CN108279398A - 传感器以及推定生物体的位置的方法 - Google Patents

传感器以及推定生物体的位置的方法 Download PDF

Info

Publication number
CN108279398A
CN108279398A CN201711454956.9A CN201711454956A CN108279398A CN 108279398 A CN108279398 A CN 108279398A CN 201711454956 A CN201711454956 A CN 201711454956A CN 108279398 A CN108279398 A CN 108279398A
Authority
CN
China
Prior art keywords
organism
function
circuit
sensor
biological component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711454956.9A
Other languages
English (en)
Other versions
CN108279398B (zh
Inventor
饭冢翔
饭冢翔一
中山武司
本间尚树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017179355A external-priority patent/JP6893328B2/ja
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of CN108279398A publication Critical patent/CN108279398A/zh
Application granted granted Critical
Publication of CN108279398B publication Critical patent/CN108279398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本公开涉及传感器以及推定生物体的位置的方法。传感器具备:具有发送天线的发送站;分别具有接收阵列天线的多个接收站;第1电路,其根据由多个接收站的每一个的接收阵列天线观测到的信号,提取生物体成分,该生物体成分是从发送天线元件发送并且通过1个以上的生物体反射后的信号成分;第2电路,其根据由第1电路提取到的生物体成分的每一个,算出位置谱函数,该位置谱函数是对于从多个接收站的每一个观察到的1个以上的生物体的位置的评价函数;以及第3电路,其将由第2电路算出的多个位置谱函数合并为1个函数,算出合并得到的所述位置谱函数的1个以上的极大值,由此推定1个以上的生物体的位置。

Description

传感器以及推定生物体的位置的方法
技术领域
本公开涉及传感器以及推定生物体的位置的方法,尤其涉及利用无线信号进行生物体的位置推定的传感器以及推定生物体的位置的方法。
背景技术
利用以无线方式发送的信号来检测检测对象的技术正在被进行开发(例如参照专利文献1以及非专利文献1)。
专利文献1中公开了通过使用傅立叶变换来解析包含多普勒频移(dopplershift)的成分,能够获知成为检测对象的人物的位置、状态。另外,非专利文献1中公开了根据从传播信道(channel)信息中提取到的变动成分和MUSIC(MUltiple SignalClassification,多重信号分类)法来推定检测对象的位置的技术。
现有技术文献
专利文献
专利文献1:日本特开2015-117972号公报
专利文献2:日本特开2010-249712号公报
专利文献3:日本特开2007-155490号公报
专利文献4:日本特开2010-32442号公报
专利文献5:日本特表2007-518968号公报
专利文献6:日本特表2012-524898号公报
非专利文献
非专利文献1:T.MIWA,S.OGIWARA,and Y.YAMAKOSHI,“Localization of Living-bodies using single-frequency multistatic Doppler radar system,”IEICETransactions on Communications,Vol.E92-B,No.7,pp.2468-2476,July 2009.
发明内容
发明所要解决的问题
然而,在专利文献1以及非专利文献1所公开的技术中存在如下问题,即、在作为检测对象的生物体静止着的情况下等,能够检测生物体的范围即检测范围会变窄。
本公开是鉴于上述情形而做出的,其目的在于提供能够利用无线信号更广范围地且高精度地推定生物体所存在的位置的传感器以及位置推定方法。
用于解决问题的技术方案
为了实现上述目的,本公开的一个方式涉及的传感器,具备:分别具有发送天线的1个以上的发送站;分别具有接收阵列天线的多个接收站;第1电路,其根据由所述多个接收站的每一个的所述接收阵列天线观测到的信号,提取生物体成分,该生物体成分是从所述发送天线发送并且通过1个以上的生物体反射后的信号成分;第2电路,其根据由所述第1电路提取到的生物体成分的每一个,算出位置谱函数,该位置谱函数是对于从所述多个接收站的每一个观察到的所述1个以上的生物体的位置的评价函数;以及第3电路,其将由所述第2电路算出的多个所述位置谱函数合并为1个函数,算出合并得到的所述位置谱函数的1个以上的极大值,由此推定所述1个以上的生物体的位置。
发明效果
根据本公开的传感器,能够利用无线信号更广范围地且高精度地推定生物体所存在的位置。
附图说明
图1是表示实施方式1中的传感器的构成的框图。
图2是表示实施方式1中的发送站与接收站的配置的一例的图。
图3是表示实施方式1中的传感器的位置推定处理的流程图。
图4是表示图3所示的位置推定处理的详情的流程图。
图5A是表示比较例中的生物体位置的可推定范围的图。
图5B是表示实施方式1中的生物体位置的可推定范围的图。
图6是表示实施方式1的变形例中的传感器的构成的框图。
图7是表示实施方式2中的传感器的构成的框图。
图8是表示实施方式2中的发送站与接收站的配置的一例的图。
图9是表示实施方式2中的传感器的位置推定处理的详情的流程图。
图10是表示实施方式2的实施例中的进行实验的环境的图。
图11是表示实施方式2的实施例中的改变了接收站数量的情况下的推定位置误差的累积概率分布的图。
标号说明
1、1a、1A:传感器
10、10-1、10-2、10-NT:发送站
11、11-1、11-NT:发送机
12、12-1、12-NT:发送天线
20-1、20-2、20-3、20-4、20-N、20-NR:接收站
21-1、21-N、21-NR:接收天线
22-1、22-N、22-NR:接收机
23-1、23-N、23-NR:复传递函数算出部
24a:第1电路
24-1、24-N、24-NR:生物体成分提取部
25a:第2电路
25-1、25-N、25-NR:位置谱函数计算部
30、30A:位置推定部
30a:第3电路
40:生物体
50:发送时刻(timing)控制部
60、70:检测范围
具体实施方式
(成为本公开的基础的见解)
利用以无线方式发送的信号来检测检测对象的技术正在被进行开发(例如参照专利文献1~6以及非专利文献1)。
例如专利文献2~3中公开了利用UWB(Ultra Wide Band,超宽带)的无线信号算出物体的有无以及移动方向的技术。更具体而言是,对预定的区域发送UWB(Ultra WideBand)的无线信号,用阵列天线接收由检测对象的对象物反射后的无线信号。而且,利用多普勒效应仅将来自动态的对象物的信号进行分离,根据分离出的信号算出移动物体的有无和/或移动方向。
另外,例如专利文献4~5中公开了如下技术,即、通过对天线接收从发送机发送的UWB信号的接收时刻之差,实施作为阵列天线信号处理技术之一的到来方向推定处理,算出发送机的方向和/或位置。
另外,例如专利文献6中公开了利用MUSIC法等方向推定算法来推定对象物的位置的技术。具体而言是,在接收到发送站所发出的信号的多个接收站的每一个接收站中,应用MUSIC法等方向推定算法,将其结果通过相乘或者相加来进行合并。由此能够进行高精度的方向推定。
然而,发明人进行了详细的研究,其结果,已知在专利文献2~6所公开的技术中,无法进行生物体的位置推定。即,已知在专利文献2~3的方法中,虽然能够检测人物的存在、不存在,但无法推定人物所存在的方向和位置。另外,已知专利文献4~6所公开的技术是发出电波的发送机的位置推定技术,无法对生物体进行位置推定。
专利文献1中公开了通过使用傅立叶变换来解析包含多普勒频移的成分,能够获知成为检测对象的人物的位置以及状态的技术。另外,非专利文献1中公开了根据从传播信道信息中提取到的变动成分和MUSIC法来推定检测对象的位置的技术。
更具体而言是,在专利文献1以及非专利文献1所公开的技术中,观测收发天线间的传播信道,记录其时间序列变化。之后,对按时间序列观测的传播信道进行傅立叶变换处理,将时间响应变换为频率响应。在此,收发天线二者都为多个,因此频率响应成为元素为复数的矩阵。通过对该频率响应矩阵应用MUSIC法等方向或者位置推定算法,能够确定对象的方向和/或位置。再者在专利文献1中,示出了即使对象为多个也能够同时进行检测。
然而,在专利文献1以及非专利文献1所公开的技术中存在如下问题,即、在作为检测对象的生物体静止着的情况下等多普勒效应非常弱的状况下,可检测的距离变短,因此能够检测生物体的检测范围会变窄。其原因在于,在多普勒效应非常弱的状况下,受到接收机所具有的内部噪音、从检测对象以外飞来的干涉波以及在检测对象以外存在使多普勒频移产生的物体等影响,变得难以检测出产生多普勒频移的微弱的信号。此外,若使成为对象的生物体携带发送机等特殊设备,则即使是静止着的生物体,也能够检测到。
于是,发明人鉴于这些,想到了无需使成为对象的生物体携带发送机等特殊设备,就能够利用无线信号更广范围地且高精度地推定生物体所存在的位置的传感器等。
(1)本公开的一个技术方案涉及的传感器,具备:分别具有发送天线的1个以上的发送站;分别具有接收阵列天线的多个接收站;第1电路,其根据由所述多个接收站的每一个的所述接收阵列天线观测到的信号,提取生物体成分,该生物体成分是从所述发送天线发送并且通过1个以上的生物体反射后的信号成分;第2电路,其根据由所述第1电路提取到的生物体成分的每一个,算出位置谱函数,该位置谱函数是对于从所述多个接收站的每一个观察到的所述1个以上的生物体的位置的评价函数;以及第3电路,其将由所述第2电路算出的多个所述位置谱函数合并为1个函数,算出合并得到的所述位置谱函数的1个以上的极大值,由此推定所述1个以上的生物体的位置。
根据该构成,将根据由多个接收站求出的复传递函数所获得的位置谱函数合并从而进行推定,因此,能够利用无线信号更广范围地且高精度地推定生物体所存在的位置。例如,即使在来自成为对象的生物体的信号弱,多个接收站中的若干个接收站无法观测到来自生物体的反射波的情况下,也能够使用根据能够观测到来自该生物体的反射波的接收站中的复传递函数所获得的位置谱函数,进行生物体位置的推定。
(2)在上述技术方案中,也可以为,所述1个以上的发送站是两个以上的发送站,所述两个以上的发送站分别具有包括两元件以上的所述发送天线的发送阵列天线。
(3)在上述技术方案中,也可以为,还具备第4电路,所述第4电路控制发送时刻以使得所述两个以上的发送站的任一方都不同时从所述发送阵列天线进行发送。
(4)在上述技术方案中,也可以为,推定所述1个以上的生物体的位置的电路将所算出的多个位置谱函数彼此相乘或者相加,由此合并为1个函数。
(5)在上述技术方案中,也可以为,算出所述位置谱函数的电路基于MUSIC算法、即多重信号分类(MUltiple SIgnal Classification)算法,算出所述位置谱函数。
(6)本公开的一个技术方案涉及的推定生物体的位置的方法,包括:根据由分别具有接收阵列天线的多个接收站的每一个的所述接收阵列天线观测到的信号,提取生物体成分,该生物体成分是从1个以上的发送站所具有的发送天线元件发送并且通过1个以上的生物体反射后的信号成分;根据所述提取到的生物体成分的每一个,算出位置谱函数,该位置谱函数是对于从所述多个接收站的每一个观察到的所述1个以上的生物体的位置的评价函数;将通过所述算出步骤算出的多个所述位置谱函数合并为1个函数,算出合并得到的所述位置谱函数的1个以上的极大值,由此推定所述1个以上的生物体的位置。
此外,本公开不仅能够作为装置而实现,也能够作为集成电路来实现,所述集成电路具备这种装置所具备的处理单元,或作为使构成该装置的处理单元成为步骤的方法来实现,作为使计算机执行这些步骤的程序来实现,作为表示该程序的信息、数据或者信号来实现。而且,这些程序、信息、数据以及信号也可以通过CD-ROM等记录介质和/或互联网等通信介质来发布。
以下,使用附图,详细地对本公开的实施方式进行说明。此外,以下说明的实施方式均表示本公开的优选的一个具体例。在以下的实施方式中表示的数值、形状、材料、构成要素、构成要素的配置位置以及连接方式、步骤、步骤的顺序等仅为一例,并非旨在限定本公开。另外,对于以下的实施方式中的构成要素中的、没有记载在表示本公开的最上位概念的独立权利要求中的构成要素,作为构成更加优选的方式的任意的构成要素进行说明。另外,在本说明书以及附图中,对具有实质相同的功能结构的构成要素赋予相同的标号,由此省略重复说明。
(实施方式1)
以下,参照附图,进行对实施方式1中的传感器1的位置推定方法等的说明。
[传感器1的构成]
图1是表示实施方式1中的传感器1的构成的框图。图2是表示实施方式1中的发送站与接收站的配置的一例的图。
图1所示的传感器1具备发送站10、N个接收站20-1~20-N以及位置推定部30。此外,在图2中,概念性地表示了N为4的情况下的发送站10以及接收站20-1~接收站20-4的配置和信号被传递的状况。
[发送站10]
发送站10具有发送天线。具体而言,发送站10如图1所示那样通过发送机11和发送天线12构成。
发送天线12通过1元件的发送天线即1个发送天线元件构成。
发送机11生成为了推定生物体40的方向所使用的高频信号。例如,如图2所示,发送机11将所生成的信号作为发送波通过发送天线12进行发送。
[接收站20-1~20-N]
接收站20-1~20-N分别具有接收阵列天线。在此,N是2以上的整数。列举N个接收站中作为代表的第i个(i是大于等于1且小于等于N的整数)接收站20-i为例进行说明。此外,所有接收站20-1~20-N具有同样的构成,进行同样的处理。
接收站20-i具备接收天线21-i、接收机22-i、复传递函数算出部23-i、生物体成分提取部24-i以及位置谱函数计算部25-i。
<接收天线21-i>
接收天线21-i是通过MR元件的接收天线即MR个接收天线元件构成的接收阵列天线。接收天线21-i由接收阵列天线接收高频信号。在本实施方式中,接收天线21-i例如如图2所示那样,根据其配置,存在接收的高频信号中包含反射波的情况,该反射波是从发送天线12发送来的发送波的一部分通过生物体40反射后的信号。
<接收机22-i>
接收机22-i将由接收天线21-i接收到的高频信号变换为能够进行信号处理的低频信号。接收机22-i将变换出的低频信号传递给复传递函数算出部23-i。
<复传递函数算出部23-i>
复传递函数算出部23-i根据由接收站20-i的接收阵列天线观测到的信号,算出表现该接收阵列天线与发送站10的发送天线12之间的传播特性的复传递函数。更具体而言,复传递函数算出部23-i根据由接收机22-i传递的低频信号,算出表现发送天线12的1个发送天线元件与接收阵列天线的MR个接收天线元件之间的传播特性的复传递函数。此外,在复传递函数算出部23-i算出的复传递函数中,包含来自发送天线12的直接波以及源于固定物的反射波等没有经由生物体40的反射波。另外,在复传递函数算出部23-i算出的复传递函数中,有时包含从发送天线12发送来的发送波的一部分通过生物体40反射后的信号即反射波。通过生物体40反射后的反射波、即经由生物体40的反射波的振幅以及相位会因生物体40的呼吸以及心跳等生物体活动而时常变动。
以下,设为复传递函数算出部23-i算出的复传递函数中包含通过生物体40反射后的信号即反射波来进行说明。
<生物体成分提取部24-i>
生物体成分提取部24-i根据由接收站20-i的接收阵列天线观测到的信号,提取生物体成分,该生物体成分是从发送天线12发送并且通过1个以上的生物体40反射后的信号成分。更具体而言,生物体成分提取部24-i将由复传递函数算出部23-i算出的复传递函数按作为信号被观测到的顺序的时间序列进行记录。而且,生物体成分提取部24-i提取按时间序列记录的复传递函数的变化中的、由生物体40的影响引起的变动成分作为生物体成分。在此,作为提取由生物体的影响引起的变动成分的方法,具有基于傅立叶变换等的向频率区域的变换后,仅提取与生物体的振动对应的成分的方法、或者通过计算两个不同的时间的复传递函数的差量来进行提取的方法。通过这些方法,去除直接波以及经由固定物的反射波的复传递函数,仅剩下经由生物体40的反射波的复传递函数成分。
此外,在本实施方式中,构成接收阵列天线的接收天线元件有MR个即多个,因此,与接收阵列天线对应的复传递函数的经由生物体40的变动成分的数量即生物体成分也为多个。以下,将它们一并称作生物体成分信道向量。
<位置谱函数计算部25-i>
位置谱函数计算部25-i根据由生物体成分提取部24-i提取到的生物体成分,算出位置谱函数,该位置谱函数是对于从接收站20-i观察到的1个以上的生物体40的位置的评价函数。在此,例如,位置谱函数计算部25-i也可以基于MUSIC算法,算出位置谱函数。
在本实施方式中,位置谱函数计算部25-i计算由生物体成分提取部24-i提取到的生物体成分信道向量的相关矩阵Ri,使用所获得的相关矩阵Ri,通过预定的到来方向推定方法,计算对于从接收站20-i观察到的与生物体40的方向所成的角θi的位置谱函数Pi(θ)。
位置谱函数计算部25-i将计算出的位置谱函数Pi(θ)传递给位置推定部30。
以下,使用数式来说明位置谱函数计算部25-i使用MUSIC法计算位置谱函数Pi(θ)为止的步骤。此外,假设生物体成分是使用傅立叶变换提取的。
当对生物体成分信道向量的相关矩阵Ri进行特征值分解时,可以写成如下的(式1)~(式3)这样。
Ri=UiAiUi H …(式1)
在此,MR是接收站20-i的天线数,是元素数为MR的特征向量,是与特征向量对应的特征值,顺序为L是到来波的数量也就是检测对象的生物体数。
接收阵列天线的导向矢量(steering vector)即方向矢量能够用(式4)定义。
在此,k是波数。根据MUSIC法,使用该导向矢量,如(式5)所示那样计算位置谱函数Pi(θ)。
位置谱函数Pi(θ),在从第i个接收站20-i观察生物体所存在的角度,分母变为最小,取极大值。
此外,为了算出位置谱函数,也可以不使用MUSIC法,而使用波束成形(beamforming)法,还可以使用Capon法。
[位置推定部30]
在位置推定部30中,被传递由N个位置谱函数计算部25-1~25-N的每一个计算出的位置谱函数。位置推定部30将由位置谱函数计算部25-1~25-N的每一个算出的多个位置谱函数合并为1个函数,算出合并得到的位置谱函数的1个以上的极大值,由此推定1个以上的生物体40的位置。在此,位置推定部30将算出的多个位置谱函数彼此相乘或者相加,由此合并为1个函数。
在本实施方式中,位置推定部30进行对N个位置谱函数Pi(θ)的合并,基于合并得到的位置谱函数进行生物体40的位置推定。更具体而言,位置推定部30从N个接收站20-1~20-N例如取得使用(式5)计算出的各自的位置谱函数Pi(θ)。而且,位置推定部30使用(式6)以及(式7),计算将取得的N个位置谱函数Pi(θ)进行合并得到的位置谱函数Pall(Θ)。
在此Π表示连乘运算。
此外,各个位置谱函数Pi(θ)在从相对应的接收站20-i观察生物体40所存在的角度取极大值,但即使在包括测定范围外的方向的除此以外的角度,其值也不会变为0。因此,通过将N个位置谱函数相乘,能够获得反映了N个接收站全部的结果的评价函数即合并得到的位置谱函数。而且,通过搜索合并得到的位置谱函数Pall(Θ)的极大值,能够推定到来波的方向即生物体40的位置。
[传感器1的工作]
对如上所述构成的传感器1推定生物体的位置的处理进行说明。
图3是表示实施方式1中的传感器1的位置推定处理的流程图。图4是表示图3所示的位置推定处理的详情的流程图。
首先,如图3所示,传感器1根据由多个接收站20-1~20-N的每一个的接收阵列天线观测到的信号,提取生物体成分,该生物体成分是从发送站10的发送天线元件发送并且通过1个以上的生物体反射后的信号成分(S1)。更具体而言是,如图4所示,首先,传感器1在N个接收站,在预定期间内观测接收信号(S11)。接下来,传感器1根据由N个接收站的接收阵列天线观测到的接收信号的每一个,算出复传递函数(S12)。然后,传感器1将算出的复传递函数的每一个按时间序列进行记录,根据所记录的各个时间序列的复传递函数,提取生物体成分(S13)。
接着,如图3所示,传感器1根据在S1中提取到的生物体成分的每一个,算出位置谱函数,该位置谱函数是对于从多个接收站20-1~20-N的每一个观察到的1个以上的生物体40的位置的评价函数(S2)。更具体而言是,如图4所示,首先,传感器1算出在S13中提取到的生物体成分的每一个的相关矩阵(S21)。接下来,传感器1使用在S21中算出的相关矩阵,算出从N个接收站的每一个观察到的生物体40的位置谱函数(S22)。
接着,如图3所示,传感器1将在S2中算出的多个位置谱函数合并为1个函数,算出合并得到的位置谱函数的1个以上的极大值,由此推定1个以上的生物体的位置(S3)。更具体而言是,如图4所示,首先,传感器1将在S22中算出的N个位置谱函数通过相乘或者相加来进行合并(S31)。然后,传感器1算出在S31中合并得到的位置谱函数的1个以上的极大值,由此推定1个以上的生物体40的位置(S32)。
[效果等]
根据本实施方式的传感器1以及位置推定方法,能够利用无线信号更广范围地且高精度地推定生物体所存在的位置。另外,根据本实施方式的传感器1以及位置推定方法,通过具备多个接收站,能够扩大能检测生物体的检测范围。更具体而言是,根据本实施方式的传感器1以及位置推定方法,根据由多个接收站求出的复传递函数的信息来提取生物体成分,将根据提取到的生物体成分计算获得的位置谱函数合并,推定生物体的位置。由此,能够不受障碍物的影响,更广范围地进行对生物体所存在的位置的推定。例如,即使在来自成为对象的生物体的信号弱,多个接收站中的若干个接收站无法观测到来自生物体的反射波的情况下,也能够使用根据能够观测到来自该生物体的反射波的接收站中的复传递函数所获得的位置谱函数,进行生物体位置的推定。
在此,使用图5A和图5B,说明本实施方式的传感器1在广范围进行生物体的位置推定。
图5A是表示比较例中的生物体位置的可推定范围的图。图5B是表示本实施方式中的生物体位置的可推定范围的图。在图5A所示的比较例中,表示了能够通过使用了1个发送站10和1个接收站20-1的例如MIMO(Multiple Input Multiple Output,多入多出)雷达来推定生物体位置的检测范围60。此外,检测范围60对应于1个发送站10输出的波束与1个接收站20-1输出的波束相重叠的区域。另一方面,在图5B所示的本实施方式中,表示了能够通过使用了1个发送站10和4个接收站20-1~20-4的传感器1来推定生物体位置的检测范围70。可知检测范围70与比较例的检测范围60相比变得更广。本实施方式的传感器1能够将基于由多个接收站的每一个接收到的信号所算出的位置谱函数合并为1个,从而推定生物体位置,因此能够使多个接收站协作。由此,能够扩大能接收由生物体引起的多普勒频移成分的检测范围。另外,通过使多个接收站协作,只要由多个接收站中的若干个接收站提取到生物体成分,就能够推定生物体位置,因此推定精度也能够提高。
(变形例)
图6是表示实施方式1的变形例中的传感器1a的构成的框图。对与图1同样的要素赋予相同的标号,并省略详细的说明。
在图1所示的传感器1中,多个接收站20-1~20-N的每一个中构成有复传递函数算出部23-i、生物体成分提取部24-i以及位置谱函数计算部25-i,但不限于此。也可以为如图6所示的传感器1a那样,多个接收站20-1~20-N的每一个中都不构成有复传递函数算出部23-i、生物体成分提取部24-i以及位置谱函数计算部25-i。在该情况下,传感器1a取代复传递函数算出部23-i、生物体成分提取部24-i以及位置谱函数计算部25-i而具备第1电路24a以及第2电路25a即可。另外,传感器1a具备实现位置推定部30的功能的第3电路30a。其他构成与图1所示的传感器1是同样的,因此省略说明。
第1电路24a是实现N个复传递函数算出部以及N个生物体成分提取部的功能的电路。更具体而言,第1电路24a根据由多个接收站20-1~20-N的每一个的接收阵列天线观测到的信号,提取生物体成分,该生物体成分是从发送站10的发送天线元件发送并且通过1个以上的生物体反射后的信号成分。
第2电路25a是实现N个位置谱函数计算部的功能的电路。更具体而言,第2电路25a根据由第1电路24a提取到的生物体成分的每一个,算出位置谱函数,该位置谱函数是对于从多个接收站20-1~20-N的每一个观察到的1个以上的生物体40的位置的评价函数。
第3电路30a是实现位置推定部30的功能的电路,将由第2电路25a算出的多个位置谱函数合并为1个函数,算出合并得到的位置谱函数的1个以上的极大值,由此推定1个以上的生物体40的位置。
(实施方式2)
在实施方式1中,说明了传感器1具备1个发送站的情况,但不限于此。在实施方式2中,对具备两个以上的发送站或者两个以上的发送天线元件的传感器1A的位置推定方法等进行说明。
[传感器1A的构成]
图7是表示实施方式2中的传感器1A的构成的框图。图8是表示实施方式2中的发送站与接收站的配置的一例的图。对与图1以及图2同样的要素赋予相同的标号,并省略详细的说明。
图7所示的传感器1A具备NT个发送站10-1~10-NT、NR个接收站20-1~20-NR、位置推定部30A以及发送时刻控制部50。此外,在图8中,概念性地表示了NT为2且NR为4的情况下的发送站10-1~10-2以及接收站20-1~接收站20-4的配置和信号被传递的状况。
[发送站10-1~10-NT]
发送站10-1~10-NT分别具有包括两元件以上的发送天线的发送阵列天线。在此,NT是2以上的整数。下面,列举NT个发送站中作为代表的第j个(j是大于等于1且小于等于NT的整数)发送站10-j为例进行说明。此外,所有发送站分别具有同样的构成,进行同样的处理。此外,发送站10-1~10-NT的配置优选为,一个发送站与其他发送站所成的角不为180度或者90度。
发送站10-j具备发送天线12-j和发送机11-j。
<发送天线12-j>
发送天线12-j是具备MT元件的发送天线的发送阵列天线。发送天线12-j由发送阵列天线发送高频信号。在本实施方式中,发送天线12-j例如如图8所示那样,将作为高频信号的发送波发送到包括生物体40的区域。
<发送机11-j>
发送机11-j生成为了推定生物体40的位置所使用的高频信号。发送机11-j将所生成的高频信号作为发送波使发送天线12-j进行发送。在此,发送机11-j由发送时刻控制部50控制,以使得不与其他发送站同时发送发送波。
[发送时刻控制部50]
发送时刻控制部50是第4电路的一例。发送时刻控制部50控制发送时刻以使得两个以上的发送站10-1~10-NT的任一方都不同时从发送阵列天线进行发送。
[接收站20-1~20-NR]
接收站20-1~20-NR分别具有接收阵列天线。在此,NR是2以上的整数。下面,列举NR个接收站中作为代表的第i个(i是大于等于1且小于等于NR的整数)接收站20-i为例进行说明。此外,所有接收站分别具有同样的构成,进行同样的处理。
接收站20-i具备接收天线21-i、接收机22-i、复传递函数算出部23-i、生物体成分提取部24-i以及位置谱函数计算部25-i。
<接收天线21-i>
接收天线21-i是通过MR元件的接收天线即MR个接收天线元件构成的接收阵列天线。接收天线21-i由接收阵列天线接收高频信号。在本实施方式中,接收天线21-i例如如图8所示那样,根据其配置,存在接收的高频信号中包含反射波的情况,该反射波是从发送天线12-1~12-NT的某一方发送来的发送波的一部分通过生物体40反射后的信号。
<接收机22-i>
接收机22-i将由接收天线21-i接收到的高频信号变换为能够进行信号处理的低频信号。接收机22-i将变换出的低频信号传递给复传递函数算出部23-i。
<复传递函数算出部23-i>
复传递函数算出部23-i根据由接收站20-i的接收阵列天线观测到的信号,算出表现该接收阵列天线与发送站10-1~10-NT的发送天线12-1~12-NT的某一方之间的传播特性的复传递函数。
在本实施方式中,存在多个发送站10-1~10-NT,但通过发送时刻控制部50,在特定的时刻仅接收来自至多1个发送站的信号。因此,复传递函数算出部23-i通过划分时刻能够算出与特定的发送站有关的复传递函数。
此外,下面设为复传递函数算出部23-i算出的复传递函数中包含通过生物体40反射后的信号即反射波来进行说明。
<生物体成分提取部24-i>
生物体成分提取部24-i根据由接收站20-i的接收阵列天线观测到的信号,提取生物体成分,该生物体成分是从发送天线12-1~12-NT的某一方发送并且通过1个以上的生物体40反射后的信号成分。更具体而言,生物体成分提取部24-i将由复传递函数算出部23-i算出的复传递函数按作为信号被观测到的顺序的时间序列进行记录。而且,生物体成分提取部24-i提取按时间序列记录的复传递函数的变化中的、由生物体40的影响引起的变动成分作为生物体成分。
此外,在本实施方式中,构成发送阵列天线的发送天线元件与构成接收阵列天线的接收天线元件有多个,因此,与接收阵列天线对应的复传递函数的经由生物体40的变动成分的数量即生物体成分也为多个。将它们一并称作生物体成分信道向量。
<位置谱函数计算部25-i>
位置谱函数计算部25-i根据由生物体成分提取部24-i提取到的生物体成分,算出位置谱函数,该位置谱函数是对于从接收站20-i观察到的1个以上的生物体40的位置的评价函数。在此,例如,位置谱函数计算部25-i也可以基于MUSIC算法,算出位置谱函数。
在本实施方式中,位置谱函数计算部25-i计算由生物体成分提取部24-i提取到的生物体成分信道向量的相关矩阵Ri,j,使用所获得的相关矩阵,通过预定的到来方向推定方法,计算对于从接收站20-i观察到的与生物体40的方向所成的角θR、和从发送站10-j观察到的与生物体40的方向所成的角θT的位置谱函数Pi,jR,θT)。位置谱函数计算部25-i将计算出的位置谱函数Pi,jR,θT)传递给位置推定部30A。
以下,使用数式来说明位置谱函数计算部25-i使用MUSIC法计算位置谱函数Pi,jR,θT)为止的步骤。此外,假设生物体成分是使用傅立叶变换提取的。
当对生物体成分信道向量的相关矩阵进行特征值分解时,可以写成如下的(式8)~(式10)这样。
在此,MR是接收站20-i的天线数,是元素数为MR的特征向量,是与特征向量对应的特征值,顺序为L是到来波的数量也就是检测对象的生物体数。
接收阵列天线的导向矢量即方向矢量能够用(式11)定义。
发送阵列天线的导向矢量也同样地能够用(式12)定义。
在此,k是波数。再者,将收发阵列天线的导向矢量相乘,如(式13)所示那样定义考虑了收发双方的角度信息的导向矢量。
而且,若对用(式13)定义的导向矢量应用MUSIC法,则能够如(式14)所示那样使用该导向矢量来计算位置谱函数Pi,jR,θT)。
位置谱函数Pi,jT,θR)在θR为从接收站20-i观察生物体40所存在的角度且θT为从发送站10-j观察生物体40所存在的角度的情况下,分母变为最小,取极大值。
此外,为了算出位置谱函数,也可以不使用MUSIC法,而使用波束成形法,还可以使用Capon法。
另外,在本实施方式中,设为多个接收站的每一个具备复传递函数算出部、生物体成分提取部以及位置谱函数计算部进行了说明,但不限于此。与实施方式1的变形例同样地,传感器1A也可以为,具备实现MR个复传递函数算出部及生物体成分提取部的功能的第1电路、和实现MR个位置谱函数计算部的功能的第2电路。
[位置推定部30A]
在位置推定部30A中,被传递由位置谱函数计算部25-1~25-NR计算出的NR×NT的位置谱函数。位置推定部30A是第3电路的一例。位置推定部30A将由位置谱函数计算部25-1~25-NR的每一个算出的多个位置谱函数合并为1个函数,算出合并得到的位置谱函数的1个以上的极大值,由此推定1个以上的生物体40的位置。在此,位置推定部30将算出的多个位置谱函数彼此相乘或者相加,由此合并为1个函数。
在本实施方式中,位置推定部30A取得NR个接收站20-1~20-NR分别例如使用(式14)计算出的位置谱函数Pi,jT,θR)。而且,位置推定部30A使用(式15)~(式17),计算将NR×NT个进行合并得到的位置谱函数PallT,ΘR)。
在此,Π表示连乘运算。
此外,各个位置谱函数Pi,jT,θR)在从相对应的接收站20-i观察生物体40所存在的角度取极大值,但即使在包括测定范围外的方向的除此以外的角度,其值也不会变为0。因此,通过将NR×NT个位置谱函数相乘,能够获得反映了NR×NT个接收站全部的结果的位置谱函数。而且,通过搜索合并得到的位置谱函数PallT,ΘR)的极大值,能够推定到来波的方向即生物体40的位置。
[传感器1A的工作]
对如上所述构成的传感器1A推定生物体的位置的处理进行说明。
图9是表示实施方式2中的传感器1A的位置推定处理的详情的流程图。图9与图3所示的位置推定处理的本实施方式中的详情相应。
首先,在S1中,传感器1A在NR个接收站,使其在预定期间内观测接收信号(S11A)。接下来,传感器1A根据由NR个接收站的接收阵列天线观测到的接收信号的每一个,算出表现发送天线元件与接收天线元件之间的传播特性的复传递函数(S12A)。然后,传感器1A将算出的复传递函数的每一个按时间序列进行记录,根据所记录的各个时间序列的复传递函数,提取作为由生物体的影响引起的变动成分的生物体成分(S13A)。
接着,在S2中,传感器1A算出在S13A中提取到的生物体成分的每一个的相关矩阵(S21A)。接下来,传感器1A使用在S21A中算出的相关矩阵,算出对于从NR个接收站的每一个观察到的生物体40的方向、和从NT个发送站的每一个观察到的生物体40的方向的NR×NT个位置谱函数(S22A)。
接着,在S3中,传感器1A将在S22A中算出的NR×NT个位置谱函数通过相乘或者相加来进行合并(S31A)。然后,传感器1A算出在S31A中合并得到的位置谱函数的1个以上的极大值,由此推定1个以上的生物体40的位置(S32A)。
[效果等]
根据本实施方式的传感器1A以及位置推定方法,能够利用无线信号更广范围且高精度地推定生物体所存在的位置。
另外,根据本实施方式的传感器1以及位置推定方法,通过使发送站的数量和接收站的数量增加,使能够接收由生物体引起的多普勒频移成分的区域扩大。由此,实现在存在多个检测对象的生物体的情况下也能够不降低精度地进行位置推定这一效果。
(实施例)
在此,为了验证与实施方式2相关的效果,进行了基于实验的评价,因此,以下作为实施例进行说明。
图10是表示本实施例中的进行实验的环境的图。
本实验在长9m×宽6m的木质房屋中进行。在本实验中,对构成图中示为Tx的发送站的发送天线使用了8元件圆形套管天线,对构成图中示为Rx1~Rx4的接收站的接收天线使用了4元件线性阵列天线。发送站Tx配置于坐标(6,3),接收站Rx1~Rx4分别配置于测定范围的四角即坐标(1,5.5)、(8,5)、(8.5,1)、(0.5,0.5)。另外,设收发阵列元件的间隔即8元件圆形套管天线的元件间隔为0.5波长,使用频率为2.47125GHz,天线高为115cm,抽样频率为100Hz,提取的生物体活动的频率范围为0.3~3.3Hz,测定时间为20秒。另外,在本实验中,将测定对象设为1人,将测定对象分别配置在木质房屋内即实验环境内的23个地点,测定信道。
图11是表示本实施例中的改变了接收站数量的情况下的推定位置误差的累积概率分布(CDF:Cumulative Distribution Function)的图。纵轴表示累积概率分布(CDF),横轴表示推定位置误差。1Rx表示用作为4个接收站Rx1~Rx4之一的1个站对推定位置误差的累积概率分布进行测定得到的结果。同样地,2Rx、3Rx或者4Rx表示用4个接收站Rx1~Rx4中的2个站、3个站或者4个站对推定位置误差的累积概率分布进行测定得到的结果。
由图11所示的结果可知,能够在推定出的位置的误差为1m以内进行位置推定的概率为,2个站比1个站高,3个站比2个站高,4个站比3个站高。
由以上的结果可知,通过使接收站数量增加,位置推定精度会提高。
如上所述,根据本公开,根据由多个接收站求出的复传递函数的信息来提取生物体成分,将根据提取到的生物体成分计算获得的位置谱函数合并,推定生物体的位置。由此,能够不受障碍物的影响,更广范围地进行利用无线信号的对生物体所存在的位置的推定。例如,即使在来自成为对象的生物体的信号弱,多个接收站中的若干个接收站无法观测到来自生物体的反射波的情况下,也能够使用根据能够观测到来自该生物体的反射波的接收站中的复传递函数所获得的位置谱函数,进行生物体位置的推定。
以上,基于实施方式说明了本公开的一个技术方案涉及的传感器以及位置推定方法,但本公开并不限定于这些实施方式。只要不脱离本公开的宗旨,将本领域技术人员想到的各种变形应用于本实施方式,或者将不同的实施方式中的构成要素组合而构成的形态也包含在本公开的范围内。
另外,本公开不仅可以作为具备这种特征性构成要素的传感器而实现,也可以作为位置推定方法等而实现,所述位置推定方法以传感器所包含的特征性构成要素为步骤。另外,还能够作为计算机程序而实现,所述计算机程序使计算机执行这种方法所包含的特征性的各个步骤。而且,毫无疑问也可以通过CD-ROM等计算机可读的非瞬时性的记录介质或者互联网等通信网络来使这种计算机程序流通。

Claims (6)

1.一种传感器,具备:
分别具有发送天线的1个以上的发送站;
分别具有接收阵列天线的多个接收站;
第1电路,其根据由所述多个接收站的每一个的所述接收阵列天线观测到的信号,提取生物体成分,该生物体成分是从所述发送天线发送并且通过1个以上的生物体反射后的信号成分;
第2电路,其根据由所述第1电路提取到的生物体成分的每一个,算出位置谱函数,该位置谱函数是对于从所述多个接收站的每一个观察到的所述1个以上的生物体的位置的评价函数;以及
第3电路,其将由所述第2电路算出的多个所述位置谱函数合并为1个函数,算出合并得到的所述位置谱函数的1个以上的极大值,由此推定所述1个以上的生物体的位置。
2.根据权利要求1所述的传感器,
所述1个以上的发送站是两个以上的发送站,
所述两个以上的发送站分别具有包括两元件以上的所述发送天线的发送阵列天线。
3.根据权利要求2所述的传感器,
还具备第4电路,所述第4电路控制发送时刻以使得所述两个以上的发送站的任一方都不同时从所述发送阵列天线进行发送。
4.根据权利要求1至3中任一项所述的传感器,
推定所述1个以上的生物体的位置的电路将所算出的多个位置谱函数彼此相乘或者相加,由此合并为1个函数。
5.根据权利要求1至4中任一项所述的传感器,
算出所述位置谱函数的电路基于MUSIC算法、即多重信号分类算法,算出所述位置谱函数。
6.一种方法,是推定生物体的位置的方法,包括:
根据由分别具有接收阵列天线的多个接收站的每一个的所述接收阵列天线观测到的信号,提取生物体成分,该生物体成分是从1个以上的发送站所具有的发送天线元件发送并且通过1个以上的生物体反射后的信号成分;
根据所述提取到的生物体成分的每一个,算出位置谱函数,该位置谱函数是对于从所述多个接收站的每一个观察到的所述1个以上的生物体的位置的评价函数;
将所述算出的多个所述位置谱函数合并为1个函数,算出合并得到的所述位置谱函数的1个以上的极大值,由此推定所述1个以上的生物体的位置。
CN201711454956.9A 2017-01-06 2017-12-28 传感器以及推定生物体的位置的方法 Active CN108279398B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-001120 2017-01-06
JP2017001120 2017-01-06
JP2017-179355 2017-09-19
JP2017179355A JP6893328B2 (ja) 2017-01-06 2017-09-19 センサおよび位置推定方法

Publications (2)

Publication Number Publication Date
CN108279398A true CN108279398A (zh) 2018-07-13
CN108279398B CN108279398B (zh) 2022-12-16

Family

ID=62782933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711454956.9A Active CN108279398B (zh) 2017-01-06 2017-12-28 传感器以及推定生物体的位置的方法

Country Status (2)

Country Link
US (1) US10928496B2 (zh)
CN (1) CN108279398B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111381229A (zh) * 2018-12-28 2020-07-07 松下知识产权经营株式会社 推测方法、推测装置以及记录介质
CN111381227A (zh) * 2018-12-28 2020-07-07 松下知识产权经营株式会社 推测方法以及推测装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111381228A (zh) * 2018-12-28 2020-07-07 松下知识产权经营株式会社 推测方法以及推测装置
US11255955B2 (en) * 2018-12-28 2022-02-22 Panasonic Intellectual Property Management Co., Ltd. Estimation method, estimation device, and recording medium
CN113260871A (zh) * 2019-07-02 2021-08-13 松下知识产权经营株式会社 传感器
US20220221549A1 (en) * 2020-01-07 2022-07-14 Panasonic Intellectual Property Management Co., Ltd. Sensor and position estimation method
CN113795774A (zh) * 2020-02-27 2021-12-14 松下知识产权经营株式会社 估计装置、估计方法及程序
EP3879302A1 (en) * 2020-03-09 2021-09-15 Stichting IMEC Nederland Method, system, and computer program product for automatic multi object localization and/or vital sign monitoring

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146242A (zh) * 1994-01-20 1997-03-26 希莱克乔尼克安全和特种电子技术股份有限公司 探测活的物体的生命功能的方法和装置
US6784826B2 (en) * 2001-01-26 2004-08-31 Tera Research Incorporated Body motion tracking system
JP2004251774A (ja) * 2003-02-20 2004-09-09 Mitsubishi Electric Corp レーダ装置
CN1937955A (zh) * 2004-03-26 2007-03-28 佳能株式会社 活体的识别方法和活体的识别装置
JP2012068224A (ja) * 2010-08-23 2012-04-05 Toshiba Corp Mimoレーダシステム、送信装置、受信装置及びmimoレーダ信号処理方法
US20140333472A1 (en) * 2013-05-13 2014-11-13 Kapsch Trafficcom Ag Apparatus for measuring the position of a vehicle or a surface thereof
US20150054670A1 (en) * 2010-10-27 2015-02-26 Jianqi Wang Multichannel UWB-based radar life detector and positioning method thereof
JP2015117972A (ja) * 2013-12-17 2015-06-25 三星電子株式会社Samsung Electronics Co.,Ltd. 処理装置、および処理方法
JP2015219222A (ja) * 2014-05-21 2015-12-07 住友電気工業株式会社 監視装置、監視システム、監視方法および監視プログラム
CN106054130A (zh) * 2016-06-06 2016-10-26 南京工程学院 一种基于music算法的室内定位方法及装置
CN106093871A (zh) * 2016-06-01 2016-11-09 河海大学 基于经验模态分解的智能天线波达方向估计系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0325622D0 (en) 2003-11-03 2003-12-10 Cambridge Consultants System for determining positional information
JP4783130B2 (ja) 2005-12-05 2011-09-28 株式会社ユピテル マイクロ波ドップラーセンサ
JP2010032442A (ja) 2008-07-30 2010-02-12 Hitachi Ltd 測位システム及び処理装置
JP5405882B2 (ja) 2009-04-17 2014-02-05 アルプス電気株式会社 無線センサ装置
US8994589B2 (en) 2009-04-23 2015-03-31 Abdelwahed Marzouki Orientation and localization system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146242A (zh) * 1994-01-20 1997-03-26 希莱克乔尼克安全和特种电子技术股份有限公司 探测活的物体的生命功能的方法和装置
US5790032A (en) * 1994-01-20 1998-08-04 Selectronic Gesellschaft Fur Scherheitstechnik Und Sonderelektronik Mbh Method of and apparatus for detecting living bodies
US6784826B2 (en) * 2001-01-26 2004-08-31 Tera Research Incorporated Body motion tracking system
JP2004251774A (ja) * 2003-02-20 2004-09-09 Mitsubishi Electric Corp レーダ装置
CN1937955A (zh) * 2004-03-26 2007-03-28 佳能株式会社 活体的识别方法和活体的识别装置
JP2012068224A (ja) * 2010-08-23 2012-04-05 Toshiba Corp Mimoレーダシステム、送信装置、受信装置及びmimoレーダ信号処理方法
US20150054670A1 (en) * 2010-10-27 2015-02-26 Jianqi Wang Multichannel UWB-based radar life detector and positioning method thereof
US20140333472A1 (en) * 2013-05-13 2014-11-13 Kapsch Trafficcom Ag Apparatus for measuring the position of a vehicle or a surface thereof
JP2015117972A (ja) * 2013-12-17 2015-06-25 三星電子株式会社Samsung Electronics Co.,Ltd. 処理装置、および処理方法
JP2015219222A (ja) * 2014-05-21 2015-12-07 住友電気工業株式会社 監視装置、監視システム、監視方法および監視プログラム
CN106093871A (zh) * 2016-06-01 2016-11-09 河海大学 基于经验模态分解的智能天线波达方向估计系统及方法
CN106054130A (zh) * 2016-06-06 2016-10-26 南京工程学院 一种基于music算法的室内定位方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111381229A (zh) * 2018-12-28 2020-07-07 松下知识产权经营株式会社 推测方法、推测装置以及记录介质
CN111381227A (zh) * 2018-12-28 2020-07-07 松下知识产权经营株式会社 推测方法以及推测装置
CN111381227B (zh) * 2018-12-28 2024-04-26 松下知识产权经营株式会社 推测方法以及推测装置
CN111381229B (zh) * 2018-12-28 2024-05-14 松下知识产权经营株式会社 推测方法、推测装置以及记录介质

Also Published As

Publication number Publication date
US20180196131A1 (en) 2018-07-12
CN108279398B (zh) 2022-12-16
US10928496B2 (en) 2021-02-23

Similar Documents

Publication Publication Date Title
CN108279398A (zh) 传感器以及推定生物体的位置的方法
Tirer et al. High resolution direct position determination of radio frequency sources
Salmi et al. Propagation parameter estimation, modeling and measurements for ultrawideband MIMO radar
EP3193189B1 (en) Positioning sensor and direction estimation method
CN105182293B (zh) 基于互质阵列mimo雷达doa与dod估计方法
Sira et al. Waveform-agile sensing for tracking
CN107171749A (zh) 确定运动物体直接反射的无线信号的多普勒频移的方法
Kafle et al. Spatial correlation and capacity measurements for wideband MIMO channels in indoor office environment
CN107064923A (zh) 定位传感器以及方向推定方法
Xie et al. xD-track: Leveraging multi-dimensional information for passive wi-fi tracking
CN106291540A (zh) 一种基于doa估计的多输入多输出探地雷达逆向投影目标成像方法
CN103229071A (zh) 用于基于超声反射信号的对象位置估计的系统和方法
CN110031836A (zh) 估计方法、估计装置以及记录介质
CN106226754A (zh) 基于时间反演的低仰角波达方向估计方法
Li et al. Super-resolution time delay estimation for narrowband signal
CN106019214A (zh) 宽带相干信号源doa估计方法
CN107045124A (zh) 定位传感器、方向推定方法以及系统
CN107241698A (zh) 一种无接触感知追踪方法
JP6893328B2 (ja) センサおよび位置推定方法
CN108363038A (zh) 定位传感器、传感器以及方法
Ma et al. Comparison of POA and TOA based ranging behavior for RFID application
Chen et al. CSI-based probabilistic indoor position determination: An entropy solution
CN106054122B (zh) 基于数字信号处理机的时域宽带信号频域闭环测向方法
Zoubir et al. Robust generalised Capon algorithm for estimating the angular parameters of multiple incoherently distributed sources
Intarapanich et al. Spatial correlation measurements for broadband MIMO wireless channels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant