CN108288647A - Surrounding gate nanowire field effect transistor and preparation method thereof - Google Patents
Surrounding gate nanowire field effect transistor and preparation method thereof Download PDFInfo
- Publication number
- CN108288647A CN108288647A CN201711346506.8A CN201711346506A CN108288647A CN 108288647 A CN108288647 A CN 108288647A CN 201711346506 A CN201711346506 A CN 201711346506A CN 108288647 A CN108288647 A CN 108288647A
- Authority
- CN
- China
- Prior art keywords
- layer
- substrate
- fin
- fin body
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002070 nanowire Substances 0.000 title claims abstract description 84
- 238000002360 preparation method Methods 0.000 title claims abstract description 34
- 238000002353 field-effect transistor method Methods 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 93
- 230000005669 field effect Effects 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims description 80
- 239000000463 material Substances 0.000 claims description 33
- 238000005530 etching Methods 0.000 claims description 25
- 238000000231 atomic layer deposition Methods 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 238000001039 wet etching Methods 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 238000000137 annealing Methods 0.000 claims description 7
- 238000000059 patterning Methods 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 229910004129 HfSiO Inorganic materials 0.000 claims description 3
- 229910010038 TiAl Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 238000005137 deposition process Methods 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims 12
- 239000003518 caustics Substances 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 230000003071 parasitic effect Effects 0.000 abstract description 5
- 238000002955 isolation Methods 0.000 description 39
- 238000010586 diagram Methods 0.000 description 16
- 239000007789 gas Substances 0.000 description 8
- 230000010287 polarization Effects 0.000 description 6
- 239000000969 carrier Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910015617 MoNx Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910004200 TaSiN Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910008482 TiSiN Inorganic materials 0.000 description 1
- YQNQNVDNTFHQSW-UHFFFAOYSA-N acetic acid [2-[[(5-nitro-2-thiazolyl)amino]-oxomethyl]phenyl] ester Chemical compound CC(=O)OC1=CC=CC=C1C(=O)NC1=NC=C([N+]([O-])=O)S1 YQNQNVDNTFHQSW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
- H10D30/6215—Fin field-effect transistors [FinFET] having multiple independently-addressable gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
Landscapes
- Semiconductor Memories (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明提供了一种环栅纳米线场效应晶体管及其制备方法。该制备方法包括以下步骤:S1,在衬底上形成与衬底隔离的第一鳍体,第一鳍体由沿长度方向顺次连接的第一区域、第二区域和第三区域组成;S2,将第一鳍体中的第二区域形成纳米线结构;S3,绕纳米线结构的裸露表面顺序形成层叠的界面氧化层、铁电层和栅极,以及,制备方法还包括以下步骤:在第一区域和第三区域中形成源/漏极,源/漏极与纳米线结构的两端连接。上述制备方法提高了器件的栅控能力,降低了器件的漏电流,减小了器件的源漏寄生电阻,且能够使器件的亚阈值斜率大大低于60mV/dec。
The invention provides a gate-around nanowire field effect transistor and a preparation method thereof. The preparation method includes the following steps: S1, forming a first fin body isolated from the substrate on the substrate, the first fin body is composed of a first region, a second region and a third region sequentially connected along the length direction; S2 , forming a nanowire structure in the second region of the first fin body; S3, sequentially forming a stacked interface oxide layer, a ferroelectric layer and a gate around the exposed surface of the nanowire structure, and the preparation method further includes the following steps: Source/drain electrodes are formed in the first region and the third region, and the source/drain electrodes are connected to both ends of the nanowire structure. The above preparation method improves the gate control ability of the device, reduces the leakage current of the device, reduces the source-drain parasitic resistance of the device, and can make the sub-threshold slope of the device much lower than 60mV/dec.
Description
技术领域technical field
本发明涉及半导体技术领域,具体而言,涉及一种环栅纳米线场效应晶体管及其制备方法。The invention relates to the technical field of semiconductors, in particular to a gate-around nanowire field-effect transistor and a preparation method thereof.
背景技术Background technique
随着器件不断萎缩,传统的鳍型场效应晶体管(FinFET)面临严重退化的亚阈值特性、急剧增加的源漏穿通漏电流和栅介质隧穿漏电流、提高驱动性能和降低系统功耗对工作电压的矛盾需求、以及工艺变异导致的电学参数统计涨落(Statistical Fluctuations)等多方面的严峻挑战。因此更加陡直的亚阈值斜率意味着可以得到更低的阈值电压和更低的功耗,而传统的MOSFET由于其物理特性的限制,其亚阈值斜率不能低于60mV/dec。As devices continue to shrink, traditional Fin Field Effect Transistors (FinFETs) face severely degraded sub-threshold characteristics, sharply increased source-drain punch-through leakage currents, and gate-dielectric tunneling leakage currents, improving drive performance and reducing system power consumption. There are many serious challenges such as the contradictory requirements of voltage and statistical fluctuations of electrical parameters caused by process variation. Therefore, a steeper sub-threshold slope means that a lower threshold voltage and lower power consumption can be obtained. However, due to the limitation of its physical characteristics, the sub-threshold slope of traditional MOSFETs cannot be lower than 60mV/dec.
如何通过优化器件结构和制造工艺来提供更低的亚阈值斜率并优化栅控,仍是鳍型场效应晶体管必须要解决的技术难题。How to provide a lower subthreshold slope and optimize gate control by optimizing the device structure and manufacturing process is still a technical problem that must be solved for fin field effect transistors.
发明内容Contents of the invention
本发明的主要目的在于提供一种环栅纳米线场效应晶体管及其制备方法,以解决现有技术中鳍型场效应晶体管的亚阈值斜率较高的问题。The main purpose of the present invention is to provide a gate-all-around nanowire field effect transistor and its preparation method, so as to solve the problem of high subthreshold slope in the fin field effect transistor in the prior art.
为了实现上述目的,根据本发明的一个方面,提供了一种环栅纳米线场效应晶体管的制备方法,包括以下步骤:S1,在衬底上形成与衬底隔离的第一鳍体,第一鳍体由沿长度方向顺次连接的第一区域、第二区域和第三区域组成;S2,将第一鳍体中的第二区域形成纳米线结构;S3,绕纳米线结构的裸露表面顺序形成层叠的界面氧化层、铁电层和栅极,以及,制备方法还包括以下步骤:在第一区域和第三区域中形成源/漏极,源/漏极与纳米线结构的两端连接。In order to achieve the above object, according to one aspect of the present invention, a method for manufacturing a gate-all-around nanowire field effect transistor is provided, including the following steps: S1, forming a first fin body isolated from the substrate on the substrate, first The fin body is composed of the first region, the second region and the third region sequentially connected along the length direction; S2, the second region in the first fin body is formed into a nanowire structure; S3, the exposed surface sequence around the nanowire structure forming a laminated interface oxide layer, a ferroelectric layer, and a gate, and the preparation method further includes the following steps: forming a source/drain in the first region and a third region, the source/drain being connected to both ends of the nanowire structure .
进一步地,步骤S1包括以下步骤:S11,在衬底上形成鳍结构,鳍结构的两侧具有相对的凹槽;S12,将鳍结构氧化,其中凹槽对应的鳍结构的位置被完全氧化以使鳍结构形成独立的第一鳍体和第二鳍体,第一鳍体位于第二鳍体远离衬底的一侧;S13,在衬底上沉积绝缘材料,以形成覆盖第一鳍体和第二鳍体的第一隔离层;S14,对第一隔离层进行平坦化处理,以使第一隔离层与第一鳍体的上表面齐平。Further, step S1 includes the following steps: S11, forming a fin structure on the substrate, with opposite grooves on both sides of the fin structure; S12, oxidizing the fin structure, wherein the position of the fin structure corresponding to the groove is completely oxidized to Make the fin structure form independent first fin body and second fin body, the first fin body is located on the side of the second fin body away from the substrate; S13, deposit insulating material on the substrate, to form the covering first fin body and the second fin body The first isolation layer of the second fin body; S14, planarize the first isolation layer, so that the first isolation layer is flush with the upper surface of the first fin body.
进一步地,步骤S11包括以下过程:S111,在衬底上顺序形成第二隔离层、牺牲层和掩膜层;S112,采用图形化工艺去除部分牺牲层和掩膜层,以使部分第二隔离层表面裸露;S113,去除剩余的掩膜层,并在第二隔离层上形成覆盖于牺牲层两侧的第一侧墙;S114,去除剩余的牺牲层,并以第一侧墙为掩膜去除部分第二隔离层和部分衬底,与第一侧墙对应的部分衬底凸起形成鳍结构,同时鳍结构的两侧形成有凹槽,凹槽由鳍结构的1/3高度处延伸至2/3高度处。Further, step S11 includes the following processes: S111, sequentially forming a second isolation layer, a sacrificial layer, and a mask layer on the substrate; S112, removing part of the sacrificial layer and mask layer using a patterning process, so that part of the second isolation layer The surface of the layer is exposed; S113, remove the remaining mask layer, and form a first side wall covering both sides of the sacrificial layer on the second isolation layer; S114, remove the remaining sacrificial layer, and use the first side wall as a mask Part of the second isolation layer and part of the substrate are removed, and part of the substrate corresponding to the first sidewall is raised to form a fin structure, and grooves are formed on both sides of the fin structure, and the groove extends from 1/3 of the height of the fin structure to 2/3 height.
进一步地,形成鳍结构的过程包括:采用各向异性刻蚀工艺去除部分第二隔离层和部分衬底,以使剩余的衬底具有凸起结构;采用各向同性刻蚀工艺在凸起结构的两侧形成凹槽;采用各向异性刻蚀工艺去除位于凹槽下方的部分衬底,以形成具有凹槽的鳍结构。Further, the process of forming the fin structure includes: using an anisotropic etching process to remove part of the second isolation layer and part of the substrate, so that the remaining substrate has a raised structure; using an isotropic etching process to remove a part of the raised structure Grooves are formed on both sides of the groove; an anisotropic etching process is used to remove part of the substrate under the groove to form a fin structure with grooves.
进一步地,在步骤S1与步骤S2之间,制备方法还包括以下步骤:从第一隔离层的表面开始刻蚀去除部分第一隔离层,以使部分第一鳍体裸露;在剩余的第一隔离层上形成跨部分第一鳍体的假栅堆叠,并在假栅堆叠的两侧形成跨部分第一鳍体的第二侧墙;去除假栅堆叠,位于第二侧墙之间的部分第一鳍体为第二区域。Further, between step S1 and step S2, the preparation method further includes the following steps: starting from the surface of the first isolation layer to etch and remove part of the first isolation layer, so as to expose part of the first fin body; A dummy gate stack spanning part of the first fin body is formed on the isolation layer, and second sidewalls spanning part of the first fin body are formed on both sides of the dummy gate stack; the part between the second sidewalls is removed from the dummy gate stack The first fin body is the second area.
进一步地,在去除假栅堆叠的步骤之前,在第一区域和第三区域中形成源/漏极,且使源/漏极与步骤S2中形成的纳米线结构的两端连接。Further, before the step of removing the dummy gate stack, a source/drain is formed in the first region and the third region, and the source/drain is connected to both ends of the nanowire structure formed in step S2.
进一步地,步骤S2包括:使第一鳍体中的第二区域完全裸露,在氢气氛围下对第二区域进行退火处理,以将部分第一鳍体形成纳米线结构,优选氢气氛围的压强为10~50mT,退火处理的温度为650~950℃,时间为10~300s;或使第一鳍体中的第二区域部分氧化,以将第二区域形成纳米线结构以及包裹纳米线结构的氧化层,去除氧化层以使纳米线结构裸露,优选采用湿法刻蚀工艺去除氧化层,湿法刻蚀工艺的腐蚀剂包括DHF。Further, step S2 includes: completely exposing the second region in the first fin body, annealing the second region in a hydrogen atmosphere, so as to form a part of the first fin body into a nanowire structure, preferably the pressure of the hydrogen atmosphere is 10-50mT, the temperature of the annealing treatment is 650-950°C, and the time is 10-300s; or partially oxidize the second region in the first fin body, so as to form the second region into a nanowire structure and oxidize the wrapping nanowire structure layer, removing the oxide layer to expose the nanowire structure, preferably using a wet etching process to remove the oxide layer, and the etchant of the wet etching process includes DHF.
进一步地,在步骤S3中,采用臭氧处理绕纳米线结构的裸露表面形成界面氧化层。Further, in step S3, the exposed surface of the nanowire structure is treated with ozone to form an interface oxide layer.
进一步地,在步骤S3中,采用原子层沉积工艺绕界面氧化层的裸露表面形成铁电层。Further, in step S3, an atomic layer deposition process is used to form a ferroelectric layer around the exposed surface of the interface oxide layer.
进一步地,形成铁电层的材料包括HfZrO和/或HfSiO。Further, the material forming the ferroelectric layer includes HfZrO and/or HfSiO.
进一步地,在形成铁电层与栅极的步骤之间,步骤S3还包括以下步骤:绕铁电层的外周形成功函数层。Further, between the steps of forming the ferroelectric layer and the gate, step S3 further includes the following step: forming a work function layer around the periphery of the ferroelectric layer.
进一步地,采用原子层沉积工艺绕铁电层的裸露表面形成功函数层。Further, a work function layer is formed around the exposed surface of the ferroelectric layer by atomic layer deposition process.
进一步地,衬底为N型掺杂,功函数层的能隙为4.1~4.4eV,优选形成功函数层的材料为TiAl;或衬底为P型掺杂,功函数层的能隙为4.7~4.9eV,优选形成功函数层的材料为TiN。Further, the substrate is N-type doped, and the energy gap of the work function layer is 4.1-4.4eV, and the material forming the work function layer is preferably TiAl; or the substrate is P-type doped, and the energy gap of the work function layer is 4.7 eV. ~4.9eV, preferably the material forming the work function layer is TiN.
进一步地,在形成栅极的步骤之后,在第一区域和第三区域中形成源/漏极,且使源/漏极与步骤S2中形成的纳米线结构的两端连接。Further, after the step of forming the gate, a source/drain is formed in the first region and the third region, and the source/drain is connected to both ends of the nanowire structure formed in step S2.
根据本发明的另一方面,提供了一种环栅纳米线场效应晶体管,包括:衬底;第一鳍体,位于衬底上,第一鳍体由沿长度方向顺次连接的第一区域、第二区域和第三区域组成,且第二区域为纳米线结构;第一隔离层,设置于衬底与第一鳍体之间,用于将第一鳍体与衬底隔离;界面氧化层,环绕纳米线结构;铁电层,环绕界面氧化层;栅极,环绕铁电层;以及源/漏极,位于第一区域和第三区域中,且源/漏极与纳米线结构的两端连接。According to another aspect of the present invention, there is provided a gate-all-around nanowire field effect transistor, comprising: a substrate; a first fin body located on the substrate, and the first fin body is composed of first regions sequentially connected along the length direction , the second area and the third area, and the second area is a nanowire structure; the first isolation layer is arranged between the substrate and the first fin body, and is used to isolate the first fin body from the substrate; the interface is oxidized A layer surrounding the nanowire structure; a ferroelectric layer surrounding the interface oxide layer; a gate surrounding the ferroelectric layer; and a source/drain located in the first region and the third region, and the source/drain is connected to the nanowire structure Both ends are connected.
进一步地,环栅纳米线场效应晶体管还包括环绕铁电层的功函数层,功函数层设置于铁电层与栅极之间。Further, the gate-all-around nanowire field effect transistor further includes a work function layer surrounding the ferroelectric layer, and the work function layer is arranged between the ferroelectric layer and the gate.
进一步地,环栅纳米线场效应晶体管还包括覆盖栅极两侧且跨第一鳍体的第二侧墙。Further, the gate-all-around nanowire field effect transistor further includes a second side wall covering both sides of the gate and straddling the first fin body.
应用本发明的技术方案,提供了一种环栅纳米线场效应晶体管的制备方法,该制备方法中在形成与衬底隔离的第一鳍体,且第一鳍体由沿长度方向顺次连接的第一区域、第二区域和第三区域组成后,将第一鳍体的第二区域形成纳米线结构,并环绕该纳米线结构顺序形成界面氧化层、铁电层和栅极,由于栅极四面包裹用于形成沟道的纳米线结构,从而使提高了器件的栅控能力,在器件关断情况下,沟道中的载流子将会被完全耗尽,这使得源漏穿通漏电流得到很好的抑制;由于上述制备方法中得到的第一鳍体整体与衬底完全分离,隔绝了衬底方向漏电通路,从而降低了器件的漏电流;由于只是将鳍结构中作为沟道的部分形成纳米线,从而使源/漏极能够维持原来形状,一方面有效地避免了短沟道效应,优化了亚阈值特性,同时使器件能够具有较低的寄生电阻;并且,由于形成上述铁电层的材料为负电容材料,具有极化特性,从而能够使器件的亚阈值斜率大大低于60mV/dec,开关速度更快,功耗更低。Applying the technical scheme of the present invention, a method for preparing a gate-all-around nanowire field effect transistor is provided. In the preparation method, the first fin body isolated from the substrate is formed, and the first fin body is sequentially connected along the length direction. After the first region, the second region and the third region are composed, the second region of the first fin body is formed into a nanowire structure, and an interface oxide layer, a ferroelectric layer and a gate are sequentially formed around the nanowire structure, because the gate The four sides of the pole wrap the nanowire structure used to form the channel, thereby improving the gate control capability of the device. When the device is turned off, the carriers in the channel will be completely depleted, which makes the source-drain through leakage current is well suppressed; since the first fin body obtained in the above preparation method is completely separated from the substrate, the leakage path in the direction of the substrate is isolated, thereby reducing the leakage current of the device; Partially form nanowires, so that the source/drain can maintain the original shape, on the one hand, effectively avoid the short channel effect, optimize the sub-threshold characteristics, and at the same time enable the device to have lower parasitic resistance; and, due to the formation of the above iron The material of the electrical layer is a negative capacitance material, which has polarization characteristics, so that the subthreshold slope of the device can be greatly lower than 60mV/dec, the switching speed is faster, and the power consumption is lower.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings constituting a part of the present invention are used to provide a further understanding of the present invention, and the schematic embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations to the present invention. In the attached picture:
图1示出了在本申请实施方式所提供的环栅纳米线场效应晶体管的制备方法中,在衬底上顺序形成第二隔离层、牺牲层和掩膜层后的基体剖面结构示意图;FIG. 1 shows a schematic cross-sectional structure diagram of a substrate after sequentially forming a second isolation layer, a sacrificial layer and a mask layer on a substrate in a method for manufacturing a gate-all-around nanowire field effect transistor provided in an embodiment of the present application;
图2示出了去除图1所示的部分牺牲层和掩膜层,以使部分第二隔离层表面裸露后的基体剖面结构示意图;FIG. 2 shows a schematic diagram of a cross-sectional structure of the substrate after removing part of the sacrificial layer and mask layer shown in FIG. 1 to expose part of the surface of the second isolation layer;
图3示出了去除图2所示的剩余的掩膜层,并在第二隔离层上形成覆盖于牺牲层两侧的第一侧墙后的基体剖面结构示意图;FIG. 3 shows a schematic cross-sectional structure diagram of the substrate after removing the remaining mask layer shown in FIG. 2 and forming first sidewalls covering both sides of the sacrificial layer on the second isolation layer;
图4示出了去除图3所示的牺牲层后的基体剖面结构示意图;FIG. 4 shows a schematic diagram of the cross-sectional structure of the substrate after removing the sacrificial layer shown in FIG. 3;
图5示出了在图4所示的基体中形成具有凹槽的鳍结构的基体剖面结构示意图;FIG. 5 shows a schematic cross-sectional structure diagram of a substrate in which a fin structure with grooves is formed in the substrate shown in FIG. 4;
图6示出了将图5所示的鳍结构氧化,以使鳍结构形成独立的第一鳍体和第二鳍体后的基体剖面结构示意图;FIG. 6 shows a schematic cross-sectional view of the base body after the fin structure shown in FIG. 5 is oxidized so that the fin structure forms an independent first fin body and a second fin body;
图7示出了形成覆盖图6所示的第一鳍体和第二鳍体的第一隔离层,并使部分第一鳍体裸露后的基体剖面结构示意图;FIG. 7 shows a schematic cross-sectional structure diagram of the substrate after forming the first isolation layer covering the first fin body and the second fin body shown in FIG. 6 and exposing part of the first fin body;
图8示出了在图7所示的基体中形成第二侧墙后的基体立体透视图;Fig. 8 shows a perspective view of the substrate after forming a second side wall in the substrate shown in Fig. 7;
图9示出了使图7所示的第一鳍体中的所述第二区域完全裸露后的基体剖面结构示意图;FIG. 9 shows a schematic cross-sectional structure diagram of the substrate after the second region in the first fin shown in FIG. 7 is completely exposed;
图10示出了将图9所示的部分第一鳍体形成纳米线结构后的基体剖面结构示意图;FIG. 10 shows a schematic diagram of a cross-sectional structure of a substrate after forming part of the first fin body shown in FIG. 9 into a nanowire structure;
图11示出了将图9所示的第二区域氧化以形成纳米线结构和氧化层后的基体剖面结构示意图;Fig. 11 shows a schematic diagram of the cross-sectional structure of the substrate after the second region shown in Fig. 9 is oxidized to form a nanowire structure and an oxide layer;
图12示出了将图11所示的氧化层去除以使纳米线结构裸露后的基体剖面结构示意图;FIG. 12 shows a schematic cross-sectional structure diagram of the substrate after removing the oxide layer shown in FIG. 11 to expose the nanowire structure;
图13示出了绕图12所示的纳米线结构的裸露表面形成界面氧化层后的基体剖面结构示意图;Fig. 13 shows a schematic diagram of the cross-sectional structure of the substrate after forming an interface oxide layer around the exposed surface of the nanowire structure shown in Fig. 12;
图14示出了绕图13所示的界面氧化层的裸露表面形成铁电层后的基体剖面结构示意图;FIG. 14 shows a schematic cross-sectional structure diagram of the substrate after forming a ferroelectric layer around the exposed surface of the interface oxide layer shown in FIG. 13;
图15示出了绕图14所示的铁电层的裸露表面形成功函数层后的基体剖面结构示意图;Fig. 15 shows a schematic cross-sectional structure diagram of the substrate after forming a work function layer around the exposed surface of the ferroelectric layer shown in Fig. 14;
图16示出了绕图15所示的功函数层的裸露表面形成栅极后的基体剖面结构示意图;FIG. 16 is a schematic diagram of a cross-sectional structure of a substrate after forming a gate around the exposed surface of the work function layer shown in FIG. 15;
图17示出了本发明实施方式所提供的一种环栅纳米线场效应晶体管的透视图;以及Fig. 17 shows a perspective view of a gate-all-around nanowire field-effect transistor provided by an embodiment of the present invention; and
图18示出了图17所示的环栅纳米线场效应晶体管中界面氧化层、铁电层、功函数层和栅极顺序环绕纳米线结构的剖面结构示意图。FIG. 18 shows a schematic cross-sectional structure diagram of an interface oxide layer, a ferroelectric layer, a work function layer and a grid surrounding the nanowire structure in the gate-all-around nanowire field effect transistor shown in FIG. 17 .
其中,上述附图包括以下附图标记:Wherein, the above-mentioned accompanying drawings include the following reference signs:
10、衬底;110、鳍结构;111、第一鳍体;112、第二鳍体;113、氧化层;120、纳米线结构;210、第二隔离层;220、牺牲层;230、掩膜层;240、第一侧墙;250、第二侧墙;30、第一隔离层;40、源/漏极;50、界面氧化层;60、铁电层;70、功函数层;80、栅极。10, substrate; 110, fin structure; 111, first fin body; 112, second fin body; 113, oxide layer; 120, nanowire structure; 210, second isolation layer; 220, sacrificial layer; 230, mask Film layer; 240, first side wall; 250, second side wall; 30, first isolation layer; 40, source/drain; 50, interface oxide layer; 60, ferroelectric layer; 70, work function layer; 80 , Gate.
具体实施方式Detailed ways
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。It should be noted that, in the case of no conflict, the embodiments of the present invention and the features in the embodiments can be combined with each other. The present invention will be described in detail below with reference to the accompanying drawings and examples.
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the following will clearly and completely describe the technical solutions in the embodiments of the present invention in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only It is an embodiment of a part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first" and "second" in the description and claims of the present invention and the above drawings are used to distinguish similar objects, but not necessarily used to describe a specific sequence or sequence. It should be understood that the data so used may be interchanged under appropriate circumstances for the embodiments of the invention described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product or device comprising a sequence of steps or elements is not necessarily limited to the expressly listed instead, may include other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.
正如背景技术中所介绍的,现有技术如何通过优化器件结构和制造工艺来提供更低的亚阈值斜率并优化栅控,仍是鳍型场效应晶体管必须要解决的技术难题。本发明的发明人针对上述问题进行研究,提出了一种环栅纳米线场效应晶体管的制备方法,包括以下步骤:S1,在衬底10上形成与衬底10隔离的第一鳍体111,第一鳍体111由沿长度方向顺次连接的第一区域、第二区域和第三区域组成,上述长度方向是指第一鳍体111的延伸方向;S2,将第一鳍体111中的第二区域形成纳米线结构120;S3,绕纳米线结构120的裸露表面顺序形成层叠的界面氧化层、铁电层和栅极,以及,制备方法还包括以下步骤:在第一区域和第三区域中形成源/漏极40,源/漏极40与纳米线结构120的两端连接。As introduced in the background art, how to provide lower subthreshold slope and optimize gate control by optimizing the device structure and manufacturing process in the prior art is still a technical problem that must be solved for fin field effect transistors. The inventors of the present invention conducted research on the above-mentioned problems, and proposed a method for manufacturing a gate-all-around nanowire field-effect transistor, including the following steps: S1, forming a first fin body 111 isolated from the substrate 10 on the substrate 10, The first fin body 111 is composed of a first region, a second region and a third region sequentially connected along the length direction, the above-mentioned length direction refers to the extension direction of the first fin body 111; S2, the first fin body 111 The second region forms the nanowire structure 120; S3, sequentially forming a stacked interface oxide layer, a ferroelectric layer and a gate around the exposed surface of the nanowire structure 120, and the preparation method further includes the following steps: in the first region and the third A source/drain 40 is formed in the region, and the source/drain 40 is connected to both ends of the nanowire structure 120 .
上述环栅纳米线场效应晶体管的制备方法中由于在形成与衬底隔离的第一鳍体,且第一鳍体由沿长度方向顺次连接的第一区域、第二区域和第三区域组成后,将第一鳍体的第二区域形成纳米线结构,并环绕该纳米线结构顺序形成界面氧化层、铁电层和栅极,由于栅极四面包裹用于形成沟道的纳米线结构,从而使提高了器件的栅控能力,在器件关断情况下,沟道中的载流子将会被完全耗尽,这使得源漏穿通漏电流得到很好的抑制;由于上述制备方法中得到的第一鳍体整体与衬底完全分离,隔绝了衬底方向漏电通路,从而降低了器件的漏电流;由于只是将鳍结构中作为沟道的部分形成纳米线,从而使源/漏极能够维持原来形状,一方面有效地避免了短沟道效应,优化了亚阈值特性,同时使器件能够具有较低的寄生电阻;并且,由于形成上述铁电层的材料为负电容材料,具有极化特性,从而能够使器件的亚阈值斜率大大低于60mV/dec,开关速度更快,功耗更低。In the preparation method of the above-mentioned gate-all-around nanowire field effect transistor, since the first fin body isolated from the substrate is formed, and the first fin body is composed of the first region, the second region and the third region connected in sequence along the length direction Finally, the second region of the first fin body is formed into a nanowire structure, and an interface oxide layer, a ferroelectric layer, and a gate are sequentially formed around the nanowire structure. Since the gate surrounds the nanowire structure used to form a channel, Therefore, the gate control capability of the device is improved. When the device is turned off, the carriers in the channel will be completely depleted, which makes the source-drain punch-through leakage current well suppressed; due to the obtained in the above preparation method The first fin body is completely separated from the substrate as a whole, which isolates the leakage path in the direction of the substrate, thereby reducing the leakage current of the device; because only the part of the fin structure that is used as the channel is formed into a nanowire, the source/drain can maintain The original shape, on the one hand, effectively avoids the short channel effect, optimizes the sub-threshold characteristics, and at the same time enables the device to have lower parasitic resistance; moreover, since the material forming the ferroelectric layer is a negative capacitance material, it has polarization characteristics , so that the sub-threshold slope of the device can be greatly lower than 60mV/dec, the switching speed is faster, and the power consumption is lower.
下面将更详细地描述根据本发明提供的环栅纳米线场效应晶体管的制备方法的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员。An exemplary embodiment of a method for fabricating a gate-all-around nanowire field effect transistor according to the present invention will be described in more detail below. These example embodiments may, however, be embodied in many different forms and should not be construed as limited to only the embodiments set forth herein. It should be understood that these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concept of these exemplary embodiments to those of ordinary skill in the art.
首先,执行步骤S1:在衬底10上形成与衬底10隔离的第一鳍体111,第一鳍体111由沿长度方向顺次连接的第一区域、第二区域和第三区域组成,如图1至7所示。上述衬底10可以为现有技术中常规的半导体衬底,如Si衬底、Ge衬底、SiGe衬底、SOI(绝缘体上硅)或GOI(绝缘体上锗)等。First, step S1 is performed: forming a first fin body 111 isolated from the substrate 10 on the substrate 10, the first fin body 111 is composed of a first region, a second region and a third region sequentially connected along the length direction, As shown in Figures 1 to 7. The aforementioned substrate 10 may be a conventional semiconductor substrate in the prior art, such as Si substrate, Ge substrate, SiGe substrate, SOI (silicon on insulator) or GOI (germanium on insulator) and the like.
为了得到上述与衬底10隔离的第一鳍体111,在一种优选的实施方式中,上述步骤S1包括以下步骤:S11,在衬底10上形成鳍结构110,鳍结构110的两侧具有相对的凹槽,如图1至5所示;S12,将鳍结构110氧化,其中凹槽对应的鳍结构110的位置被完全氧化以使鳍结构110形成独立的第一鳍体111和第二鳍体112,第一鳍体111位于第二鳍体112远离衬底10的一侧,如图6所示;S13,在衬底10上沉积绝缘材料,以形成覆盖第一鳍体111和第二鳍体112的第一隔离层30;S14,对第一隔离层30进行平坦化处理,以使第一隔离层30与第一鳍体111的上表面齐平。In order to obtain the above-mentioned first fin body 111 isolated from the substrate 10, in a preferred implementation manner, the above-mentioned step S1 includes the following steps: S11, forming a fin structure 110 on the substrate 10, the two sides of the fin structure 110 have The opposite groove, as shown in FIGS. 1 to 5; S12, oxidize the fin structure 110, wherein the position of the fin structure 110 corresponding to the groove is completely oxidized so that the fin structure 110 forms an independent first fin body 111 and a second fin body. Fin body 112, the first fin body 111 is located on the side of the second fin body 112 away from the substrate 10, as shown in FIG. The first isolation layer 30 of the second fin body 112 ; S14 , planarize the first isolation layer 30 so that the first isolation layer 30 is flush with the upper surface of the first fin body 111 .
在上述步骤S11中,可以采用现有技术中常规的工艺方法形成上述鳍结构110,在一种优选的实施方式中,上述步骤S11包括以下过程:S111,在衬底10上顺序形成第二隔离层210、牺牲层220和掩膜层230,如图1所示;S112,采用图形化工艺去除部分牺牲层220和掩膜层230,以使部分第二隔离层210表面裸露,如图2所示;S113,去除剩余的掩膜层230,并在第二隔离层210上形成覆盖于牺牲层220两侧的第一侧墙240,如图3所示;S114,去除剩余的牺牲层220,并以第一侧墙240为掩膜去除部分第二隔离层210和部分衬底10,与第一侧墙240对应的部分衬底10凸起形成鳍结构110,同时鳍结构110的两侧形成有相对的凹槽,凹槽由鳍结构110的1/3高度处延伸至2/3高度处,如图4和图5所示。In the above-mentioned step S11, the above-mentioned fin structure 110 can be formed using a conventional process method in the prior art. In a preferred embodiment, the above-mentioned step S11 includes the following process: S111, sequentially forming a second isolation on the substrate 10 layer 210, sacrificial layer 220, and mask layer 230, as shown in FIG. 1; S112, using a patterning process to remove part of the sacrificial layer 220 and mask layer 230, so that part of the surface of the second isolation layer 210 is exposed, as shown in FIG. 2 S113, remove the remaining mask layer 230, and form the first spacer 240 covering both sides of the sacrificial layer 220 on the second isolation layer 210, as shown in FIG. 3; S114, remove the remaining sacrificial layer 220, And use the first sidewall 240 as a mask to remove part of the second isolation layer 210 and part of the substrate 10, the part of the substrate 10 corresponding to the first sidewall 240 protrudes to form the fin structure 110, and at the same time, the two sides of the fin structure 110 are formed There are opposite grooves, and the grooves extend from 1/3 of the height of the fin structure 110 to 2/3 of the height, as shown in FIG. 4 and FIG. 5 .
在上述过程S111中,可以采用MOCVD、PECVD等现有技术中常规的沉积方法形成上述第二隔离层210、牺牲层220和掩膜层230,本领域技术人员可以根据实际需求对上述沉积方法的工艺条件进行合理设定;并且,本领域技术人员可以根据现有技术对上述形成第二隔离层210、牺牲层220和掩膜层230的材料进行合理选取,上述形成第二隔离层210的材料可以为氧化物,如氧化硅,上述形成牺牲层220的材料可以为非晶硅(α-Si),上述形成掩膜层230的材料可以为Si3N4。In the above process S111, conventional deposition methods in the prior art such as MOCVD and PECVD can be used to form the above-mentioned second isolation layer 210, sacrificial layer 220 and mask layer 230. The process conditions are reasonably set; and, those skilled in the art can reasonably select the materials for forming the second isolation layer 210, the sacrificial layer 220 and the mask layer 230 according to the prior art, and the above-mentioned materials for forming the second isolation layer 210 It may be an oxide, such as silicon oxide, the material for forming the sacrificial layer 220 may be amorphous silicon (α-Si), and the material for forming the mask layer 230 may be Si 3 N 4 .
在上述过程S112中,图形化工艺可以包括:在掩膜层230表面涂覆光刻胶,然后在光刻胶上方设置掩膜板,通过曝光显影去除部分光刻胶后得到光刻窗口,剩余的光刻胶的长度与所需掩膜层230的长度基本相等,最后通过光刻窗口刻蚀去除衬底10上未被光刻胶覆盖的部分掩膜层230和部分牺牲层220,以使部分第二隔离层210表面裸露,其中,上述第二隔离层210用于防止衬底在图形化工艺中被部分刻蚀。In the above process S112, the patterning process may include: coating photoresist on the surface of the mask layer 230, and then setting a mask plate above the photoresist, removing part of the photoresist through exposure and development to obtain a photolithographic window, and the remaining The length of the photoresist is substantially equal to the length of the required mask layer 230, and finally the part of the mask layer 230 and part of the sacrificial layer 220 that are not covered by the photoresist on the substrate 10 are removed by photolithography window etching, so that Part of the surface of the second isolation layer 210 is exposed, wherein the above-mentioned second isolation layer 210 is used to prevent the substrate from being partially etched during the patterning process.
在上述过程S113中,本领域技术人员可以根据现有技术对上述形成第一侧墙240的材料进行合理选取,形成上述第一侧墙240的材料可以为Si3N4。In the above process S113, those skilled in the art can reasonably select the material for forming the first side wall 240 according to the prior art, and the material for forming the first side wall 240 can be Si 3 N 4 .
在上述过程S114中,本领域技术人员可以根据现有技术对上述去除剩余的牺牲层220的工艺进行合理选取,优选地,采用选择性刻蚀技术去除上述牺牲层220,上述选择性刻蚀可以为干法刻蚀或湿法刻蚀,通过对工艺参数进行调整以使刻蚀气体或刻蚀溶剂对牺牲层220和第一侧墙240具有不同的刻蚀速率,从而能够实现对牺牲层220选择性地去除。In the above process S114, those skilled in the art can reasonably select the above-mentioned process for removing the remaining sacrificial layer 220 according to the prior art. Preferably, the above-mentioned sacrificial layer 220 is removed by using a selective etching technique, and the above-mentioned selective etching can be For dry etching or wet etching, by adjusting the process parameters so that the etching gas or etching solvent has different etching rates for the sacrificial layer 220 and the first sidewall 240, the sacrificial layer 220 can be realized selectively removed.
在上述过程S114中,为了有效地形成两侧具有凹槽的鳍结构110,优选地,同时采用各向异性刻蚀工艺和各向同性刻蚀工艺在鳍结构110的两侧形成凹槽。具体地,形成该鳍结构110的过程可以包括:采用各向异性刻蚀工艺去除部分第二隔离层210和部分衬底10,以使剩余的衬底10具有凸起结构;采用各向同性刻蚀工艺在凸起结构的两侧形成凹槽;采用各向异性刻蚀工艺去除位于凹槽下方的部分衬底10,以形成具有凹槽的鳍结构110。In the above process S114 , in order to effectively form the fin structure 110 with grooves on both sides, preferably, the anisotropic etching process and the isotropic etching process are used to form grooves on both sides of the fin structure 110 . Specifically, the process of forming the fin structure 110 may include: using an anisotropic etching process to remove part of the second isolation layer 210 and part of the substrate 10, so that the remaining substrate 10 has a raised structure; An etching process forms grooves on both sides of the protruding structure; an anisotropic etching process is used to remove part of the substrate 10 below the grooves to form a fin structure 110 with grooves.
更为优选地,上述各向异性刻蚀工艺的刻蚀气体包括HBr、Cl2、O2和惰性气体如N2、Ar等或上述任意气体的混合气体,其工艺条件为:刻蚀温度为20~90℃,刻蚀功率为4~300W,刻蚀时间为30~500s;上述各向同性刻蚀工艺的刻蚀气体包括SF6、CF4、Ch2F2和惰性气体如N2、Ar等或上述任意气体的混合气体,其工艺条件为:刻蚀功率为4~300W,刻蚀时间为30~500s。More preferably, the etching gas of the above-mentioned anisotropic etching process includes HBr, Cl 2 , O 2 and inert gases such as N 2 , Ar, etc. or a mixture of any of the above gases, and the process conditions are: the etching temperature is 20-90°C, etching power 4-300W, etching time 30-500s; the etching gas for the above isotropic etching process includes SF 6 , CF 4 , Ch 2 F 2 and inert gases such as N 2 , Ar etc. or a mixed gas of any of the above-mentioned gases, the process conditions are as follows: the etching power is 4-300W, and the etching time is 30-500s.
在上述过程S12中,为了使与凹槽对应的鳍结构110的位置能够被完全氧化,优选地,将鳍结构110氧化的工艺条件为快速热氧化(RTP),或者采用炉管通入氧气或氧气与氢气的混合气体,并加热30s~10h。In the above process S12, in order to completely oxidize the position of the fin structure 110 corresponding to the groove, preferably, the process condition for oxidizing the fin structure 110 is rapid thermal oxidation (RTP), or the furnace tube is used to feed oxygen or Mixed gas of oxygen and hydrogen, and heated for 30s~10h.
上述过程S13和过程S14可以为现有技术中常规的浅槽隔离(STI)工艺,本领域技术人员可以根据现有技术对该STI工艺中沉积的绝缘材料进行合理选取,该绝缘材料可以为SiO2;并且,本领域技术人员可以根据实际需求对上述STI工艺中沉积工艺和平坦化处理的工艺条件进行合理设定。The above-mentioned process S13 and process S14 can be a conventional shallow trench isolation (STI) process in the prior art, and those skilled in the art can reasonably select the insulating material deposited in the STI process according to the prior art, and the insulating material can be SiO 2 ; and, those skilled in the art can reasonably set the process conditions of the deposition process and planarization treatment in the above STI process according to actual needs.
本发明的上述制备方法可以采用前栅工艺也可以采用后栅工艺,此时纳米线结构可以在前栅工艺中形成也可以在后栅工艺中形成,为了避免前栅工艺高温工艺对栅极介质的影响,本发明优选采用后栅工艺。此时,在步骤S1之后,本发明的上述制备方法还可以包括以下步骤:从第一隔离层30的表面开始刻蚀去除部分第一隔离层30,以使部分第一鳍体111裸露,如图7所示;在剩余的第一隔离层30上形成跨部分第一鳍体111的假栅堆叠,并在假栅堆叠的两侧形成跨部分第一鳍体111的第二侧墙;去除假栅堆叠,位于第二侧墙之间的部分第一鳍体111为第二区域,得到如图8所示的结构。The above-mentioned preparation method of the present invention can adopt the front gate process or the last gate process. At this time, the nanowire structure can be formed in the front gate process or the last gate process. In order to avoid the high temperature process of the front gate process from affecting the gate dielectric Influenced by the influence, the present invention preferably adopts the gate-last process. At this time, after step S1, the above-mentioned preparation method of the present invention may further include the following step: starting from the surface of the first isolation layer 30 to etch and remove part of the first isolation layer 30, so that part of the first fin body 111 is exposed, as As shown in FIG. 7; a dummy gate stack spanning part of the first fin body 111 is formed on the remaining first isolation layer 30, and a second sidewall spanning part of the first fin body 111 is formed on both sides of the dummy gate stack; The dummy gate is stacked, and part of the first fin body 111 located between the second sidewalls is the second region, so that the structure shown in FIG. 8 is obtained.
在上述步骤中,假栅堆叠可以包括第一栅介质层和假栅,为了更好地控制第一栅介质层的厚度,优选地,采用原子层沉积工艺(ALD)形成上述第一栅介质层;并且,形成上述第一栅介质层的材料可以包括SiO2、HfO2、La2O3、Al2O3、TiO2中的任一种或多种,上述假栅材料可以为非晶硅,本领域技术人员可以根据现有技术对形成上述第一栅介质层的材料和假栅材料的种类进行合理选取。In the above steps, the dummy gate stack may include a first gate dielectric layer and a dummy gate. In order to better control the thickness of the first gate dielectric layer, preferably, the first gate dielectric layer is formed by atomic layer deposition (ALD) and, the material for forming the first gate dielectric layer may include any one or more of SiO 2 , HfO 2 , La 2 O 3 , Al 2 O 3 , TiO 2 , and the dummy gate material may be amorphous silicon Those skilled in the art can reasonably select the materials for forming the first gate dielectric layer and the types of dummy gate materials according to the prior art.
并且,当采用后栅工艺时,在去除假栅堆叠的步骤之前,在第一区域和第三区域中形成上述的源/漏极40,且使源/漏极40与步骤S2中形成的纳米线结构120的两端连接,如图8所示。形成上述源/漏极40的工艺可以为原位掺杂,本领域技术人员可以根据现有技术对上述原位掺杂的工艺条件进行合理设定。Moreover, when the gate-last process is adopted, before the step of removing the dummy gate stack, the above-mentioned source/drain 40 is formed in the first region and the third region, and the source/drain 40 and the nanometer formed in step S2 Both ends of the wire structure 120 are connected, as shown in FIG. 8 . The process for forming the above-mentioned source/drain 40 may be in-situ doping, and those skilled in the art can reasonably set the process conditions for the above-mentioned in-situ doping according to the prior art.
在执行完上述步骤S1之后,执行步骤S2:将第一鳍体111中的第二区域形成纳米线结构120。此时优选地,通过在步骤S1中采用单晶硅衬底作为衬底10,能够使上述纳米线结构120为单晶硅材料,由于沟道形成于上述纳米线结构120中,使沟道为单晶硅材料提高了器件载流子的迁移率。After the above step S1 is performed, step S2 is performed: forming the nanowire structure 120 in the second region of the first fin body 111 . At this time, preferably, by using a single-crystal silicon substrate as the substrate 10 in step S1, the above-mentioned nanowire structure 120 can be made of a single-crystal silicon material, and since the channel is formed in the above-mentioned nanowire structure 120, the channel is Single crystal silicon material improves the mobility of device carriers.
为了将第一鳍体111中的第二区域形成纳米线结构120,在一种优选的实施方式中,上述步骤S2包括:使第一鳍体111中的第二区域完全裸露,在氢气氛围下对第二区域进行退火处理,以将部分第一鳍体111形成截面为圆形的纳米线结构120,如图9和图10所示。在氢气氛围下进行退火处理,能够使硅表面在减压高温环境下发生原子重构,从而将部分第一鳍体111棱角处的Si原子移动到能量较低的位置,以形成纳米线结构120。为了提高形成上述纳米线结构120的效率,优选地,上述氢气氛围的压强为10~50mT,退火处理的温度为650~950℃,时间为10~300s。In order to form the nanowire structure 120 in the second region in the first fin body 111, in a preferred implementation manner, the above step S2 includes: completely exposing the second region in the first fin body 111, under hydrogen atmosphere Annealing is performed on the second region to form a part of the first fin body 111 into a nanowire structure 120 with a circular cross section, as shown in FIGS. 9 and 10 . Annealing in a hydrogen atmosphere can cause the silicon surface to undergo atomic reconstruction under a reduced pressure and high temperature environment, thereby moving some of the Si atoms at the corners of the first fin body 111 to positions with lower energy to form the nanowire structure 120 . In order to improve the efficiency of forming the nanowire structure 120, preferably, the pressure of the hydrogen atmosphere is 10-50 mT, the annealing temperature is 650-950° C., and the time is 10-300 s.
在另一种优选的实施方式中,上述步骤S2包括:使第一鳍体111中的第二区域部分氧化,以将第二区域形成纳米线结构120以及包裹纳米线结构120的氧化层113,去除氧化层113以使纳米线结构120裸露,如图11和图12所示。将第一鳍体111中的第二区域从外表面开始氧化以形成氧化层,第二区域中未被氧化的部分构成截面为水滴状的纳米线结构120。为了提高形成上述纳米线结构120的效率,优选地,可以采用快速热氧化(RTP),也可以采用纯氧或者氧气和氢气混合气体对第二区域的部分进行氧化;并且,优选地,采用湿法刻蚀工艺去除上述氧化层113,上述湿法刻蚀工艺的腐蚀剂可以包括DHF。In another preferred embodiment, the above step S2 includes: partially oxidizing the second region in the first fin body 111 to form the nanowire structure 120 and the oxide layer 113 surrounding the nanowire structure 120 in the second region, The oxide layer 113 is removed to expose the nanowire structure 120, as shown in FIGS. 11 and 12 . The second region of the first fin body 111 is oxidized from the outer surface to form an oxide layer, and the unoxidized part of the second region forms a nanowire structure 120 with a drop-shaped cross section. In order to improve the efficiency of forming the above-mentioned nanowire structure 120, preferably, rapid thermal oxidation (RTP) can be used, and pure oxygen or a mixed gas of oxygen and hydrogen can be used to oxidize the part of the second region; and, preferably, wet The above-mentioned oxide layer 113 is removed by a wet etching process, and the etchant of the above-mentioned wet etching process may include DHF.
当在上述步骤S1与步骤S2之间形成跨部分第一鳍体111的上述第二侧墙250时,在上述步骤S2中,优选地,从第一隔离层30的表面开始刻蚀去除位于第二侧墙250之间的第一隔离层30,以使第一鳍体111中的第二区域完全裸露,如图9所示,然后通过在氢气氛围下对该第二区域进行退火处理,或通过将第一鳍体111中的第二区域从外表面开始氧化,并去除表面的氧化层113,以将部分第一鳍体111形成纳米线结构120,此时源/漏极40位于纳米线结构120的两侧,得到的结构如图12所示;更为优选地,采用湿法刻蚀工艺去除部分上述第一隔离层30,湿法刻蚀工艺中采用的腐蚀剂可以为DHF。When forming the above-mentioned second sidewall 250 spanning part of the first fin body 111 between the above-mentioned step S1 and the step S2, in the above-mentioned step S2, preferably, start from the surface of the first isolation layer 30 to etch and remove the the first isolation layer 30 between the two sidewalls 250, so that the second region in the first fin body 111 is completely exposed, as shown in FIG. By oxidizing the second region of the first fin body 111 from the outer surface, and removing the oxide layer 113 on the surface, a part of the first fin body 111 is formed into a nanowire structure 120, and at this time, the source/drain 40 is located on the nanowire On both sides of the structure 120 , the resulting structure is shown in FIG. 12 ; more preferably, a part of the above-mentioned first isolation layer 30 is removed by a wet etching process, and the etchant used in the wet etching process may be DHF.
在执行完上述步骤S2之后,执行步骤S3:绕纳米线结构120的裸露表面顺序形成层叠的界面氧化层50、铁电层60和栅极80,如图13至图16所示。由于形成上述铁电层60的为负电容材料,具有极化特性,从而能够使器件的亚阈值斜率大大低于60mV/dec;并且,由于上述栅极80能够全包裹在纳米线沟道上,栅控能力最强,在器件关断情况下,沟道中的载流子将会被完全耗尽,这使得源漏穿通漏电流得到很好的抑制。After the above step S2 is performed, step S3 is performed: sequentially forming a stacked interface oxide layer 50 , a ferroelectric layer 60 and a gate 80 around the exposed surface of the nanowire structure 120 , as shown in FIGS. 13 to 16 . Since the material forming the above-mentioned ferroelectric layer 60 is a negative capacitance material, which has polarization characteristics, the subthreshold slope of the device can be greatly lower than 60mV/dec; The control ability is the strongest. When the device is turned off, the carriers in the channel will be completely depleted, which makes the source-drain punch-through leakage current well suppressed.
在上述步骤S3中,为了更为有效地形成上述界面氧化层50,优选地,采用臭氧处理绕纳米线结构120的裸露表面形成界面氧化层50,得到的结构如图13所示;并且,为了更为有效地形成上述铁电层60,优选地,采用原子层沉积工艺(ALD)绕界面氧化层50的裸露表面形成铁电层60,得到的结构如图14所示。本领域技术人员可以根据现有技术对上述臭氧处理和原子层沉积的工艺条件进行合理选取。In the above step S3, in order to form the above-mentioned interface oxide layer 50 more effectively, preferably, the exposed surface of the nanowire structure 120 is treated with ozone to form the interface oxide layer 50, and the obtained structure is shown in FIG. 13; and, for To form the ferroelectric layer 60 more efficiently, preferably, the ferroelectric layer 60 is formed around the exposed surface of the interface oxide layer 50 by atomic layer deposition (ALD). The obtained structure is shown in FIG. 14 . Those skilled in the art can reasonably select the process conditions for the above-mentioned ozone treatment and atomic layer deposition according to the prior art.
在上述步骤S3中,为了保证上述铁电层60的极化特性,从而能够使器件的亚阈值斜率大大低于60mV/dec,优选地,形成铁电层60的铁电材料包括HfZrO和/或HfSiO。但并不局限于上述优选的种类,本领域技术人员可以根据现有技术对形成上述铁电材料进行合理选取。In the above step S3, in order to ensure the polarization characteristics of the ferroelectric layer 60, so that the subthreshold slope of the device can be greatly lower than 60mV/dec, preferably, the ferroelectric material forming the ferroelectric layer 60 includes HfZrO and/or HfSiO. However, it is not limited to the above-mentioned preferred types, and those skilled in the art can make reasonable selections to form the above-mentioned ferroelectric materials according to the prior art.
在上述步骤S3中,形成栅极80的金属栅材料可以为TaC、TiN、TaTbN、TaErN、TaYbN、TaSiN、HfSiN、MoSiN、RuTax、NiTax,MoNx、TiSiN、TiCN、TaAlC、TiAlN、TaN、PtSix、Ni3Si、Pt、Ru、Ir、Mo、Ti、Al、Cr、Au、Cu、Ag、HfRu和RuOx中的任一种或多种,本领域技术人员可以根据现有技术对上述金属栅材料的种类进行合理选取。In the above step S3, the metal gate material for forming the gate 80 may be TaC, TiN, TaTbN, TaErN, TaYbN, TaSiN, HfSiN, MoSiN, RuTax, NiTax , MoNx , TiSiN , TiCN, TaAlC, TiAlN, TaN , PtSix , Ni 3 Si, Pt, Ru, Ir, Mo, Ti, Al, Cr, Au, Cu, Ag, HfRu and RuO x any one or more, those skilled in the art can The types of the above metal gate materials are reasonably selected.
在一种优选的实施方式中,在形成铁电层60与栅极80的步骤之间,步骤S3还包括以下步骤:绕铁电层60的外周形成功函数层70,得到的结构如图15所示,此时上述栅极80环绕上述功函数层70的表面设置。上述功函数层70用于器件的阈值电压调整,满足高性能器件和低功耗器件的要求。In a preferred embodiment, between the steps of forming the ferroelectric layer 60 and the gate 80, step S3 further includes the following step: forming a work function layer 70 around the periphery of the ferroelectric layer 60, and the obtained structure is shown in FIG. 15 As shown, the gate 80 is disposed around the surface of the work function layer 70 at this time. The above-mentioned work function layer 70 is used for adjusting the threshold voltage of the device to meet the requirements of high performance devices and low power consumption devices.
为了更为有效地形成上述功函数层70,优选地,采用原子层沉积工艺绕铁电层60的裸露表面形成功函数层70。并且,为了使上述功函数层70实现对开启电压的有效调整,优选地,当衬底10为N型掺杂时,上述功函数层70的能隙为4.1~4.4eV,优选形成功函数层70的材料为TiAl;当衬底10为P型掺杂,上述功函数层70的能隙为4.7~4.9eV,优选形成功函数层70的材料为TiN。In order to form the above-mentioned work function layer 70 more efficiently, preferably, the work function layer 70 is formed around the exposed surface of the ferroelectric layer 60 by an atomic layer deposition process. Moreover, in order to enable the above-mentioned work function layer 70 to achieve effective adjustment of the turn-on voltage, preferably, when the substrate 10 is N-type doped, the energy gap of the above-mentioned work function layer 70 is 4.1-4.4eV, and it is preferable to form a work function layer The material of 70 is TiAl; when the substrate 10 is P-type doped, the energy gap of the above-mentioned work function layer 70 is 4.7-4.9 eV, preferably the material forming the work function layer 70 is TiN.
并且,当采用前栅工艺时,在形成栅极80的步骤之后,在第一区域和第三区域中形成源/漏极40,且使源/漏极40与步骤S3中形成的纳米线结构120的两端连接。形成上述源/漏极40的工艺可以为原位掺杂,本领域技术人员可以根据现有技术对上述原位掺杂的工艺条件进行合理设定。Moreover, when using the gate-front process, after the step of forming the gate 80, the source/drain 40 is formed in the first region and the third region, and the source/drain 40 is connected with the nanowire structure formed in step S3 The two ends of 120 are connected. The process for forming the above-mentioned source/drain 40 may be in-situ doping, and those skilled in the art can reasonably set the process conditions for the above-mentioned in-situ doping according to the prior art.
根据本发明的另一个方面,提供了一种环栅纳米线场效应晶体管,如图17和图18所示,包括:衬底10;第一鳍体111,位于衬底10上,第一鳍体111由沿长度方向顺次连接的第一区域、第二区域和第三区域组成,且第二区域为纳米线结构120;第一隔离层30,设置于衬底10与第一鳍体111之间,用于将第一鳍体111与衬底10隔离;界面氧化层50,环绕纳米线结构120;铁电层60,环绕界面氧化层50;栅极80,环绕铁电层60;以及源/漏极40,位于第一区域和第三区域中,且源/漏极40与纳米线结构120的两端连接。According to another aspect of the present invention, a gate-all-around nanowire field effect transistor is provided, as shown in FIG. 17 and FIG. 18 , comprising: a substrate 10; a first fin body 111 located on the substrate 10; The body 111 is composed of a first region, a second region and a third region sequentially connected along the length direction, and the second region is a nanowire structure 120; the first isolation layer 30 is arranged between the substrate 10 and the first fin body 111 between the first fin body 111 and the substrate 10; the interface oxide layer 50 surrounds the nanowire structure 120; the ferroelectric layer 60 surrounds the interface oxide layer 50; the gate 80 surrounds the ferroelectric layer 60; The source/drain 40 is located in the first region and the third region, and the source/drain 40 is connected to both ends of the nanowire structure 120 .
图17中未示出上述环栅纳米线场效应晶体管中的栅极80,界面氧化层50、铁电层60和栅极80顺序环绕纳米线结构的剖面结构示意图如图18所示。FIG. 17 does not show the gate 80 in the above-mentioned gate-all-around nanowire field effect transistor. The cross-sectional schematic diagram of the nanowire structure surrounded by the interface oxide layer 50 , the ferroelectric layer 60 and the gate 80 is shown in FIG. 18 .
在本发明的上述环栅纳米线场效应晶体管中由于栅极四面包裹用于形成沟道的纳米线结构,从而使提高了器件的栅控能力,在器件关断情况下,沟道中的载流子将会被完全耗尽,这使得源漏穿通漏电流得到很好的抑制;由于上述第一鳍体整体与衬底完全分离,隔绝了衬底方向漏电通路,从而降低了器件的漏电流;由于只是将鳍结构中作为沟道的部分形成纳米线,从而使源/漏极能够维持原来形状,一方面有效地避免了短沟道效应,优化了亚阈值特性,同时使器件能够具有较低的寄生电阻;并且,由于形成上述铁电层的材料为负电容材料,具有极化特性,从而能够使器件的亚阈值斜率大大低于60mV/dec。In the above-mentioned gate-all-around nanowire field effect transistor of the present invention, since the grid is surrounded by the nanowire structure used to form the channel, the gate control capability of the device is improved. When the device is turned off, the current carrying capacity in the channel The fins will be completely depleted, which makes the source-drain punch-through leakage current well suppressed; since the above-mentioned first fin body is completely separated from the substrate, the leakage path in the direction of the substrate is isolated, thereby reducing the leakage current of the device; Since only the part of the fin structure that is used as the channel is formed into nanowires, the source/drain can maintain the original shape. On the one hand, the short channel effect is effectively avoided, the sub-threshold characteristics are optimized, and the device can have a lower The parasitic resistance; and, because the material forming the ferroelectric layer is a negative capacitance material, which has polarization characteristics, the subthreshold slope of the device can be greatly lower than 60mV/dec.
本发明的上述环栅纳米线场效应晶体管可以由上述的制备方法制备而成,环栅纳米线场效应晶体管还包括覆盖栅极80两侧且跨第一鳍体111的第二侧墙250,该第二侧墙250能够起到栅极80和源/漏极40隔离的作用。The above-mentioned gate-all-around nanowire field-effect transistor of the present invention can be prepared by the above-mentioned preparation method, and the gate-all-around nanowire field effect transistor also includes a second sidewall 250 covering both sides of the gate 80 and spanning the first fin body 111 , The second spacer 250 can isolate the gate 80 from the source/drain 40 .
在本发明的上述环栅纳米线场效应晶体管中,优选地,该环栅纳米线场效应晶体管还包括功函数层70,功函数层70设置于铁电层60与栅极80之间,如图18所示。上述功函数层70用于器件的阈值电压调整,满足高性能器件和低功耗器件的要求。In the above-mentioned gate-all-around nanowire field effect transistor of the present invention, preferably, the gate-all-around nanowire field effect transistor further includes a work function layer 70, and the work function layer 70 is arranged between the ferroelectric layer 60 and the gate 80, such as Figure 18 shows. The above-mentioned work function layer 70 is used for adjusting the threshold voltage of the device to meet the requirements of high performance devices and low power consumption devices.
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:From the above description, it can be seen that the above-mentioned embodiments of the present invention have achieved the following technical effects:
1、由于栅堆叠结构中的栅极四面包裹用于形成沟道的纳米线结构,从而使提高了器件的栅控能力,在器件关断情况下,沟道中的载流子将会被完全耗尽,这使得源漏穿通漏电流得到很好的抑制;1. Since the gate in the gate stack structure wraps the nanowire structure used to form the channel on all sides, the gate control capability of the device is improved. When the device is turned off, the carriers in the channel will be completely consumed As far as possible, this makes the source-drain punch-through leakage current well suppressed;
2、由于上述制备方法中得到的第一鳍体整体与衬底完全分离,隔绝了衬底方向漏电通路,从而降低了器件的漏电流;2. Since the first fin body obtained in the above preparation method is completely separated from the substrate, the leakage path in the direction of the substrate is isolated, thereby reducing the leakage current of the device;
3、由于只是将鳍结构中作为沟道的部分形成纳米线,从而使源/漏极能够维持原来形状,一方面有效地避免了短沟道效应,优化了亚阈值特性,同时使器件能够具有较低的寄生电阻;3. Since only the part of the fin structure that is used as the channel is formed into a nanowire, the source/drain can maintain the original shape. On the one hand, the short channel effect is effectively avoided, the sub-threshold characteristic is optimized, and the device can have Lower parasitic resistance;
4、由于形成上述铁电层的材料为负电容材料,具有极化特性,从而能够使器件的亚阈值斜率大大低于60mV/dec;4. Since the material forming the ferroelectric layer is a negative capacitance material with polarization characteristics, the subthreshold slope of the device can be greatly lower than 60mV/dec;
5、环栅纳米线场效应晶体管还包括功函数层,上述功函数层用于器件的阈值电压调整,满足高性能器件和低功耗器件的要求。5. The gate-all-around nanowire field effect transistor also includes a work function layer, which is used to adjust the threshold voltage of the device and meet the requirements of high performance devices and low power consumption devices.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711346506.8A CN108288647A (en) | 2017-12-14 | 2017-12-14 | Surrounding gate nanowire field effect transistor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711346506.8A CN108288647A (en) | 2017-12-14 | 2017-12-14 | Surrounding gate nanowire field effect transistor and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108288647A true CN108288647A (en) | 2018-07-17 |
Family
ID=62831891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711346506.8A Pending CN108288647A (en) | 2017-12-14 | 2017-12-14 | Surrounding gate nanowire field effect transistor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108288647A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109904219A (en) * | 2019-03-18 | 2019-06-18 | 上海新微技术研发中心有限公司 | Manufacturing method of field effect transistor and field effect transistor |
CN109904236A (en) * | 2019-03-18 | 2019-06-18 | 上海新微技术研发中心有限公司 | Manufacturing method of field effect transistor and field effect transistor |
CN110034181A (en) * | 2019-03-04 | 2019-07-19 | 上海华力集成电路制造有限公司 | A kind of iron/piezoelectricity field-effect tube and its preparation method |
CN110491946A (en) * | 2019-08-22 | 2019-11-22 | 上海华力集成电路制造有限公司 | Gate Surround Field Effect Transistor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101060135A (en) * | 2007-06-05 | 2007-10-24 | 北京大学 | A double silicon nanowire wrap gate field-effect transistor and its manufacture method |
CN102142376A (en) * | 2010-12-31 | 2011-08-03 | 上海集成电路研发中心有限公司 | Preparation method of silicon nanowire fence device |
CN104137264A (en) * | 2011-12-20 | 2014-11-05 | 英特尔公司 | Semiconductor device with isolated body portion |
-
2017
- 2017-12-14 CN CN201711346506.8A patent/CN108288647A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101060135A (en) * | 2007-06-05 | 2007-10-24 | 北京大学 | A double silicon nanowire wrap gate field-effect transistor and its manufacture method |
CN102142376A (en) * | 2010-12-31 | 2011-08-03 | 上海集成电路研发中心有限公司 | Preparation method of silicon nanowire fence device |
CN104137264A (en) * | 2011-12-20 | 2014-11-05 | 英特尔公司 | Semiconductor device with isolated body portion |
Non-Patent Citations (2)
Title |
---|
C.-J. SU,ET.AL: "Ge nanowire FETs with HfZrOx ferroelectric gate stack exhibiting SS of sub-60 mV/dec and biasing effects on ferroelectric reliability", 《2017 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM)》 * |
XIAOLONG MA.ET. AL: "Gate-all-around silicon nanowire transistors with channel-last process on bulk Si substrate", 《IEICE ELECTRONICS EXPRESS》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110034181A (en) * | 2019-03-04 | 2019-07-19 | 上海华力集成电路制造有限公司 | A kind of iron/piezoelectricity field-effect tube and its preparation method |
CN109904219A (en) * | 2019-03-18 | 2019-06-18 | 上海新微技术研发中心有限公司 | Manufacturing method of field effect transistor and field effect transistor |
CN109904236A (en) * | 2019-03-18 | 2019-06-18 | 上海新微技术研发中心有限公司 | Manufacturing method of field effect transistor and field effect transistor |
CN110491946A (en) * | 2019-08-22 | 2019-11-22 | 上海华力集成电路制造有限公司 | Gate Surround Field Effect Transistor |
CN110491946B (en) * | 2019-08-22 | 2023-08-11 | 上海华力集成电路制造有限公司 | Gate-around field effect transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI255043B (en) | Chip incorporating partially-depleted and fully-depleted transistors and method of fabricating the same | |
TWI496287B (en) | Double dielectric three-gate field effect transistor | |
CN104347380B (en) | The method for forming the semiconductor structure comprising silication and non-silicidated circuit unit | |
JP2006505950A (en) | Double-gate semiconductor device having multiple separated gates | |
CN103915345A (en) | Semiconductor devices and methods of manufacture thereof | |
CN1577850A (en) | Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication | |
CN103730363B (en) | Semiconductor structure and manufacturing method thereof | |
CN108288647A (en) | Surrounding gate nanowire field effect transistor and preparation method thereof | |
CN102341906B (en) | Reduction of threshold voltage variation in transistors comprising a channel semiconductor alloy by reducing deposition non-uniformities | |
CN108288642A (en) | Tunneling field effect transistor and preparation method thereof | |
CN113644110B (en) | Transistor and preparation method thereof | |
CN102315268B (en) | Semiconductor device and method for manufacturing the same | |
US20230014586A1 (en) | Horizontal gaa nano-wire and nano-slab transistors | |
CN103985754B (en) | Semiconductor device and method for manufacturing the same | |
CN107615461A (en) | Semiconductor Structure and Processing | |
WO2013166733A1 (en) | Finfet and manufacturing method thereof | |
CN108878521A (en) | Vertical tunneling field-effect transistor and forming method thereof | |
CN109920733B (en) | Semiconductor structure and transistor forming method | |
CN113130311B (en) | Semiconductor structure and forming method thereof | |
CN108258048A (en) | Tunneling field effect transistor and preparation method thereof | |
TW202443702A (en) | Manufacturing method of semiconductor apparatus | |
CN108565218A (en) | Surrounding gate nanowire field effect transistor and preparation method thereof | |
CN108140673B (en) | Tunneling field effect transistor and manufacturing method thereof | |
CN108231584A (en) | Surrounding gate nanowire field effect transistor and preparation method thereof | |
CN105632925B (en) | Fin field effect pipe and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210628 Address after: 100021 No.3, Beitucheng West Road, Chaoyang District, Beijing Applicant after: Institute of Microelectronics of the Chinese Academy of Sciences Applicant after: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) Corp. Address before: 100029 Beijing city Chaoyang District Beitucheng West Road No. 3 Applicant before: Institute of Microelectronics of the Chinese Academy of Sciences |
|
TA01 | Transfer of patent application right | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180717 |
|
RJ01 | Rejection of invention patent application after publication |