CN108281495A - 一种GaSb基背靠背结构四波段红外探测器及制备方法 - Google Patents

一种GaSb基背靠背结构四波段红外探测器及制备方法 Download PDF

Info

Publication number
CN108281495A
CN108281495A CN201810011240.XA CN201810011240A CN108281495A CN 108281495 A CN108281495 A CN 108281495A CN 201810011240 A CN201810011240 A CN 201810011240A CN 108281495 A CN108281495 A CN 108281495A
Authority
CN
China
Prior art keywords
gasb
inas
cutoff wavelength
areas
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810011240.XA
Other languages
English (en)
Other versions
CN108281495B (zh
Inventor
王秀平
徐珊
王兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing And Torch Technology Co Ltd
Original Assignee
Beijing And Torch Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing And Torch Technology Co Ltd filed Critical Beijing And Torch Technology Co Ltd
Priority to CN201810011240.XA priority Critical patent/CN108281495B/zh
Publication of CN108281495A publication Critical patent/CN108281495A/zh
Application granted granted Critical
Publication of CN108281495B publication Critical patent/CN108281495B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/111Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种GaSb基背靠背四波段红外探测器及其制备方法,该结构设计可以用于标定二氧化碳(CO2)的两个吸收峰值(2.7μm、4.27μm)。该GaSb基背靠背结构四波段探测器结构依次为:GaSb衬底上生长GaSb缓冲层、P型电极接触层、截止波长为4.6μm的PIN结构InAs/GaSb吸收区、截止波长为4.1μm的NIP结构InAs/GaSb吸收区、InAsSb电极接触层、截止波长为2.9μm的PIN型InAs/GaSb吸收区、截止波长为2.5μm的NIP型InAs/GaSb吸收区及P型电极接触层。

Description

一种GaSb基背靠背结构四波段红外探测器及制备方法
技术领域
本发明涉及半导体光电器件领域,具体为一种GaSb基背靠背结构四波段红外探测器及制备方法。
背景技术
在红外光电探测领域中远红外探测波段,主要有三种探测技术,一种是碲镉汞红外探测器,另一种是利用GaAs/InGaAs/GaAs量子阱结构进行探测,第三种是利用InAs/GaSbII类超晶格的探测器。
与碲镉汞红外光电探测器相比,II类超晶格红外探测器材料均匀性好,制造成本低。该材料在中波及长波波段与碲镉汞探测器性能相当,在甚长波波段则有较大性能优势。与量子阱红外探测器相比,其量子效率高,性能远高于量子阱红外探测器。因此近年来锑化物成为半导体红外光电器件的研究热点。锑化物InAs/GaSb二类超晶格主要是利用超晶格能带便于调整的特性,通过改变超晶格不同层的厚度,就可以实现从探测器截止波长从短波到甚长波的改变响应。但是由于半导体材料固有的带边吸收性质,这类具有单一吸收区的探测器并不能实现目标光谱特征的区分,只是对目标发射光谱中的某一波段实现探测。为了在单一探测系统中实现这种光谱分辨或多色探测,通常的做法是将两个或以上的单一波段的探测器,通过机械的方法叠加到一起,但这样既增加成本,也不利于使用中的便利。为此,本领域开始采用多个吸收区来实现多色探测,然而,在锑化物II类超晶格材料体系中,现有技术中只有两色和三色探测,四色及以上的多色探测由于设计和制作上的困难,还未出现。
鉴于上述技术问题,本发明针对CO2气体存在的两个红外波段的吸收特征峰值2.7μm和4.27μm,精心设计出了一种GaSb基背靠背(两个PINIP)四波段红外探测器,具有四个吸收区,可以实现四个波段的光谱叠加和信号差分,从而可以实现四个波段的红外探测,并利用不同波段信号所反映的被测目标光谱特征对目标进行针对性探测,两个背靠背的结构差分可以很好地实现对CO2两个吸收峰值的测定。
发明内容
本发明的目的是提供一种GaSb基背靠背四波段红外探测器。本发明的探测器是利用InAs/GaSb II类超晶格作为吸收区,利用不同的吸收厚度实现了四波段的探测吸收。
本发明提出了一种GaSb基背靠背四波段探测器,其包括衬底上生产缓冲层、P型电极接触层、四波段波长吸收层。
本发明提出了一种GaSb基背靠背四波段探测器的制作方法,其包括:
在衬底制备外延片,包括:在衬底上至少依次外延生长缓冲层、P型欧姆电极接触层、截止波长为4.6μm截的光吸收层、截止波长为4.1μm的光吸收层、P型电极接触层、截止波长为2.9μm光吸收层、截止波长为2.5μm的光吸收层、P性电极接触层;
在制备好的外延片上制作两个台面结构,第一个台面结构腐蚀到底部P型欧姆电极接触层;第二个台面腐蚀到中间P型电极接触层。
在制备完成台面结构基础上蒸镀SiO2保护,并且光刻腐蚀SiO2层形成通光孔和欧姆电极接触窗口。
在底部、中间、顶部沉积一层金属电极接触层,然后剥离去除P型电极以外的金属。
本发明采用不同的组分、不同厚度、不同周期的InAs/GaSb超晶格制备出的截止波长分别为4.6μm、4.1μm、2.9μm、2.5μm的光吸收区,同时通过两次台面刻蚀、SiO2钝化和蒸镀金属制备成器件,器件通过两个波段的差分可以实现对CO2的两个吸收峰的标定。
附图说明
图1、GaSb 基背靠背结构四波段探测器的截面示意图;
图2、四波段探测器材料吸收区超晶格电子(e),重空穴(hh),轻空穴(lh)能带结构图;
图3、四波段探测器吸收区的归一化荧光光谱与CO2吸收峰相对位置关系。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
图1为本发明实施中GaSb基背靠背结构四波段探测器的剖面示意图。如图1所示,所述探测器包括:
GaSb衬底1;
GaSb缓冲层2,其外延生长在衬底1上;
P型欧姆接触层3,其生长在所述缓冲层2上;
台面A,其位于P型欧姆电极接触层3上,包括
截止波长为4.6μm止的光吸收层4,其生长在P型欧姆电极接触层3上;
N型电荷层5,其生长在光吸收层4上;
截止波长为4.1μm的光吸收层6,其生长在N型电荷层5上;
P型电极接触层7,其生长在光吸收层6上;
台面B,其位于P型电极接触层7上,包括:
]截止波长为2.9μm的光吸收层8,其生长在P型电极接触层7上;
N型电荷层9,其生长在光吸收层8上;
截止波长为2.5μm的光吸收层10,其生长在N型电荷层9上;
P型欧姆电极接触层11,其生长在光吸收层10上;
底部P型电极12,其蒸镀在P型欧姆接触层3上;
中间P型电极13,其蒸镀在P型欧姆接触层7上;
顶部P型电极14,其蒸镀在P型欧姆接触层11上;
保护层15,覆盖于两个台面侧壁;
该器件结构设计与现有的不同在于通过调节吸收区InAs/GaSb/ AlAs/AlSb等材料不同的生长周期实现了不同波长的吸收结构,其中4.6μm材和4.1μm截止波长的吸收区的差值、2.9μm和2.5μm截止波长的吸收区的差值可以很好地标定CO2的两个吸收峰值。
本发明实施例中,在GaSb衬底上采用分子束外延(MBE)外延生长,具体步骤如下:
如图1所示,在GaSb衬底1依次外延下面几层,P型掺杂浓度为2×1018cm-3厚度为0.5μm的GaSb缓冲层2;P型掺杂浓度为2×1018cm-3厚度为850nm的InAs0.91Sb0.9的P型电极接触层3;P型掺杂浓度为2×1018cm-3 60个周期交替排列8/8ML InAs/GaSb超晶格层,非掺杂的280个周期的8/8ML的InAs/GaSb超晶格层,N型掺杂浓度为1×1018cm-3 60个周期的8/8ML的InAs/GaSb层,上述三层构成NIP型吸收层4;N型掺杂浓度为1×1018cm-3厚度为650nm的GaSb电荷层5;N型掺杂浓度为1×1018cm-3 50个周期的7/7ML的InAs/GaSb II类超晶格层,非掺杂280个周期的7/7ML的InAs/GaSb II类超晶格层;P型掺杂浓度为2×1018cm-3 50个周期的7/7ML的InAs/GaSb II类超晶格层,上述三层构成PIN型吸收层6;P型掺杂浓度为2×1018cm-3厚度500nm的InAsSb电极接触层7;P型掺杂浓度为2×1018cm-3 50个周期的4/6ML的InAs/GaSbII类超晶格层,非掺杂350个周期的4/6ML的InAs/GaSb II类超晶格层;N型掺杂浓度为1×1018cm-3 50个周期的4/6ML的InAs/GaSb II类超晶格层,上述三层组成光吸收层8;N 型掺杂浓度为1×1018cm-3厚度为500nm的GaSb电荷层9,N型掺杂浓度为1×1018cm-3 50个周期为4/9ML的InAs/GaSb II类超晶格层,非掺杂350个周期4/9MLs InAs/GaSb II类超晶格层,P型掺杂浓度为2×1018cm-3 35周期4/9ML InAs/GaSb II超晶格层,上述三层组成光吸收层10,P型掺杂浓度为2×1018cm-3厚度20nm的InAs电极接触层。
上述材料基本结构需采用分子束外延制备方法,通过定向控制吸收区超晶格结构参数,如界面结构,As/Sb比例,Ga/In比例等实现如图2所示的各个通道材料能带结构。并通过光致发光方法对材料结构进行如图3所示的校验比对。
制备好的外延片采用标准光刻技术并用磷酸、柠檬酸、双氧水腐蚀两次并且制作两个台面,第一个台面腐蚀深度为3.6μm,腐蚀到底部P型电极欧姆接触层;第二个台面的腐蚀深度为4.3μm,腐蚀到中间P型欧姆电极接触层。
然后在腐蚀好的台面结构上利用磁控溅射在沉积一层200nm的SiO2,SiO2的对表面的钝化可以有效地减少台面侧壁上的悬挂键,进而减少暗电流。
光刻出三个欧姆电极接触窗口,利用氢氟酸溶液腐蚀掉SiO2,并且在上面以次沉积Ti、Pt、Au三种金属,并且剥离掉P型电极12、13、14以外的金属并且进行退货让电极的三层金属可以形成良好欧姆接触的合金。
光刻出通光孔,并且利用氢氟酸容易腐蚀掉通光孔部分的SiO2
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种GaSb基背靠背结构的四波段探测器,其特征在于,至少要在GaSb衬底上生长缓冲层、P型欧姆接触层、四个波段的光吸收区、N型欧姆接触层。
2.如权利要求1所述的探测器,其特征在于,所述四个波段的光吸收区为4个不同吸收截止波长的吸收区,且4个吸收区截止波长分别为4.6μm、4.1μm、2.9μm、2.5μm,吸收材料由InAs/GaSb II类超晶格构成。
3.如权利要求1所述的探测器,其特征在于,利用吸收截止波长为2.9μm和2.5μm的吸收区的吸收曲线的差值来标定CO2的2.7μm的吸收峰值。
4.如权利要求1所述的探测器,其特征在于,利用吸收截止波长为4.6μm和4.1μm的吸收区的吸收曲线的差值来标定CO2的4.27μm的吸收峰值。
5.如权利要求1所述的探测器,其特征在于,截止波长为4.6μm的吸收区结构为:P区为掺杂浓度为2×1018cm-3、且60个周期交替排列的8/8ML InAs/GaSb的II类超晶格,I区为280个周期交替排列的8/8ML的InAs/GaSb的II类超晶格,N区为掺杂浓度为1×1018cm-3、且60个周期交替排列的8/8ML InAs/GaSb层。
6.如权利要求1所述的探测器,其特征在于,截止波长为4.1μm的吸收区结构为:N区为掺杂浓度为1×1018cm-3、且50个周期交替排列的7/7ML的InAs/GaSb II类超晶格,I区为280个周期交替排列的7/7ML的InAs/GaSb II类超晶格,P区为掺杂浓度为2×1018cm-3、且50个周期交替排列的7/7ML的InAs/GaSb II类超晶格。
7.如权利要求1所述的探测器,其特征在于,截止波长为2.9μm的吸收区结构为:P区为掺杂浓度为2×1018cm-3、且50个周期交替排列的4/6ML的InAs/GaSb II类超晶格,I区为350个周期交替排列的 4/6ML的InAs/GaSb II类超晶格,N区为1×1018cm-3、且50个周期交替排列的4/6ML的InAs/GaSb II类超晶格。
8.如权利要求1所述的探测器,其特征在于,截止波长2.5μm的吸收区结构为:P区掺杂浓度为2×1018cm-3、且50个周期交替排列的4/9ML的InAs/GaSb II类超晶格,I区为 35个周期交替排列的4/9ML的InAs/GaSb II类超晶格,N区为1×1018cm-3、且50个周期的4/9ML的InAs/GaSb II类超晶格。
9.一种GaSb基背靠背结构的四波段探测器的制作方法,包括:
步骤1,在GaSb衬底上制备外延片:
在所述衬底上依次外延生长GaSb缓冲层、第一P型电极接触层、截止波长为4.6μm的InAs/GaSb II类超晶格吸收区、截止波长为4.1μm的InAs/GaSb II类超晶格吸收区、第二P型电极接触层、截止波长为2.9μm的InAs/GaSb II类超晶格吸收区、截止波长为2.5μm的InAs/GaSb II类超晶格吸收区、第三P型电极接触层;
步骤2,在制备好的外延片上制作台面:
第一步对制备完成的外延片光刻从而刻蚀出第一台面结构,第二步再次光刻刻蚀出第二台面结构,第三步在上述台面结构基础上淀积一层SiO2外延层进行保护,第四步光刻腐蚀所述SiO2外延层形成电极窗口并制作电极。
10.如权利要求9所述的制作方法,其特征在于,电极材料为Ti/Pt/Au。
CN201810011240.XA 2018-01-05 2018-01-05 一种GaSb基背靠背结构四波段红外探测器及制备方法 Active CN108281495B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810011240.XA CN108281495B (zh) 2018-01-05 2018-01-05 一种GaSb基背靠背结构四波段红外探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810011240.XA CN108281495B (zh) 2018-01-05 2018-01-05 一种GaSb基背靠背结构四波段红外探测器及制备方法

Publications (2)

Publication Number Publication Date
CN108281495A true CN108281495A (zh) 2018-07-13
CN108281495B CN108281495B (zh) 2020-06-05

Family

ID=62803221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810011240.XA Active CN108281495B (zh) 2018-01-05 2018-01-05 一种GaSb基背靠背结构四波段红外探测器及制备方法

Country Status (1)

Country Link
CN (1) CN108281495B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021077804A (ja) * 2019-11-12 2021-05-20 富士通株式会社 赤外線検出器
CN114141903A (zh) * 2021-11-26 2022-03-04 中国科学院长春光学精密机械与物理研究所 双pn结式硅基光电二极管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797256A2 (en) * 1996-03-19 1997-09-24 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Three band and four band multispectral structures having two simultaneous signal outputs
US20020117658A1 (en) * 2000-12-01 2002-08-29 Bandara Sumith V. Multi-quantum-well infrared sensor array in spatially-separated multi-band configuration
US20130193308A1 (en) * 2011-12-21 2013-08-01 Arizona State Multiband Photodetector Utilizing Unipolar and Bipolar Devices
CN104576805A (zh) * 2015-01-21 2015-04-29 哈尔滨工业大学 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797256A2 (en) * 1996-03-19 1997-09-24 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Three band and four band multispectral structures having two simultaneous signal outputs
US20020117658A1 (en) * 2000-12-01 2002-08-29 Bandara Sumith V. Multi-quantum-well infrared sensor array in spatially-separated multi-band configuration
US20130193308A1 (en) * 2011-12-21 2013-08-01 Arizona State Multiband Photodetector Utilizing Unipolar and Bipolar Devices
CN104576805A (zh) * 2015-01-21 2015-04-29 哈尔滨工业大学 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. ROGALSKI: ""competitive technologies of third generation infrared phono detectors"", 《OPTO-ELECTRONICS REVIEW》 *
蒋洞微: ""InAs/GaSbⅡ类超晶格材料生长及其红外探测器性能"", 《万方博士学位论文》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021077804A (ja) * 2019-11-12 2021-05-20 富士通株式会社 赤外線検出器
JP7380108B2 (ja) 2019-11-12 2023-11-15 富士通株式会社 赤外線検出器
CN114141903A (zh) * 2021-11-26 2022-03-04 中国科学院长春光学精密机械与物理研究所 双pn结式硅基光电二极管及其制备方法
CN114141903B (zh) * 2021-11-26 2023-11-21 中国科学院长春光学精密机械与物理研究所 双pn结式硅基光电二极管及其制备方法

Also Published As

Publication number Publication date
CN108281495B (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
Alaie et al. Recent advances in ultraviolet photodetectors
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
US8058642B2 (en) Light-receiving device
CN106711249B (zh) 一种基于铟砷锑(InAsSb)材料的双色红外探测器的制备方法
CN109285911B (zh) 一种短波/中波/长波三波段红外探测器及其制备方法
EP2446483B1 (en) Low-level signal detection by semiconductor avalanche amplification
EP2306523B1 (en) Infrared detector, infrared detecting apparatus and method of manufacturing infrared detector
TWI396293B (zh) 輻射接收器及其製造方法
WO2012073539A1 (ja) 受光素子、検出装置、半導体エピタキシャルウエハ、およびこれらの製造方法
JP6487284B2 (ja) 赤外線センサ素子及びその製造方法
CN104465853A (zh) 一种雪崩光电二极管及其制作方法
CN107863403B (zh) 一种高线性增益红外雪崩光电二极管及其制备方法
CN108231926A (zh) 一种红外探测器及其制备方法
CN103247708A (zh) 半导体感光元件
CN115692537A (zh) 一种基于InAs/InAsSb II类超晶格材料的势垒型短中波双色红外探测器
CN108281495A (zh) 一种GaSb基背靠背结构四波段红外探测器及制备方法
CN110311000A (zh) 二类超晶格雪崩光电探测器及其制作方法
US10872997B2 (en) Photodetector comprising a stack of vertically adjacent layers
CN109148638B (zh) 红外探测器及其制备方法
CN116565055A (zh) 一种双色红外雪崩光电探测器及其制备方法
US20140027774A1 (en) Laser Processed Photovoltaic Devices and Associated Methods
WO2019012276A1 (en) SINGLE PHOTON DETECTOR
CN103500766A (zh) 宽频带长波响应的GaAs/AlxGa1-xAs量子阱红外探测器及其制备方法与应用
JP6660358B2 (ja) 量子ドット型赤外線検出器
US8530995B2 (en) High operating temperature split-off band infrared detector with double and/or graded barrier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant