CN108285149A - 一种银型锰钾矿八面体分子筛的制备方法 - Google Patents

一种银型锰钾矿八面体分子筛的制备方法 Download PDF

Info

Publication number
CN108285149A
CN108285149A CN201810063612.3A CN201810063612A CN108285149A CN 108285149 A CN108285149 A CN 108285149A CN 201810063612 A CN201810063612 A CN 201810063612A CN 108285149 A CN108285149 A CN 108285149A
Authority
CN
China
Prior art keywords
cryptomelane
preparation
silver
type
birnessite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810063612.3A
Other languages
English (en)
Other versions
CN108285149B (zh
Inventor
范晨子
许凌霄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STATE GEOLOGY EXPERIMENT AND TEST CENTER
Original Assignee
STATE GEOLOGY EXPERIMENT AND TEST CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STATE GEOLOGY EXPERIMENT AND TEST CENTER filed Critical STATE GEOLOGY EXPERIMENT AND TEST CENTER
Priority to CN201810063612.3A priority Critical patent/CN108285149B/zh
Publication of CN108285149A publication Critical patent/CN108285149A/zh
Application granted granted Critical
Publication of CN108285149B publication Critical patent/CN108285149B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公布了一种银型锰钾矿八面体分子筛的制备方法,首先利用MnSO4与碱液反应生成Mn(OH)2沉淀,并在低温环境中迅速氧化成水钠锰矿前驱物,然后在Ag离子的参与下采用水热法将水钠锰矿相转化为银型锰钾矿相,得到银型锰钾矿八面体分子筛。本发明不以K型锰钾矿为模板,而是以层状水钠锰矿为模板,拓展了银等阳离子掺杂锰钾矿的制备途径,该方法操作简易,所制备的银型锰钾矿活性高,具有纳米针状的晶形,宽度约为15纳米左右,长度从几百纳米到几微米不等。

Description

一种银型锰钾矿八面体分子筛的制备方法
技术领域
本发明涉及一种银型锰钾矿八面体分子筛的制备方法,属于纳米材料、催化材料和电容材料领域。
背景技术
锰钾矿是一种具有隧道结构的八面体分子筛,是由[MnO6]八面体以共棱边和共顶角组成的2×2型隧道结构,晶格中存在着Mn2+、Mn3+和Mn4+,孔径大小约为0.46nm×0.46nm,K+、Ba2+等阳离子位于隧道结构中保持电化学平衡。因此锰钾矿具有良好的氧化还原性、吸附性和表面酸性,已被证明在离子交换、电池材料、吸附剂、分子筛、环境修复材料、催化剂、核废料固定等领域具有重要的应用前景。
金属阳离子已被证明易于负载或掺杂到锰氧八面体骨架或进入孔径内,常见掺杂的金属元素包括Ag、Pd、Zr、Ce、V、Ti、Pt、Sn、Fe、Cu、Co等,掺杂后锰钾矿的性能有大幅度提高。其中Ag掺杂后的锰钾矿在催化苯甲醇、仲醇、辛醇等转化上相对其他催化剂具有明显优势,能够有效低温吸附CO、NO、SO2气体并催化其氧化,并且是一种有潜力的电容材料。
目前国内外制备Ag型锰钾矿八面体分子筛的方法主要包括两种:一种是间接法,通过水热法或溶胶凝胶法合成K型锰钾矿后,采用Ag离子交换K离子制备;另一种是直接法,采用AgMnO4在酸性介质(硝酸、硫酸等)中直接水热氧化Mn2+制备,或者AgMnO4与Ag2O高温固相反应制备而得。
发明内容
本发明的目的是提供一种银型锰钾矿八面体分子筛的制备方法,从而提供作为催化剂等应用的银型锰钾矿材料。
本发明的技术方案如下:
一种银型锰钾矿八面体分子筛的制备方法,包括以下几个步骤:
(1)将MnSO4溶液与过量碱液的混合液在低温环境中曝气搅拌反应,过滤,反复洗涤至pH7~8,干燥,研磨,得到水钠锰矿前驱物粉末;
(2)取上述粉末加入计量的硝酸银溶液,置于高温高压反应釜300~500℃温度下反应,过滤,洗涤,干燥后制得银型锰钾矿八面体分子筛。
所述方法步骤1)中,过量碱液使用KOH和/或NaOH溶液均可,推荐所述混合液中MnSO4与OH-的摩尔浓度比值为1:7.5~1:14。
所述方法步骤1)中,低温环境、大曝气量和快速搅拌均有利于产物的纯度,推荐10℃以下水浴环境、30L/min以上空气曝气量、100-150r/min的振荡速度。
所述方法步骤1)中,曝气反应时间为5小时以上。
所述方法步骤2)中,所述硝酸银溶液的浓度为0.08~0.1摩尔/升,优选每克粉末样品加入20mL 0.08~0.1摩尔/升的硝酸银溶液;高温高压釜的填装率在40%以下。
所述方法步骤2)中,高温水热反应时间为3.5~12小时。
本发明通过制备水钠锰矿前驱物后,在Ag离子的参与下采用水热法将水钠锰矿相转化为银型锰钾矿相,该制备方法尚未见报道,其主要机理是:利用MnSO4与碱液反应生成Mn(OH)2沉淀,并在低温环境中迅速氧化成水钠锰矿;之后在银离子溶液中,Ag离子与水钠锰矿层间的K或Na离子交换,并在高温水热环境中以Ag离子为模板,层状水钠锰矿结构调整成为隧道结构的银型锰钾矿八面体分子筛。本发明方法制备出的银型锰钾矿具有纳米针状的晶形,宽度约为15纳米左右,长度从几百纳米到几微米不等。本发明方法不以K型锰钾矿为模板,而是以层状水钠锰矿为模板,拓展了银等阳离子掺杂锰钾矿的制备途径,该方法操作简易,产品活性高。
附图说明
图1是本发明实施例2中制备的银型锰钾矿八面体分子筛的X射线粉晶衍射图。
图2是本发明实施例2中制备的银型锰钾矿八面体分子筛的高分辨透射电镜形貌图。
具体实施方式
下面结合附图,通过实例说明利用本发明的方法合成银型锰钾矿型八面体分子筛的最佳实验条件。
实验所用化学原料有:分析纯硫酸锰,分析纯氢氧化钾或氢氧化钠,分析纯硝酸银。实验所用的仪器主要有:SHA-2A型冷冻水浴恒温振荡器、鼓气机、高温高压反应釜。实验样品物相表征用RIGAKA-RA X射线粉晶衍射仪分析,形貌用高分辨透射电镜(JEOL JEM-2010)观察。
实施例1、前驱物水钠锰矿类型的影响
本实验在500mL的反应体系中用0.2M MnSO4与2.75M的NaOH或KOH在1℃水浴中,通空气量为60L/min,振荡搅拌转速为150r/min的条件下反应5小时,然后过滤洗涤至pH=7~8,干燥后,破碎至小于200目,得到前驱物粉末;取1g上述前驱物粉末与20mL 0.1M AgNO3溶液置于密封的高温高压反应釜中,在300℃反应9小时,洗涤,干燥。采用NaOH和KOH碱液形成的Na型和K型水钠锰矿,都可以作为前驱物使用进一步转化成为银型锰钾矿。
实施例2、水热反应温度的影响
本实验在500mL的反应体系中用0.2M MnSO4与2.75M的KOH在1℃水浴中,通空气量为60L/min,振荡搅拌转速为150r/min的条件下反应5小时,然后过滤洗涤至pH=7~8,干燥后,破碎至小于200目,得到水钠锰矿前驱物粉末;取1g水钠锰矿前驱物粉末与20mL0.1MAgNO3溶液置于密封的高温高压反应釜中,分别在室温、150℃、200℃、250℃、300℃、400℃、500℃温度下反应9小时,洗涤,干燥。其中400℃所制银型锰钾矿八面体分子筛的X射线衍射图如图1所示,具有纯的银型锰钾矿物相;其高分辨透射电镜图如图2所示,可以看出发育一维针状的纳米晶形,宽度在十几纳米,长度从几十纳米到几微米不等。中低温环境中即便在银模板作用下水钠锰矿也无法转变成为隧道结构的银型锰钾矿,只有在300℃以上才有银型锰钾矿相的生成。
实施例3、银离子浓度的影响
本实验在500mL的反应体系中用0.2M MnSO4与2.75M的KOH在7℃,通空气量为60L/min,振荡搅拌转速为150r/min的条件下反应5小时,然后过滤洗涤至pH=7~8,干燥后,破碎至小于200目,得到水钠锰矿前驱物粉末;取1g水钠锰矿前驱物粉末,分别与20mL 0.01M,0.04M,0.06M、0.08M和0.1M AgNO3溶液置于密封的高温高压反应釜中,在300℃下反应9小时,洗涤,干燥。采用0.08M浓度以下AgNO3溶液不足以使全部水钠锰矿前驱物转化成银锰钾矿,部分会形成方铁锰矿和黑锰矿,因此每克水钠锰矿前驱物需采用在0.08~0.1M浓度银溶液才能形成银型锰钾矿。
实施例4、水热反应时间的影响
本实验在500mL的反应体系中用0.2M MnSO4与2.75M的NaOH或KOH在1℃水浴中,通空气量为60L/min,振荡搅拌转速为150r/min的条件下反应5小时,然后过滤洗涤至pH=7~8,干燥后,破碎至小于200目,得到水钠锰矿前驱物粉末;取1g水钠锰矿前驱物粉末与20mL0.1M AgNO3溶液置于密封的高温高压反应釜中,在300℃下分别反应2小时、3.5小时、5小时、7小时、9小时、12小时,洗涤,干燥。较短的时间水钠锰矿会部分转化成方铁锰矿和黑锰矿,随着反应时间的推进进一步转化成为银型锰钾矿,需要3.5小时以上的时间才能更好地完成反应。

Claims (9)

1.一种银型锰钾矿八面体分子筛的制备方法,包括以下步骤:
1)将MnSO4溶液与过量碱液的混合液在低温环境中曝气搅拌反应,过滤,反复洗涤至pH7~8,干燥,研磨,得到水钠锰矿前驱物粉末;
2)取步骤1)制备的粉末加入计量的硝酸银溶液,置于高温高压反应釜300~500℃温度下反应,过滤,洗涤,干燥,制得银型锰钾矿八面体分子筛。
2.如权利要求1所述的制备方法,其特征在于,步骤1)中所述碱液是KOH溶液和/或NaOH溶液。
3.如权利要求1所述的制备方法,其特征在于,步骤1)所述混合液中MnSO4与OH-的摩尔浓度比值为1:7.5~1:14。
4.如权利要求1所述的制备方法,其特征在于,步骤1)的反应在10℃以下水浴环境,30L/min以上空气曝气量,100~150r/min的振荡速度下进行。
5.如权利要求1所述的制备方法,其特征在于,步骤1)曝气反应5小时以上。
6.如权利要求1所述的制备方法,其特征在于,步骤2)中所述硝酸银溶液的浓度为0.08~0.1摩尔/升。
7.如权利要求6所述的制备方法,其特征在于,步骤2)中每克粉末样品加入20mL 0.08~0.1摩尔/升的硝酸银溶液。
8.如权利要求1所述的制备方法,其特征在于,步骤2)高温高压釜的填装率在40%以下。
9.如权利要求1所述的制备方法,其特征在于,步骤2)高温水热反应时间为3.5~12小时。
CN201810063612.3A 2018-01-23 2018-01-23 一种银型锰钾矿八面体分子筛的制备方法 Active CN108285149B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810063612.3A CN108285149B (zh) 2018-01-23 2018-01-23 一种银型锰钾矿八面体分子筛的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810063612.3A CN108285149B (zh) 2018-01-23 2018-01-23 一种银型锰钾矿八面体分子筛的制备方法

Publications (2)

Publication Number Publication Date
CN108285149A true CN108285149A (zh) 2018-07-17
CN108285149B CN108285149B (zh) 2020-05-15

Family

ID=62835664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810063612.3A Active CN108285149B (zh) 2018-01-23 2018-01-23 一种银型锰钾矿八面体分子筛的制备方法

Country Status (1)

Country Link
CN (1) CN108285149B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143727A (zh) * 2007-07-10 2008-03-19 北京大学 一种锰钾矿型八面体分子筛的制备方法
CN102120619A (zh) * 2011-01-11 2011-07-13 河北师范大学 一种脑珊瑚状水钠锰矿型二氧化锰的制备方法
CN103785345A (zh) * 2014-03-04 2014-05-14 武汉大学 一种负载型二氧化锰吸附剂及利用其预处理苯胺废水的方法
WO2015064867A1 (en) * 2013-10-29 2015-05-07 Samsung Electronics Co., Ltd. Electrode active material for magnesium battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143727A (zh) * 2007-07-10 2008-03-19 北京大学 一种锰钾矿型八面体分子筛的制备方法
CN102120619A (zh) * 2011-01-11 2011-07-13 河北师范大学 一种脑珊瑚状水钠锰矿型二氧化锰的制备方法
WO2015064867A1 (en) * 2013-10-29 2015-05-07 Samsung Electronics Co., Ltd. Electrode active material for magnesium battery
CN103785345A (zh) * 2014-03-04 2014-05-14 武汉大学 一种负载型二氧化锰吸附剂及利用其预处理苯胺废水的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张慧琴 等: "离子交换水钠锰矿矿物学特征及高温相变研究", 《岩石矿物学杂志》 *

Also Published As

Publication number Publication date
CN108285149B (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
Ching et al. Sol− gel synthesis of layered birnessite-type manganese oxides
CN101455964B (zh) 一种镍基金属负载型催化剂的制备方法
Iguchi et al. Preparation of transition metal-containing layered double hydroxides and application to the photocatalytic conversion of CO2 in water
CN103920507A (zh) 一种氯化氢氧化制氯气的催化剂及其应用
CN104258864A (zh) 纳米复合物催化剂及其制备方法与应用
Zhang et al. Controlled synthesis, characterization, and morphology-dependent reducibility of ceria− zirconia− yttria solid solutions with nanorod-like, microspherical, microbowknot-like, and micro-octahedral shapes
CN102786095B (zh) 制备四氧化三锰的方法
Ni et al. Enhanced catalytic activity of OMS-2 for carcinogenic benzene elimination by tuning Sr2+ contents in the tunnels
CN108080000A (zh) 一种中空多孔微球催化材料及其制备方法和降解no应用
WO2014072802A2 (en) Synthesis of dimethyl carbonate and related compounds
CN101445942A (zh) 固体氧化物电解池阳极材料钙钛矿结构纳米粉体制备方法
CN104368340B (zh) 一种海绵银催化剂的制备及其在肉桂醛氧化合成肉桂酸中的应用
CN114797917A (zh) 一种具有pH自缓冲能力的高活性钴基催化剂及其制备方法和应用
Bankar et al. Iridium supported on spinal cubic cobalt oxide catalyst for the selective hydrogenation of CO2 to formic acid
Yu et al. Efficient removal of bismuth with supersoluble amorphous antimony acids: an insight into synthesis mechanism and Sb (V)-Bi (III) interaction behaviors
CN113694929B (zh) 负载型单原子铜基金属氧化物催化剂及制备方法和应用
Guo et al. In situ construction of Mn-Fe multi oxides derived from K2FeO4 and MnSO4 for high-efficient degradation of toluene
Wang et al. Layered double oxide (CoAl-LDO) catalysis for enhanced ozonation of methyl orange: Performance assessment and mechanistic insights
JPWO2020050215A1 (ja) β−二酸化マンガンを用いた酸化物の製造方法
CN100404425C (zh) 一种用燃烧法制备纳米二氧化铈的方法
CN106082298A (zh) 一种铈铋复合氧化物纳米棒材料的制备方法
CN107709243A (zh) 高纯度水钠锰矿及其制备方法
CN108285149A (zh) 一种银型锰钾矿八面体分子筛的制备方法
CN105727922A (zh) 一种Li掺杂SrTiO3十八面体纳米颗粒的制备方法及产物
CN106560239B (zh) 一种催化氯化氢氧化的催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant