CN108269859B - 一种双向瞬态电压抑制二极管及制造方法 - Google Patents

一种双向瞬态电压抑制二极管及制造方法 Download PDF

Info

Publication number
CN108269859B
CN108269859B CN201711322420.1A CN201711322420A CN108269859B CN 108269859 B CN108269859 B CN 108269859B CN 201711322420 A CN201711322420 A CN 201711322420A CN 108269859 B CN108269859 B CN 108269859B
Authority
CN
China
Prior art keywords
diode
metal
tube core
layer
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711322420.1A
Other languages
English (en)
Other versions
CN108269859A (zh
Inventor
殷丽
刘学明
吴立成
王传敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Microelectronic Technology Institute
Mxtronics Corp
Original Assignee
Beijing Microelectronic Technology Institute
Mxtronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Microelectronic Technology Institute, Mxtronics Corp filed Critical Beijing Microelectronic Technology Institute
Priority to CN201711322420.1A priority Critical patent/CN108269859B/zh
Publication of CN108269859A publication Critical patent/CN108269859A/zh
Application granted granted Critical
Publication of CN108269859B publication Critical patent/CN108269859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/074Stacked arrangements of non-apertured devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66098Breakdown diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

本发明公开了一种双向瞬态电压抑制二极管及制造方法,管芯由第一单向二极管管芯、焊片和第二单向二极管进行金属化处理后依次叠加,加热一段时间后降温获得,所述第一单向二极管和第二单向二极管结构相同。本发明的管芯与管芯之间焊接温度较高,为后续管芯密封、引线焊接等工艺提供了很宽泛的工艺操作窗口,降低了考核和使用时环境温度等对管芯焊接结构的影响。管芯之间起连接作用的是共晶体,在固相下没有复杂的相变,稳定性强,提高器件可靠性。本发明工艺简单,制造成本低,可以用来制造漏电流低、钳位电压易控制、体积小、热阻小、可靠性高的双向瞬变电压抑制二极管。结构适应于玻璃封装、塑封、金属封装等多种封装形式。

Description

一种双向瞬态电压抑制二极管及制造方法
技术领域
本发明涉及一种双向瞬态电压抑制二极管及制造方法,属于半导体器件领域。
背景技术
瞬变电压抑制二极管由于具有L体积小、峰值功率大、抗浪涌电压能力强、击穿电压特性曲线好、齐纳阻抗低、反向漏电小以及对脉冲响应时间快等优点,是解决电子设备中电路通断、静电放电以及电磁干扰产生的电压瞬变和电流浪涌等问题的一种高性能保护用器件,是电子电路中最重要的电子元器件之一,已广泛应用于各种民用和军用电子领域,特别是在航天、航空和武器装备等领域的应用中,对其可靠性的要求也变得越来越高。
现代电子应用装置对瞬变电压二极管性能的要求除峰值功率大、抗浪涌电压高、反向漏电小、对脉冲响应时间快之外,还要求器件能在正、反向脉冲时都能起保护作用,即不论电路中出现正负瞬态高压脉冲时都可以获得保护,而不影响电路的正常工作。
管芯是双向瞬态电压抑制二极管的是核心部件。传统双向瞬态电压抑制二极管管芯是在同一硅片的正、反两个面上,利用扩散、双面光刻、化学电镀等方式,形成两个背对背的PN结,从而实现双向过压保护。传统双向瞬态电压抑制二极管管芯工艺复杂,在单向瞬态电压抑制二极管管芯工艺基础上,需要进行双面光刻、化学电镀等工艺。这种结构双向瞬态电压抑制二极管容易出现反向漏电大、散热性差、可靠性低的情况,其管芯多由改性环氧树脂膜塑而成,封装形式不适合在恶劣环境条件下工作。
为了满足电路中对正反向脉冲的吸收,亟待提供一种新型的双向瞬变电压抑制二极管对电路进行双向保护。
发明内容
本发明的目的在于克服现有技术的上述不足,提供一种反向漏电流小、散热性能好、封装兼容性强、可靠性高的双向瞬态电压抑制二极管及其制造方法。
本发明目的通过如下技术方案予以实现:
提供一种双向瞬态电压抑制二极管,管芯由第一单向二极管管芯、焊片和第二单向二极管进行金属化处理后依次叠加,加热一段时间后降温获得,所述第一单向二极管管芯和第二单向二极管管芯结构相同。
优选的,所述第一单向二极管管芯和第二单向二极管管芯均包括硅片,硅片两侧内到外依次为金属钛层、金属镍层和金属银层。
优选的,所述第一单向二极管管芯和第二单向二极管管芯的硅片经扩散形成PN结,对裸露的PN结进行钝化处理,形成钝化保护层。
优选的,金属钛层、金属镍层和金属银层厚度分别为:
Figure GDA0002896804540000021
Figure GDA0002896804540000022
优选的,所述焊片包括位于中部的基底,基底的两侧内到外依次为金属钛层,金属镍层,金属银层。
优选的,所述基底采用金锗合金或银铜磷合金。
优选的,金属钛层,金属镍层,金属银层的厚度分别为:
Figure GDA0002896804540000023
Figure GDA0002896804540000024
优选的,还包括两个钨块、两个焊接引线和玻璃外罩,管芯的两侧电极分别通过一个钨块与一个焊接引线连接;玻璃外罩对管芯和两个钨块密封封装。
优选的,加热一段时间的加热温度为800℃~860℃,保温时间为5~8min。
同时提供一种双向瞬态电压抑制二极管的制造方法,包括如下步骤:
(1)获取两个相同的单向瞬态抑制二极管管芯,对两个管芯待焊接的面进行金属化处理;
(2)获取与管芯待焊接的面尺寸匹配的焊片,并对焊片表面进行金属化处理;
(3)将第一管芯、焊片、第二管芯依次叠加,然后加热一段时间后降温,完成管芯焊接;
(4)对管芯进行封装获得双向瞬态电压抑制二极管。
优选的,两个所述单向瞬态抑制二极管管芯包括括硅片,硅片两侧内到外依次为金属钛层、金属镍层和金属银层。
优选的,金属钛层、金属镍层和金属银层厚度分别为:
Figure GDA0002896804540000031
Figure GDA0002896804540000032
优选的,所述焊片包括位于中部的基底,基底的两侧内到外依次为金属钛层,金属镍层,金属银层。
优选的,所述基底采用金锗合金或银铜磷合金。
优选的,金属钛层,金属镍层,金属银层的厚度分别为:
Figure GDA0002896804540000033
Figure GDA0002896804540000034
优选的,步骤(3)中加热一段时间的加热温度为800℃~860℃,保温时间为5~8min。
优选的,对管芯进行封装的具体方法为:将焊接后管芯的两侧电极分别通过钨块与焊接引线连接后,采用玻璃外罩密封封装。
本发明存在以下有益效果:
(1)本发明的管芯基于单向瞬态电压抑制二极管,相对传统双向瞬态抑制二极管,其管芯制造工艺简单,有利于降低反向漏电流。
(2)本发明的管芯与管芯之间的焊片基底材料选择金锗或银铜磷,具有良好的导电性和导热性;使得最终获得的二极管接触电阻小,散热性能好。
(3)本发明焊片与管芯表面金属化结构完全相同,保证芯片焊接面均匀一致,具有良好管芯表面和的导电性和导热性;
(4)本发明的管芯与管芯之间连接采用800℃以上冶金焊接,一方面为后续管芯密封、引线焊接等工艺提供了很宽泛的工艺操作窗口,具有良好的封装兼容性;另一方面,管芯之间起连接作用的是共晶体,在固相下没有复杂的相变,稳定性强,提高器件可靠性。
附图说明
图1为单向瞬态电压抑制二极管管芯剖面示意图;
图2为焊片剖面示意图;
图3为焊接后的双向瞬态电压抑制二极管管芯剖面示意图;
图4为玻璃封装双向瞬态电压抑制二极管结构剖面图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
如图1所示,本发明中单向瞬态电压抑制二极管管芯包括硅片1、钝化保护层2,第一电极和第二电极,第一电极从内到外依次为金属钛层3、金属镍层5和金属银层4;和第二电极和第一电极结构相同,内到外依次为金属钛层6、金属镍层7和金属银层8。
硅片1为N型硅片,采用N<111>型,厚度为220μm,经扩散形成PN结,对裸露的PN结进行钝化处理,形成钝化保护层2,厚度为1~2μm。
硅片表面上金属钛层3、6,厚度为
Figure GDA0002896804540000041
金属钛层的表面上的金属镍层5、7,厚度为
Figure GDA0002896804540000042
金属镍层的表面上的金属银层4、8,厚度为
Figure GDA0002896804540000043
如图2所示,本发明焊片包括位于中部的基底11,基底11的上下表面为金属钛层12和13,金属钛层12的上表面为金属镍层14,金属钛层13的上表面为金属镍层15,金属镍层14的上表面为金属银层16,金属镍层15的上表面为金属银层17。焊片与管芯待焊接的部位尺寸一致。本发明焊片表面金属化结构完全相同,保证芯片焊接面均匀一致,具有良好管芯表面和的导电性和导热性。
基底11采用金锗合金或银铜磷合金、厚度为50μm,金属钛层12、13,厚度为
Figure GDA0002896804540000051
金属钛层的表面上的金属镍层14、15,厚度为
Figure GDA0002896804540000052
金属镍层的表面上的金属银层16、17,厚度为
Figure GDA0002896804540000053
Figure GDA0002896804540000054
依次将金属化处理后的管芯、焊片、管芯叠加组装,最后将三者一起放入高温炉中,将炉温升至800℃~860℃,保温时间控制在5~8min,然后降温,完成芯片焊接。如图3为芯片焊接后示意图。
将焊接后管芯31的两侧电极分别通过钨块32、33(slug)与焊接引线34、35连接,采用玻璃外罩36密封封装,形成完整的双向瞬态电压抑制二极管器件。如图4为采用玻璃密封的双向瞬态电压抑制二极管。
本发明同时提供双向瞬态电压抑制二极管的制造方法,流程如下:
(1)获取两个相同的单向瞬态抑制二极管管芯,对两个管芯待焊接的面进行金属化处理;
(2)获取与管芯待焊接的面尺寸匹配的焊片,并对焊片表面进行金属化处理;
(3)将第一管芯、焊片、第二管芯依次叠加,最后将三者一起放入高温炉中,将炉温升至800℃~860℃,保温时间控制在5~8min,然后降温,完成芯片焊接;
(4)将焊接后管芯31的两侧电极分别通过钨块32、33(slug)与焊接引线34、35连接,采用玻璃外罩36密封封装,形成完整的双向瞬态电压抑制二极管器件。
采用本发明的方法制造的双向瞬态电压抑制二极管,峰值脉冲电流可达几十安培,最大钳位电压上百伏特。能够适用于大电流,高电压,瞬态脉冲较大的场合。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (3)

1.一种双向瞬态电压抑制二极管,其特征在于,管芯由第一单向二极管管芯、焊片和第二单向二极管管芯进行金属化处理后依次叠加,加热一段时间后降温获得,所述第一单向二极管管芯和第二单向二极管管芯结构相同;
所述第一单向二极管管芯和第二单向二极管管芯均包括硅片(1),硅片(1)两侧内到外依次为金属钛层(3,6)、金属镍层(5,7)和金属银层(4,8);
硅片(1)两侧内到外的金属钛层(3,6)、金属镍层(5,7)和金属银层(4,8)厚度分别为:
Figure FDA0002896804530000011
所述焊片包括位于中部的基底(11),基底(11)的两侧内到外依次为金属钛层(12,13),金属镍层(14,15),金属银层(16,17);
所述基底(11)采用金锗合金或银铜磷合金;
基底(11)的两侧内到外的金属钛层(12,13),金属镍层(14,15),金属银层(16,17)的厚度分别为:
Figure FDA0002896804530000012
Figure FDA0002896804530000013
还包括两个钨块(32,33)、两个焊接引线(34,35)和玻璃外罩(36),管芯(31)的两侧电极分别通过一个钨块(32,33)与一个焊接引线(34,35)连接;玻璃外罩(36)对管芯和两个钨块(32,33)密封封装;
加热一段时间的加热温度为800℃~860℃,保温时间为5~8min。
2.如权利要求1所述的双向瞬态电压抑制二极管,其特征在于,所述第一单向二极管管芯和第二单向二极管管芯的硅片经扩散形成PN结,对裸露的PN结进行钝化处理,形成钝化保护层(2)。
3.一种双向瞬态电压抑制二极管的制造方法,其特征在于包括如下步骤:
(1)获取两个相同的单向瞬态抑制二极管管芯,作为第一单向二极管管芯和第二单向二极管管芯,对两个单向瞬态抑制二极管管芯待焊接的面进行金属化处理;
(2)获取与两个单向瞬态抑制二极管管芯待焊接的面尺寸匹配的焊片,并对焊片表面进行金属化处理;
(3)将第一单向二极管管芯、焊片、第二单向二极管管芯依次叠加,然后加热一段时间后降温,完成管芯焊接;
(4)对管芯进行封装获得双向瞬态电压抑制二极管;管芯由第一单向二极管管芯、焊片和第二单向二极管进行金属化处理后依次叠加,加热一段时间后降温获得,所述第一单向二极管管芯和第二单向二极管管芯结构相同;
所述第一单向二极管管芯和第二单向二极管管芯均包括硅片(1),硅片(1)两侧内到外依次为金属钛层(3,6)、金属镍层(5,7)和金属银层(4,8);
硅片(1)两侧内到外的金属钛层(3,6)、金属镍层(5,7)和金属银层(4,8)厚度分别为:
Figure FDA0002896804530000021
所述焊片包括位于中部的基底(11),基底(11)的两侧内到外依次为金属钛层(12,13),金属镍层(14,15),金属银层(16,17);
所述基底(11)采用金锗合金或银铜磷合金;
基底(11)的两侧内到外的金属钛层(12,13),金属镍层(14,15),金属银层(16,17)的厚度分别为:
Figure FDA0002896804530000022
Figure FDA0002896804530000023
还包括两个钨块(32,33)、两个焊接引线(34,35)和玻璃外罩(36),管芯(31)的两侧电极分别通过一个钨块(32,33)与一个焊接引线(34,35)连接;玻璃外罩(36)对管芯和两个钨块(32,33)密封封装;
加热一段时间的加热温度为800℃~860℃,保温时间为5~8min。
CN201711322420.1A 2017-12-12 2017-12-12 一种双向瞬态电压抑制二极管及制造方法 Active CN108269859B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711322420.1A CN108269859B (zh) 2017-12-12 2017-12-12 一种双向瞬态电压抑制二极管及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711322420.1A CN108269859B (zh) 2017-12-12 2017-12-12 一种双向瞬态电压抑制二极管及制造方法

Publications (2)

Publication Number Publication Date
CN108269859A CN108269859A (zh) 2018-07-10
CN108269859B true CN108269859B (zh) 2021-04-13

Family

ID=62771827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711322420.1A Active CN108269859B (zh) 2017-12-12 2017-12-12 一种双向瞬态电压抑制二极管及制造方法

Country Status (1)

Country Link
CN (1) CN108269859B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950149B (zh) * 2019-03-13 2022-01-11 河源创基电子科技有限公司 一种二极管的制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578978A (zh) * 2013-10-17 2014-02-12 北京时代民芯科技有限公司 一种基于硅基键合材料的高压快恢复二极管制造方法
CN103871874A (zh) * 2012-12-17 2014-06-18 中国振华集团永光电子有限公司 大功率硅瞬态电压抑制二极管的制作方法及结构
CN105977309A (zh) * 2016-07-23 2016-09-28 中国振华集团永光电子有限公司(国营第八七三厂) 一种高可靠抗辐照玻璃钝化快恢复整流二极管制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431959B2 (en) * 2010-10-19 2013-04-30 Semiconductor Components Industries, Llc Method of forming an ESD protection device and structure therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871874A (zh) * 2012-12-17 2014-06-18 中国振华集团永光电子有限公司 大功率硅瞬态电压抑制二极管的制作方法及结构
CN103578978A (zh) * 2013-10-17 2014-02-12 北京时代民芯科技有限公司 一种基于硅基键合材料的高压快恢复二极管制造方法
CN105977309A (zh) * 2016-07-23 2016-09-28 中国振华集团永光电子有限公司(国营第八七三厂) 一种高可靠抗辐照玻璃钝化快恢复整流二极管制造方法

Also Published As

Publication number Publication date
CN108269859A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
US9673163B2 (en) Semiconductor device with flip chip structure and fabrication method of the semiconductor device
US10825757B2 (en) Semiconductor device and method with clip arrangement in IC package
US20130334695A1 (en) Electronic device and method of manufacturing such device
US10418359B2 (en) Semiconductor device and manufacturing method
PH12018501619A1 (en) Electrically conductive adhesive agent composition, and electrically conductive adhesive film and dicing-die bonding film using the same
CN101593709A (zh) 含烧结接头的模块
US20140167256A1 (en) Flip chip package structure and fabrication process thereof
EP3635780B1 (en) Silicon carbide power module
CN110911499A (zh) 一种玻封电压调整二极管、管芯及其制造方法
CN108269859B (zh) 一种双向瞬态电压抑制二极管及制造方法
CN104867888A (zh) 一种高散热性SiC的功率模块
US10475721B2 (en) Power semiconductor device and method for manufacturing same
Tatsumi et al. High temperature resistant packaging technology for SiC power module by using Ni micro-plating bonding
CN108155105B (zh) 一种高频高压二极管及其制作方法
CN210778581U (zh) 一种高可靠性的瞬态电压抑制二极管
US20190189584A1 (en) Semiconductor device and method for manufacturing the same
Kim et al. Thermal and electrical reliability analysis of TO-247 for bonding method, substrate structure and heat dissipation bonding material
CN210182391U (zh) 一种新型免封装二极管
CN102543720B (zh) 一种硅双向瞬态电压抑制二极管及制作方法
Zhao et al. A high performance power module with> 10kV capability to characterize and test in situ SiC devices at> 200 C ambient
Manier et al. Packaging and characterization of silicon and SiC-based power inverter module with double sided cooling
CN214477477U (zh) 高温冶金键合玻璃钝化实体封装表贴二极管
CN113707632B (zh) 一种三端整流电路模块及其制造方法
US20140264952A1 (en) Supplementing wire bonds
Mysliwiec et al. Aspects of applying flip-chip technology for SiC power devices assembly

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant