。
当参考信号序列的长度与ZC序列不一致时,可以根据ZC序列Xq(m)生成参考信号序列的基序列(base sequence)
Figure BDA0001221035010000081
如公式(2)所示:
Figure BDA0001221035010000082
其中,n为基序列的元素序号,n为整数且0≤n≤N-1,N为基序列的长度。如图3中的(a)图所示,当N大于Nzc时,公式(2)可以理解为将长度为Nzc的ZC序列通过循环扩展得到长度为N的基序列;如图3中的(b)图所示,当N小于Nzc时,公式(2)可以理解为将长度为Nzc的ZC序列通过截断得到长度为N的基序列。
由于ZC序列的长度Nzc大于最大可分配的频域资源包含的最小时频资源单元的个数,即Nzc>N,因此公式(2)实际为将长度为Nzc的ZC序列通过截断得到长度为N的参考信号序列。于是,公式(2)可以简化表示为:
Figure BDA0001221035010000083
公式(2)和公式(3)将长度为Nzc的ZC序列从序列起始位置开始取出数据得到长度为N的参考信号序列,即将ZC序列超出N长度的末端部分数据进行截断。本申请对截断数据的起始位置和截断方式不做限定,例如,也可以从序列的第n0个数据元素开始取出数据得到长度为N的参考信号序列。
为了进一步获得更多的参考信号序列,可以对基序列
Figure BDA0001221035010000084
在频域进行不同的频域的线性相位旋转(linear phase rotation)。对同一个基序列进行不同的线性相位旋转后得到的不同的参考信号序列之间完全正交,因此这些通过线性相位旋转得到的参考信号序列之间没有干扰。基序列
Figure BDA0001221035010000085
经过线性相位旋转后得到参考信号序列
Figure BDA0001221035010000086
如公式(4)所示:
Figure BDA0001221035010000087
其中,α为线性相位旋转的相位,α为实数,假设α=(c·π)/6,则c的取值可以为0到11,这样从一个基本参考信号序列通过不同的相位旋转就可以得到12个不同的相互正交的参考信号序列。在频域上进行线性相位旋转相当于在时域上进行了循环移位(cyclicshift)。
综合公式(2)和(4),由ZC序列Xq(m)生成参考信号序列
Figure BDA0001221035010000088
的方法可以如公式(5)所示:
Figure BDA0001221035010000089
综合公式(3)和(4),由ZC序列Xq(m)生成参考信号序列
Figure BDA00012210350100000810
的方法可以如公式(6)所示:
Figure BDA0001221035010000091
ZC序列Xq(m)可以通过ZC序列的长度Nzc的取值和ZC序列的根q的取值确定,对应地,由ZC序列Xq(m)生成的参考信号序列的基序列
Figure BDA0001221035010000092
可以通过ZC序列的长度Nzc的取值和ZC序列的根q的取值确定,由ZC序列Xq(m)生成的参考信号序列
Figure BDA0001221035010000093
可以通过ZC序列的长度Nzc的取值、ZC序列的根q的取值以及线性相位旋转的相位α确定。
实际应用时,一种可能的实现是根据小区标识确定该小区所使用的ZC序列的根,然后从该ZC序列中截取长度为该参考信号序列长度的序列作为参考信号序列。对这样生成的参考信号进行盲检的时候所需要尝试的ZC序列与参考信号的资源分配大小无关,能够降低盲检次数,从而降低了盲检开销。
图4示出了一种从ZC序列中截取参考信号序列方法,参考信号序列进一步根据承载该参考信号序列的频域资源组在最大可分配的频域资源中的位置确定。如图4所示,参考信号0的频域资源是从编号为0的资源元素(resource element,RE)开始分配的,参考信号0的频域资源大小也就是承载参考信号0的参考信号序列的频域资源组的大小为20个RB,即240个RE,因此从ZC序列的0号位置开始截取一个长度为240的序列作为参考信号0的参考信号序列。参考信号1的频域资源大小为12个RB,从ZC序列的96号位置开始截取一个长度为144的序列作为参考信号1的参考信号序列;参考信号2和参考信号3的频域资源大小均为8个RB,从ZC序列的0号位置开始截取一个长度为96的序列作为参考信号2的参考信号序列,从ZC序列的144号位置开始截取一个长度为96的序列作为参考信号3的参考信号序列。
根据本申请的实施例所提供的参考信号生成方法所生成的参考信号序列,是从ZC序列中截取一段与频域资源组的位置完全对应的序列,从而使得在盲检该参考信号时,无需尝试各种可能的频域资源组的位置,可以进一步降低盲检次数,从而降低盲检开销,提升系统性能。
下面以参考信号序列根据频域资源组的起始位置在最大可分配的频域资源中的位置确定为例进行说明,可以理解的是,参考信号序列也可以根据频域资源组的终止位置在最大可分配的频域资源中的位置确定,但本申请的实施例对此并不做限定。
设频域资源组的起始位置为Nini,且该频域资源组包含的最小时频资源单元是连续的,则参考信号序列Rq(n)可以用公式(7)表示:
Figure BDA0001221035010000094
综合公式(5)和公式(7),则由ZC序列Xq(m)生成参考信号序列Rq(n)的方法可以如公式(8)所示:
Rq(n)=ej·α·nXq((n+Nini)modNzc) (8)
综合公式(6)和公式(7),则由ZC序列Xq(m)生成参考信号序列Rq(n)的方法可以如公式(9)所示:
Rq(n)=ej·α·nXq(n+Nini) (9)
其中,n+Nini<NZC
以系统带宽为20MHz的LTE系统为例,最大可分配的频域资源为100个RB,考虑参考信号带宽可以为1个RB到100个RB之间所有可能的分配带宽。以RCM<5.3,最大互相关小于0.73,需要ZC序列的根的数目30个为约束条件,满足这些约束条件的ZC序列的根q的取值如表1所示,表中ZC序列的长度Nzc为479971,qidx为q的编号示意。一组相同长度的序列的最大互相关是指对这组序列中任意两个序列进行互相关运算得到的互相关结果中的最大幅度值。根据表1中的q的取值生成ZC序列,进一步根据上述生成参考信号的方法生成的参考信号,具有低PAPR/RCM的特性,同时能够大大降低对该参考信号的盲检开销,提升系统性能。
表1
q<sub>idx</sub> 0 1 2 3 4 5 6 7 8 9
q 24335 35852 49443 65019 76272 88558 102028 126841 139505 150710
q<sub>idx</sub> 10 11 12 13 14 15 16 17 18 19
q 169872 181751 197023 210577 222328 253191 264402 276530 296245 307534
q<sub>idx</sub> 20 21 22 23 24 25 26 27 28 29
q 329261 340466 352513 368238 387393 402362 413569 424829 437224 448552
以系统带宽为20MHz的LTE系统为例,当参考信号带宽为1个RB或2个RB时,参考信号采用的是通过计算机搜索得到的正交相移键控(quadrature phase shift keying,QPSK)序列,3个RB及以上采用ZC序列。考虑到这些通过计算机搜索得到的QPSK序列的PAPR/RCM很低,另一个可能的实施例是,对于参考信号带宽为1个RB和2个RB时,仍然采用现有的LTE系统中的QPSK序列生成参考信号序列,而对于参考信号带宽为3个RB到100个RB之间所有可能的分配带宽时,采用上述参考信号序列生成方法生成参考信号序列。可以理解的是,参考信号带宽也就是频域资源组的带宽。以RCM<5.1,最大互相关小于0.445,需要ZC序列的根的数目30个为约束条件,满足这些约束条件的ZC序列的根q的取值如表2所示,表中ZC序列的长度Nzc为119993。根据表2所示的ZC序列的根序列生成的参考信号与根据表1所示的ZC序列的根序列生成的参考信号相比,虽然会增加盲检次数,但是PAPR/RCM更低。
表2
q<sub>idx</sub> 0 1 2 3 4 5 6 7 8 9
q 2197 3470 4396 6191 7683 9025 10362 11745 13755 14512
q<sub>idx</sub> 10 11 12 13 14 15 16 17 18 19
q 17680 18691 20638 23545 24419 25507 30658 37305 40689 52894
q<sub>idx</sub> 20 21 22 23 24 25 26 27 28 29
q 58095 67099 71288 79123 82688 89335 108248 110302 112310 116074
本申请的另一种可能的实施例,对频域资源组可能的带宽分配进行分段,分别采用不同的序列组生成参考信号序列。例如:频域资源组的带宽为1个RB和2个RB为第一组,继续采用当前LTE系统中QPSK序列生成参考信号序列;频域资源组的带宽为3个RB到30个RB为第二组,采用如表3所示的一组ZC序列的根序列生成参考信号序列;频域资源组的带宽为31个RB到100个RB为第三组,采用如表4所示的一组ZC序列的根序列生成参考信号序列。根据表3和表4所示的ZC序列的根序列生成的参考信号与根据表1所示的ZC序列的根序列生成的参考信号相比,虽然会增加盲检次数,但是PAPR/RCM更低。
考虑频域资源组为3个RB到30个RB之间所有可能的分配带宽,以RCM<4.9,最大互相关小于0.39,需要ZC序列的根的数目30个为约束条件,满足这些约束条件的ZC序列的根q的取值如表3所示,表中ZC序列的长度Nzc为119993。
表3
q<sub>idx</sub> 0 1 2 3 4 5 6 7 8 9
q 2012 3107 4228 5550 6811 7801 8812 10235 11558 12790
q<sub>idx</sub> 10 11 12 13 14 15 16 17 18 19
q 14316 16717 17689 18802 20361 21503 23269 24419 29129 30559
q<sub>idx</sub> 20 21 22 23 24 25 26 27 28 29
q 33516 34631 37305 39162 43862 55093 75465 91126 112310 116886
考虑频域资源组为31个RB到100个RB之间所有可能的分配带宽,以RCM<4.9,最大互相关小于0.16,需要ZC序列的根的数目30个为约束条件,满足这些约束条件的ZC序列的根q的取值如表4所示,表中ZC序列的长度Nzc为119993。
表4
Figure BDA0001221035010000111
Figure BDA0001221035010000121
最大可分配的频域资源包含的最小时频资源单元个数根据实际的情况可以发生变化。以LTE为例,最大可分配带宽为110个RB,满足子载波个数n=2x1·3x2·5x3的最大实际可分配带宽为108个RB,其中,x1、x2和x3为大于等于零的整数。但是实际应用中,由于需要考虑预留一定的保护带宽,因此LTE的最大可分配的频域资源为100个RB即1200个子载波。对于采用滤波和加窗交叠相加(weighted overlap and add,WOLA)等方式改善波形的带外(out of band,OOB)抑制,或者不需要那么宽的保护带的情况,实际最大可分配的频域资源可以超过100个RB。
对于最大可分配的频域资源为108个RB共1296个子载波情况,考虑频域资源组可以为3个RB到108个RB之间所有可能的分配带宽时;以RCM<5.1,最大互相关小于0.44,需要ZC序列的根的数目30个为约束条件,满足这些约束条件的ZC序列的根q的取值如表5所示,表中ZC序列的长度Nzc为131969。
表5
q<sub>idx</sub> 0 1 2 3 4 5 6 7 8 9
q 2908 5919 8108 9176 11359 12842 13721 18287 19213 21435
q<sub>idx</sub> 10 11 12 13 14 15 16 17 18 19
q 22441 25895 27039 30666 36263 38169 40822 42738 44949 51705
q<sub>idx</sub> 20 21 22 23 24 25 26 27 28 29
q 54664 59740 61399 67366 68376 70570 78403 82997 86400 95108
对于最大可分配的频域资源为108个RB共1296个子载波情况,考虑频域资源组可以为3个RB到108个RB之间所有可能的分配带宽时;以RCM<5.2,最大互相关小于0.5,需要ZC序列的根的数目60个为约束条件,满足这些约束条件的ZC序列的根q的取值如表6所示,表中ZC序列的长度Nzc为131969。
表6
Figure BDA0001221035010000122
Figure BDA0001221035010000131
可选地,互相关可以不作为约束条件,以PAPR/RCM/低立方度量(cubic metric,CM)作为约束条件。以系统带宽为20MHz的LTE系统为例,最大可分配的频域资源为100个RB,考虑参考信号带宽可以为1个RB到100个RB之间所有可能的分配带宽。以RCM<5.3,互相关不设置阈值,需要ZC序列的根的数目60个为约束条件,满足这些约束条件的ZC序列的根q的取值如表6A所示,表中ZC序列的长度Nzc为21157,qidx为q的编号示意。
表6A
q<sub>idx</sub> 1 2 3 4 5 6 7 8 9 10
q 1149 1203 1215 1345 1827 1873 1962 2040 2276 2927
q<sub>idx</sub> 11 12 13 14 15 16 17 18 19 20
q 2931 3196 3201 3223 3406 3787 5596 6247 6276 6426
q<sub>idx</sub> 21 22 23 24 25 26 27 28 29 30
q 7736 7749 7768 8693 8767 8779 8970 9216 9983 9996
q<sub>idx</sub> 31 32 33 34 35 36 37 38 39 40
q 11161 11174 11941 12187 12378 12390 12464 13389 13408 13421
q<sub>idx</sub> 41 42 43 44 45 46 47 48 49 50
q 14731 14881 14910 15561 17370 17751 17934 17956 17961 18226
q<sub>idx</sub> 51 52 53 54 55 56 57 58 59 60
q 18230 18881 19117 19195 19284 19330 19812 19942 19954 20008
以系统带宽为20MHz的LTE系统为例,最大可分配的频域资源为110个RB,考虑参考信号带宽可以为1个RB到110个RB之间所有可能的分配带宽。以RCM<5.3,互相关不设置阈值,需要ZC序列的根的数目60个为约束条件,满足这些约束条件的ZC序列的根q的取值如表6B所示,表中ZC序列的长度Nzc为22109,qidx为q的编号示意。
表6B
q<sub>idx</sub> 1 2 3 4 5 6 7 8 9 10
q 1359 1447 1662 1901 1903 1945 2540 2666 2995 3572
q<sub>idx</sub> 11 12 13 14 15 16 17 18 19 20
q 3874 4709 5039 5871 6681 6743 6933 7943 8165 8439
q<sub>idx</sub> 21 22 23 24 25 26 27 28 29 30
q 8463 9126 9175 9592 9713 9898 10278 10343 10344 10371
q<sub>idx</sub> 31 32 33 34 35 36 37 38 39 40
q 11738 11765 11766 11831 12211 12396 12517 12934 12983 13646
q<sub>idx</sub> 41 42 43 44 45 46 47 48 49 50
q 13670 13944 14166 15176 15366 15428 16238 17070 17400 18235
q<sub>idx</sub> 51 52 53 54 55 56 57 58 59 60
q 18537 19114 19443 19569 20164 20206 20208 20447 20662 20750
以系统带宽为20MHz的LTE系统为例,最大可分配的频域资源为100个RB,考虑参考信号带宽可以为3个RB到100个RB之间所有可能的分配带宽,1个RB和2个RB采用当前LTE系统中QPSK序列生成参考信号序列。以RCM<5.3,互相关不设置阈值,需要ZC序列的根的数目60个为约束条件,满足这些约束条件的ZC序列的根q的取值如表6C所示,表中ZC序列的长度Nzc为8431,qidx为q的编号示意。
表6C
Figure BDA0001221035010000141
Figure BDA0001221035010000151
以系统带宽为20MHz的LTE系统为例,最大可分配的频域资源为110个RB,考虑参考信号带宽可以为3个RB到110个RB之间所有可能的分配带宽,1个RB和2个RB采用当前LTE系统中QPSK序列生成参考信号序列。以RCM<5.3,互相关不设置阈值,需要ZC序列的根的数目60个为约束条件,满足这些约束条件的ZC序列的根q的取值如表6D所示,表中ZC序列的长度Nzc为9781,qidx为q的编号示意。
表6D
q<sub>idx</sub> 1 2 3 4 5 6 7 8 9 10
q 214 293 366 437 531 841 1189 1588 1680 1741
q<sub>idx</sub> 11 12 13 14 15 16 17 18 19 20
q 1805 1856 2118 2352 2389 2627 2820 2837 3336 3366
q<sub>idx</sub> 21 22 23 24 25 26 27 28 29 30
q 3440 3715 3847 3971 4015 4242 4664 4713 4754 4761
q<sub>idx</sub> 31 32 33 34 35 36 37 38 39 40
q 5020 5027 5068 5117 5539 5766 5810 5934 6066 6341
q<sub>idx</sub> 41 42 43 44 45 46 47 48 49 50
q 6415 6445 6944 6961 7154 7392 7429 7663 7925 7976
q<sub>idx</sub> 51 52 53 54 55 56 57 58 59 60
q 8040 8101 8193 8592 8940 9250 9344 9415 9488 9567
上述表1至表6D中的qidx只是q的取值的一个编号示意,并不限定q的取值的顺序,qidx还有其它的编号形式,例如,可以从0开始编号,也可以按照其它的顺序进行编号。例如,表5中的q=2908对应的编号qidx为0,该编号也可以为1,也可以为30,也可以取其它值。上述表1至表6D也可以没有qidx,仅仅给出对应的q的取值的集合即可。
本身申请的实施例还提供了另一种从ZC序列中截取参考信号序列方法:参考信号序列从ZC序列中截取参考信号序列时,不考虑承载该参考信号序列的频域资源组在最大可分配的频域资源中的位置。例如,无论该频域资源组在最大可分配的频域资源中的位置在哪,都从该ZC序列的开始截取一段长度为参考信号序列长度的序列作为参考信号序列。
本申请同样适用于频域资源组包含的最小时频资源单元是梳状分布的情况。一种可能的实施例如图5所示,参考信号0的频域资源组中的最小时频资源单元是梳状分布的,且相邻最小时频资源单元之间是等间隔的,间隔为Nspace个最小时频资源单元。参考信号1的频域资源组中的最小时频资源单元也是离散映射的,参考信号0和参考信号1的频域资源组的大小可以相同也可以不同。长度为N的参考信号序列离散映射到频域资源组上生成频域参考信号,其中,参考信号序列根据频域资源组在最大可分配的频域资源中的位置和频域资源组中相邻的两个最小时频资源单元之间的间隔确定。具体地,由线性相位旋转后的序列
Figure BDA0001221035010000161
得到参考信号序列Rq(n)可以用公式(10)表示:
Figure BDA0001221035010000162
综合公式(8)和公式(10),则由ZC序列Xq(m)生成映射到离散的频域资源组上的参考信号序列Rq(n)的方法可以如公式(11)所示:
Rq(n)=ej·α·nXq((n·Nspace+Nini)modNzc) (11)
综合公式(9)和公式(10),则由ZC序列Xq(m)生成映射到离散的频域资源组上的参考信号序列Rq(n)的方法可以如公式(12)所示:
Rq(n)=ej·α·nXq(n·Nspace+Nini) (12)
其中,n·Nspace+Nini<NZC
可选的,长度为N的参考信号序列离散映射到频域资源组上生成频域参考信号,其中,参考信号序列根据频域资源组在最大可分配的频域资源中的位置确定,和频域资源组中相邻的两个最小时频资源单元之间的间隔无关。如图5A所示,参考信号0对应的频域资源组中的最小时频资源单元是梳状分布的,且相邻最小时频资源单元之间是等间隔的,间隔为Nspace个最小时频资源单元。参考信号1的频域资源组中的最小时频资源单元也是梳状分布的,参考信号0和参考信号1的频域资源组的大小可以相同也可以不同。长度为N的参考信号序列由ZC序列连续截取长度为N的数据得到,截取的数据只与参考信号序列的长度相关,例如,从ZC序列的头部开始截取,也可以从一个预定义的偏移位置开始截取,本申请的实施例对此不做限定。下面以从ZC序列的头部开始截取为例,具体地,由线性相位旋转后的序列
Figure BDA0001221035010000163
得到参考信号序列Rq(n)可以用公式(13)表示:
Figure BDA0001221035010000164
综合公式(5)和公式(13),则由ZC序列Xq(m)生成映射到离散的频域资源组上的参考信号序列Rq(n)的方法可以如公式(14)所示:
Rq(n)=ej·α·nXq(nmodNzc) (14)
综合公式(6)和公式(13),则由ZC序列Xq(m)生成映射到离散的频域资源组上的参考信号序列Rq(n)的方法可以如公式(15)所示:
Rq(n)=ej·α·nXq(n) (15)
可选的,长度为N的参考信号序列映射到频域资源组上生成频域参考信号,参考信号序列由ZC序列集合中的ZC序列确定,ZC序列集合中的ZC序列的长度大于最大可分配的频域资源包含的最小时频资源单元个数,该ZC序列集合包括至少两个不同长度ZC序列。
以系统带宽为20MHz的LTE系统为例,最大可分配的频域资源为100个RB,考虑参考信号带宽可以为3个RB到100个RB之间所有可能的分配带宽,以RCM<5.4,最大互相关小于0.4,需要的ZC序列的根的数目30个为约束条件,满足这些约束条件的ZC序列的长度Nk和ZC序列的根q的取值如表7所示。
表7
序列序号 0 1 2 3 4 5 6 7 8 9
N<sub>zc</sub> 1319 1319 1319 1319 1319 1319 1319 1319 1319 1321
q 26 75 123 256 639 679 979 1196 1293 50
序列序号 10 11 12 13 14 15 16 17 18 19
N<sub>zc</sub> 1321 1321 1321 1321 1321 1321 1321 1321 1321 1321
q 342 429 449 483 570 582 751 838 1072 1265
序列序号 20 21 22 23 24 25 26 27 28 29
N<sub>zc</sub> 1323 1325 1327 1327 1329 1331 1333 1333 1333 1333
q 1063 62 596 731 563 159 170 552 780 1104
上述表7中的序列序号只是Nzc和q的取值组合的一个编号示意,并不限定Nzc和q的取值组合的顺序,该序列序号还有其它的编号形式,例如,可以从0开始编号,也可以按照其它的顺序进行编号。例如,表7中的Nzc=1319,q=75对应的序列序号为1,该序列序号也可以为0,也可以为30,也可以取其它值。上述表7也可以没有序列序号。
如图6所示,本申请的实施例还提供了一种参考信号的传输方法。
S610,发送设备将频域的参考信号变换到时域以生成时域的参考信号,其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列根据ZC序列和所述参考信号序列的长度确定,所述ZC序列的长度值大于最大可分配的频域资源包含的最小时频资源单元的个数。可以理解的是,所述参考信号序列的长度小于等于最大可分配的频域资源包含的最小时频资源单元的个数,也就是说频域资源组的带宽小于等于最大可分配的频域资源。
进一步地,所述参考信号序列还根据所述频域资源组在最大可分配的频域资源中的位置确定。
进一步地,所述参考信号序列还根据所述频域资源组中相邻两个最小时频资源单元的间隔确定。
具体地,频域的参考信号的生成方法可以参考如图2所示的方法。
常用的频域到时域的变换方法是离散傅里叶反变换(inverse discrete Fouriertransform,IDFT)和快速傅立叶反变(inverse fast Fourier transform,IFFT),但本申请的实施例对此并不做限定。
S620,发送设备发送所述时域的参考信号。
可以理解的是,发送设备在发送上述时域的参考信号之前,还可以经过数模转换(将数字信号转换为模拟信号)和载波调制(将基带信号调制到射频载波上)等处理,然后通过天线将信号发射出去。
如图7所示,本申请的实施例提供了另一种参考信号的传输方法。
S710,接收设备接收时域参考信号。
可以理解的是,接收设备通过天线从无线信道中接收无线信号,上述无线信号中包括上述时域的参考信号。
S720,接收设备将时域的参考信号变换到频域生成频域的参考信号,其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列根据ZC序列和所述参考信号序列的长度确定,所述ZC序列的长度值大于最大可分配的频域资源包含的最小时频资源单元的个数。可以理解的是,所述参考信号序列的长度小于等于最大可分配的频域资源包含的最小时频资源单元的个数,也就是说频域资源组的带宽小于等于最大可分配的频域资源。
进一步地,所述参考信号序列还根据所述频域资源组在最大可分配的频域资源中的位置确定。
进一步地,所述参考信号序列还根据所述频域资源组中相邻两个最小时频资源单元的间隔确定。
接收设备对参考信号进行测量,获得对发送设备和接收设备之间的无线信道参数的估计,该信道估计结果可以用于对发送设备发送的数据进行解调;或者获得对发送设备和接收设备之间的信道质量的测量,该信道质量测量结果可以用于发送该设备和接收设备之间数据传输的链路自适应以及资源分配等。对序列的测量结果也可以用于定位测量,本申请对参考信号的用途不做限定。
实际应用的时候,发送设备获取参考信号序列的方法,可以是从存储器中获取已经生成的参考信号序列,也可以是根据参考信号序列的相关参数实时生成参考信号序列。
发送设备获取参考信号序列相关参数的方法,可以是从存储器中获取,也可以是由网络设备统一分配参考信号序列,再通过信令将参考信号序列的相关参数发送给发送设备,发送设备使用该参考信号序列的相关参数获取参考信号序列。这里的ZC序列的相关参数可以包括用于指示ZC序列长度值、ZC序列的根的取值和线性相位旋转的相位的取值中的至少一个。这里的网络设备可以是基站NodeB、演进型基站eNodeB、5G通信系统中的基站或其它网络设备。
接收设备为了对上述接收到的参考信号进行测量,接收设备可以参考如图2所示的频域的参考信号的生成过程,生成一个与发送设备生成的频域参考信号一样的频域参考信号。具体地,接收设备获取参考信号序列的方法可以是先获取参考信号序列的相关参数,然后使用该参数生成参考信号序列。接收设备获取参考信号序列的相关参数的方法:可以是发送设备获取到参考信号序列的相关参数之后,通过信令将参考信号序列的相关参数发送给接收设备;也可以是网络设备通过信令将参考信号序列的相关参数发送给接收设备。
发送设备和接收设备还可以通过隐式的方式获得参考信号序列的相关参数,例如,通过小区标识、时隙号等方式隐式确定参考信号序列的相关参数。
上述本申请提供的实施例中,分别从发送设备、接收设备以及发送设备和接收设备之间交互的角度对本申请实施例提供的参考信号序列生成方法以及参考信号传输方法等各方案进行了介绍。可以理解的是,各个设备,例如发送设备和接收设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图8和图9为本申请的实施例提供的两种可能的通信装置的结构示意图。该通信装置实现上述参考信号传输方法实施例中发送设备的功能,因此也能实现上述参考信号传输方法所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的UE130或UE140或基站120,还可以是其它使用参考信号进行无线通信的发送侧设备。
如图8所示,通信装置800包括处理单元810和发送单元820。
处理单元810,用于将频域的参考信号变换到时域以生成时域的参考信号,其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列根据ZC序列和所述参考信号序列的长度确定,所述ZC序列的长度值大于最大可分配的频域资源包含的最小时频资源单元的个数。
发送单元820,用于发送所述时域的参考信号。
如图9所示,通信装置900包括处理器910,收发器920和存储器930,其中,存储器930可以用于存储处理器910执行的代码。通信装置900中的各个组件之间通过内部连接通路互相通信,如通过总线传递控制和/或数据信号。
处理器910,用于将频域的参考信号变换到时域以生成时域的参考信号,其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列根据ZC序列和所述参考信号序列的长度确定,所述ZC序列的长度值大于最大可分配的频域资源包含的最小时频资源单元的个数。
收发器920,用于发送所述时域的参考信号。
有关上述处理单元810、处理器910和发送单元820、收发器920更详细的功能描述可以参考上述方法实施例直接得到,在此不加赘述。
图10和图11为本申请的实施例的另外两种可能的通信装置的结构示意图。该通信装置实现上述参考信号传输方法实施例中接收设备的功能,因此也能实现上述参考信号传输方法所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的UE130或UE140或基站120,还可以是其它使用参考信号进行无线通信的接收侧设备。
如图10所示,通信装置1000包括接收单元1010和处理单元1020。
接收单元1010,用于接收时域的参考信号。
处理单元1020,用于将时域的参考信号变换到频域以生成频域的参考信号,其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列根据ZC序列和所述参考信号序列的长度确定,所述ZC序列的长度值大于最大可分配的频域资源包含的最小时频资源单元的个数。
如图11所示,通信装置1100包括处理器1120,收发器1110和存储器1130,其中,存储器1130可以用于存储处理器1120执行的代码。通信装置1100中的各个组件之间通过内部连接通路互相通信,如通过总线传递控制和/或数据信号。
收发器1110,用于接收时域的参考信号。
处理器1120,用于将时域的参考信号变换到频域以生成频域的参考信号,其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列根据ZC序列和所述参考信号序列的长度确定,所述ZC序列的长度值大于最大可分配的频域资源包含的最小时频资源单元的个数。
可以理解的是,图9和图11仅仅示出了该通信装置的一种设计。在实际应用中,该通信装置可以包括任意数量的接收器和处理器,而所有可以实现本申请的实施例的通信装置都在本申请的保护范围之内。
有关上述接收单元1010、收发器1110和处理单元1020、处理器1120更详细的功能描述可以参考上述方法实施例直接得到,在此不加赘述。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(CentralProcessing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital SignalProcessor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于发送设备或接收设备中。当然,处理器和存储介质也可以作为分立组件存在于发送设备或接收设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
以上所述,仅为本申请的实施例的具体实施方式,任何熟悉本技术领域的技术人员在本申请公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的实施例的保护范围之内。

Claims (32)

1.一种参考信号传输方法,其特征在于,所述方法包括:
发送设备将频域的参考信号变换到时域以生成时域的参考信号,其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列根据具有固定长度的Zadoff-Chu序列来确定,Zadoff-Chu序列和所述参考信号序列的资源分配大小无关,所述Zadoff-Chu序列的长度值大于最大可分配的频域资源包含的子载波的个数,所述频域资源组的带宽小于等于最大可分配的频域资源;
所述发送设备发送所述时域的参考信号。
2.根据权利要求1所述的方法,其特征在于,所述参考信号序列还根据所述频域资源组在最大可分配的频域资源中的位置确定。
3.根据权利要求1或2所述的方法,其特征在于,所述参考信号序列还根据所述频域资源组中相邻的两个子载波的间隔确定。
4.根据权利要求1至2任一项所述的方法,其特征在于,所述Zadoff-Chu序列为Xq(m),Xq(m)根据
Figure FDA0003144079370000011
确定;
其中,j为虚数单位,m为所述Zadoff-Chu序列元素的序号,m为整数且0≤m≤Nzc-1,Nzc为所述Zadoff-Chu序列的长度值,q为所述ZC序列的根的取值,q与Nzc互质。
5.根据权利要求4所述的方法,其特征在于,所述Zadoff-Chu序列长度Nzc为21157,所述Zadoff-Chu序列的根q的取值为以下中的一个:1149,1203,1215,1345,1827,1873,1962,2040,2276,2927,2931,3196,3201,3223,3406,3787,5596,6247,6276,6426,7736,7749,7768,8693,8767,8779,8970,9216,9983,9996,11161,11174,11941,12187,12378,12390,12464,13389,13408,13421,14731,14881,14910,15561,17370,17751,17934,17956,17961,18226,18230,18881,19117,19195,19284,19330,19812,19942,19954,20008。
6.根据权利要求4所述的方法,其特征在于,所述Zadoff-Chu序列长度Nzc为131969,所述Zadoff-Chu序列的根q的取值为以下中的一个:2908,5919,8108,9176,11359,12842,13721,18287,19123,21435,22441,25895,27039,30666,36263,38169,40822,42738,44949,51705,54664,59740,61399,67366,68376,70570,78403,82997,86400,95108。
7.根据权利要求6所述的方法,其特征在于,所述频域资源组的带宽大于等于3个资源块RB。
8.根据权利要求4所述的方法,其特征在于,所述Zadoff-Chu序列长度Nzc为479971,所述Zadoff-Chu序列的根q的取值为以下中的一个:24335,35852,49443,65019,76272,88558,102028,126841,139505,150710,169872,181751,197023,210577,222328,253191,264402,276530,296245,307534,329261,340466,352513,368238,387393,402362,413569,424829,437224,448552。
9.一种通信装置,其特征在于,包括:处理单元,用于将频域的参考信号变换到时域以生成时域的参考信号,
其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列具有固定长度的Zadoff-Chu序列来确定,其中,根据Zadoff-Chu序列和所述参考信号序列的资源分配大小无关,所述Zadoff-Chu序列的长度值大于最大可分配的频域资源包含的子载波的个数;
发送单元,用于发送所述时域的参考信号。
10.根据权利要求9所述的通信装置,其特征在于,所述参考信号序列还根据所述频域资源组在最大可分配的频域资源中的位置确定。
11.根据权利要求9或10所述的通信装置,其特征在于,所述参考信号序列还根据所述频域资源组中相邻的两个子载波的间隔确定。
12.根据权利要求9至10任一项所述的通信装置,其特征在于,所述Zadoff-Chu序列为Xq(m),Xq(m)根据
Figure FDA0003144079370000021
确定;
其中,j为虚数单位,m为所述Zadoff-Chu序列元素的序号,m为整数且0≤m≤Nzc-1,Nzc为所述Zadoff-Chu序列的长度值,q为所述ZC序列的根的取值,q与Nzc互质。
13.根据权利要求12所述的通信装置,其特征在于,所述Zadoff-Chu序列长度Nzc为21157,所述Zadoff-Chu序列的根q的取值为以下中的一个:1149,1203,1215,1345,1827,1873,1962,2040,2276,2927,2931,3196,3201,3223,3406,3787,5596,6247,6276,6426,7736,7749,7768,8693,8767,8779,8970,9216,9983,9996,11161,11174,11941,12187,12378,12390,12464,13389,13408,13421,14731,14881,14910,15561,17370,17751,17934,17956,17961,18226,18230,18881,19117,19195,19284,19330,19812,19942,19954,20008。
14.根据权利要求12所述的通信装置,其特征在于,所述Zadoff-Chu序列长度Nzc为131969,所述Zadoff-Chu序列的根q的取值为以下中的一个:2908,5919,8108,9176,11359,12842,13721,18287,19123,21435,22441,25895,27039,30666,36263,38169,40822,42738,44949,51705,54664,59740,61399,67366,68376,70570,78403,82997,86400,95108。
15.根据权利要求14所述的通信装置,其特征在于,所述频域资源组的带宽大于等于3个资源块RB。
16.根据权利要求12所述的通信装置,其特征在于,所述Zadoff-Chu序列长度Nzc为479971,所述Zadoff-Chu序列的根q的取值为以下中的一个:24335,35852,49443,65019,76272,88558,102028,126841,139505,150710,169872,181751,197023,210577,222328,253191,264402,276530,296245,307534,329261,340466,352513,368238,387393,402362,413569,424829,437224,448552。
17.一种参考信号传输方法,其特征在于,所述方法包括:
接收设备接收时域的参考信号;
所述接收设备将时域的参考信号变换到频域以生成频域的参考信号,其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列根据具有固定长度的Zadoff-Chu序列来确定,Zadoff-Chu序列和所述参考信号序列的资源分配大小无关,所述Zadoff-Chu序列的长度值大于最大可分配的频域资源包含的子载波的个数。
18.根据权利要求17所述的方法,其特征在于,所述参考信号序列还根据所述频域资源组在最大可分配的频域资源中的位置确定。
19.根据权利要求17或18所述的方法,其特征在于,所述参考信号序列还根据所述频域资源组中相邻的两个子载波的间隔确定。
20.根据权利要求17至18任一项所述的方法,其特征在于,所述Zadoff-Chu序列为Xq(m),Xq(m)根据
Figure FDA0003144079370000031
确定;
其中,j为虚数单位,m为所述Zadoff-Chu序列元素的序号,m为整数且0≤m≤Nzc-1,Nzc为所述Zadoff-Chu序列的长度值,q为所述ZC序列的根的取值,q与Nzc互质。
21.根据权利要求20所述的方法,其特征在于,所述Zadoff-Chu序列长度Nzc为21157,所述Zadoff-Chu序列的根q的取值为以下中的一个:1149,1203,1215,1345,1827,1873,1962,2040,2276,2927,2931,3196,3201,3223,3406,3787,5596,6247,6276,6426,7736,7749,7768,8693,8767,8779,8970,9216,9983,9996,11161,11174,11941,12187,12378,12390,12464,13389,13408,13421,14731,14881,14910,15561,17370,17751,17934,17956,17961,18226,18230,18881,19117,19195,19284,19330,19812,19942,19954,20008。
22.根据权利要求20所述的方法,其特征在于,所述Zadoff-Chu序列长度Nzc为131969,所述Zadoff-Chu序列的根q的取值为以下中的一个:2908,5919,8108,9176,11359,12842,13721,18287,19123,21435,22441,25895,27039,30666,36263,38169,40822,42738,44949,51705,54664,59740,61399,67366,68376,70570,78403,82997,86400,95108。
23.根据权利要求22所述的方法,其特征在于,所述频域资源组的带宽大于等于3个资源块RB。
24.根据权利要求20所述的方法,其特征在于,所述Zadoff-Chu序列长度Nzc为479971,所述Zadoff-Chu序列的根q的取值为以下中的一个:24335,35852,49443,65019,76272,88558,102028,126841,139505,150710,169872,181751,197023,210577,222328,253191,264402,276530,296245,307534,329261,340466,352513,368238,387393,402362,413569,424829,437224,448552。
25.一种通信装置,其特征在于,包括:
接收单元,用于接收时域的参考信号;
处理单元,用于将时域的参考信号变换到频域以生成频域的参考信号,其中,所述频域的参考信号包括映射到频域资源组上的参考信号序列,所述参考信号序列根据具有固定长度的Zadoff-Chu序列来确定,Zadoff-Chu序列和所述参考信号序列的资源分配大小无关,所述Zadoff-Chu序列的长度值大于最大可分配的频域资源包含的子载波的个数。
26.根据权利要求25所述的通信装置,其特征在于,所述参考信号序列还根据所述频域资源组在最大可分配的频域资源中的位置确定。
27.根据权利要求25或26所述的通信装置,其特征在于,所述参考信号序列还根据所述频域资源组中相邻的两个子载波的间隔确定。
28.根据权利要求25至26任一项所述的通信装置,其特征在于,所述Zadoff-Chu序列为Xq(m),Xq(m)根据
Figure FDA0003144079370000041
确定;
其中,j为虚数单位,m为所述Zadoff-Chu序列元素的序号,m为整数且0≤m≤Nzc-1,Nzc为所述Zadoff-Chu序列的长度值,q为所述ZC序列的根的取值,q与Nzc互质。
29.根据权利要求28所述的通信装置,其特征在于,所述Zadoff-Chu序列长度Nzc为21157,所述Zadoff-Chu序列的根q的取值为以下中的一个:1149,1203,1215,1345,1827,1873,1962,2040,2276,2927,2931,3196,3201,3223,3406,3787,5596,6247,6276,6426,7736,7749,7768,8693,8767,8779,8970,9216,9983,9996,11161,11174,11941,12187,12378,12390,12464,13389,13408,13421,14731,14881,14910,15561,17370,17751,17934,17956,17961,18226,18230,18881,19117,19195,19284,19330,19812,19942,19954,20008。
30.根据权利要求28所述的通信装置,其特征在于,所述Zadoff-Chu序列长度Nzc为131969,所述Zadoff-Chu序列的根q的取值为以下中的一个:2908,5919,8108,9176,11359,12842,13721,18287,19123,21435,22441,25895,27039,30666,36263,38169,40822,42738,44949,51705,54664,59740,61399,67366,68376,70570,78403,82997,86400,95108。
31.根据权利要求30所述的通信装置,其特征在于,所述频域资源组的带宽大于等于3个资源块RB。
32.根据权利要求28所述的通信装置,其特征在于,所述Zadoff-Chu序列长度Nzc为479971,所述Zadoff-Chu序列的根q的取值为以下中的一个:24335,35852,49443,65019,76272,88558,102028,126841,139505,150710,169872,181751,197023,210577,222328,253191,264402,276530,296245,307534,329261,340466,352513,368238,387393,402362,413569,424829,437224,448552。
CN201710067326.XA 2017-01-09 2017-02-06 参考信号的传输方法和设备 Active CN108289021B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197021837A KR20190098237A (ko) 2017-01-09 2018-01-05 기준 신호 전송 방법 및 장치
EP18736550.7A EP3554165B1 (en) 2017-01-09 2018-01-05 Reference signal transmission method and apparatus
PCT/CN2018/071613 WO2018127137A1 (zh) 2017-01-09 2018-01-05 参考信号的传输方法和装置
US16/505,298 US11018830B2 (en) 2017-01-09 2019-07-08 Reference signal transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710014590 2017-01-09
CN2017100145907 2017-01-09

Publications (2)

Publication Number Publication Date
CN108289021A CN108289021A (zh) 2018-07-17
CN108289021B true CN108289021B (zh) 2021-10-01

Family

ID=62831465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710067326.XA Active CN108289021B (zh) 2017-01-09 2017-02-06 参考信号的传输方法和设备

Country Status (4)

Country Link
US (1) US11018830B2 (zh)
EP (1) EP3554165B1 (zh)
KR (1) KR20190098237A (zh)
CN (1) CN108289021B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150464B (zh) * 2017-06-16 2020-09-29 华为技术有限公司 无线通信方法和无线通信装置
CN109245844B (zh) 2017-06-30 2020-11-03 华为技术有限公司 无线通信方法、装置及系统
CN111147215B (zh) * 2018-11-02 2021-10-15 华为技术有限公司 无线通信方法、装置及系统
CN115189855A (zh) * 2019-01-10 2022-10-14 华为技术有限公司 信号处理的方法和装置
CN111277528B (zh) * 2019-01-11 2022-02-01 维沃移动通信有限公司 传输方法及第一通信设备
CN112332943B (zh) * 2019-08-01 2022-02-18 华为技术有限公司 参考信号的处理方法和装置
KR102308982B1 (ko) * 2019-08-28 2021-10-05 중앙대학교 산학협력단 Uav 셀룰러 네트워크를 위한 스케일러블 시퀀스 생성, 검출 방법 및 그 장치
CN112583755B (zh) * 2019-09-30 2022-05-06 华为技术有限公司 卫星通信方法和相关通信设备
WO2021062872A1 (zh) * 2019-10-03 2021-04-08 华为技术有限公司 一种通信方法及装置
CN115316026A (zh) * 2020-03-31 2022-11-08 华为技术有限公司 传输参考信号的方法和装置
EP4231567A4 (en) * 2020-11-11 2023-12-13 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING SIGNALS, AND METHOD AND APPARATUS FOR RECEIVING SIGNALS
FI20215005A1 (fi) 2021-01-04 2022-07-05 Nokia Technologies Oy Referenssisignaalijärjestely
US11627018B2 (en) * 2021-07-13 2023-04-11 Qualcomm Incorporated Reference signal design for channel estimation and power amplifier modeling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178231A1 (en) * 2007-08-08 2010-04-21 Panasonic Corporation Radio transmission device and radio communication method
CN104054384A (zh) * 2011-11-04 2014-09-17 诺基亚公司 用于协作多点通信的dmrs布置
US9137076B2 (en) * 2009-10-30 2015-09-15 Qualcomm Incorporated Method and apparatus for mutiplexing reference signal and data in a wireless communication system
CN105191178A (zh) * 2013-05-01 2015-12-23 三星电子株式会社 用于设备到设备通信系统的方法和装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080232486A1 (en) 2007-03-19 2008-09-25 Sharp Laboratories Of America, Inc. Systems and methods for extending zadoff-chu sequences to a non-prime number length to minimize average correlation
WO2009041066A1 (ja) * 2007-09-28 2009-04-02 Panasonic Corporation 無線通信装置および系列長調整方法
US7965797B2 (en) * 2007-11-01 2011-06-21 Texas Instruments Incorporated Method, system and apparatus for generating constant amplitude zero autocorrelation sequences
JPWO2009084222A1 (ja) * 2007-12-27 2011-05-12 パナソニック株式会社 系列番号設定方法、無線通信端末装置および無線通信基地局装置
JPWO2009084225A1 (ja) * 2007-12-27 2011-05-12 パナソニック株式会社 系列番号設定方法、無線通信端末装置および無線通信基地局装置
CN101741793A (zh) 2008-11-04 2010-06-16 华为技术有限公司 上行参考信号的发射方法、系统和设备
EP2742748A4 (en) 2011-08-12 2015-08-26 Intel Corp SYSTEM AND METHOD FOR UPLINK POWER CONTROL IN A WIRELESS COMMUNICATION SYSTEM
CN103209485A (zh) 2012-01-16 2013-07-17 普天信息技术研究院有限公司 一种物理上行共享信道的资源分配方法和装置
JP5934723B2 (ja) * 2012-01-27 2016-06-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置及び送信方法
CN103973392B (zh) 2013-01-24 2018-12-21 中兴通讯股份有限公司 参数发送方法和装置、上行解调参考信号发射方法和装置
US10237879B2 (en) * 2013-07-09 2019-03-19 Lg Electronics Inc. Method for channel state report in wireless communication system and apparatus therefor
WO2015003396A1 (zh) * 2013-07-12 2015-01-15 华为技术有限公司 一种同步信号的发送、基站间同步的方法和设备
KR102023296B1 (ko) * 2014-06-13 2019-09-19 애플 인크. 전력 절감, 범위 개선 및 개선된 검출을 위한 향상된 prach 방식
WO2016004634A1 (en) * 2014-07-11 2016-01-14 Mediatek Singapore Pte. Ltd. Method for enb, ue uplink transmission and reception
CN107567698B (zh) * 2015-05-08 2021-04-13 苹果公司 可配置同步信号和信道设计的设备和方法
WO2017018966A1 (en) * 2015-07-24 2017-02-02 Intel Corporation Synchronization signals and channel structure for narrowband lte deployments
CN108282305B (zh) * 2017-01-06 2021-09-14 华为技术有限公司 参考信号的传输方法和设备
CN112654089B (zh) * 2017-01-06 2022-02-25 华为技术有限公司 一种参考信号的配置方法、装置及系统
US10355901B2 (en) * 2017-02-17 2019-07-16 Huawei Technologies Co., Ltd. Method for transmitting a reference signal having a low peak to average power ratio
CN109150464B (zh) * 2017-06-16 2020-09-29 华为技术有限公司 无线通信方法和无线通信装置
CN109245844B (zh) * 2017-06-30 2020-11-03 华为技术有限公司 无线通信方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178231A1 (en) * 2007-08-08 2010-04-21 Panasonic Corporation Radio transmission device and radio communication method
US9137076B2 (en) * 2009-10-30 2015-09-15 Qualcomm Incorporated Method and apparatus for mutiplexing reference signal and data in a wireless communication system
CN104054384A (zh) * 2011-11-04 2014-09-17 诺基亚公司 用于协作多点通信的dmrs布置
CN105191178A (zh) * 2013-05-01 2015-12-23 三星电子株式会社 用于设备到设备通信系统的方法和装置

Also Published As

Publication number Publication date
EP3554165A4 (en) 2019-11-27
EP3554165B1 (en) 2023-09-06
US11018830B2 (en) 2021-05-25
CN108289021A (zh) 2018-07-17
KR20190098237A (ko) 2019-08-21
EP3554165A1 (en) 2019-10-16
US20190342052A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
CN108289021B (zh) 参考信号的传输方法和设备
CN109150464B (zh) 无线通信方法和无线通信装置
CN109565861B (zh) 下一代蜂窝网络中的数据传输的方法和装置
CN108282305B (zh) 参考信号的传输方法和设备
WO2018127137A1 (zh) 参考信号的传输方法和装置
CN107949991B (zh) 一种信号发送或接收方法和设备
CN112492693B (zh) 一种获取参考信号的方法、装置和计算机可读存储介质
CN110959302A (zh) 基站、终端设备、第一终端设备、方法、程序、记录介质和系统
CN111565458B (zh) 一种下行传输方法及其装置
CN108282309B (zh) 参考信号传输方法和设备
US11038641B2 (en) Pilot-data overlap design for uplink transmission
EP3970301A1 (en) Pdcch structure for coverage limited scenarios
US20100177726A1 (en) Method and system for synchronization and cell identification within communication systems
AU2014410902B2 (en) Wireless communication system, base station device, terminal device and transmission method
CN111726311B (zh) 数据信道的传输方法及装置
WO2007083272A1 (en) Radio communication system
CN114930781A (zh) 具有改进的参考信号设计的第一通信设备和第二通信设备
WO2018126968A1 (zh) 一种信号发送、接收方法及装置
US20190159183A1 (en) Base station, user equipment, and communication control method
CN117119605A (zh) 通信方法及装置、存储介质
CN117016026A (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
CN117015949A (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
CN116391337A (zh) 一种信号发送、信号检测方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant