CN1082659C - 探测光纤光腔涂层去除的传感器及其制造方法 - Google Patents

探测光纤光腔涂层去除的传感器及其制造方法 Download PDF

Info

Publication number
CN1082659C
CN1082659C CN95196508A CN95196508A CN1082659C CN 1082659 C CN1082659 C CN 1082659C CN 95196508 A CN95196508 A CN 95196508A CN 95196508 A CN95196508 A CN 95196508A CN 1082659 C CN1082659 C CN 1082659C
Authority
CN
China
Prior art keywords
optical
coating
cavity
optical cavity
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN95196508A
Other languages
English (en)
Other versions
CN1167527A (zh
Inventor
詹姆斯·R·邓菲
詹姆斯·J·瑞安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of CN1167527A publication Critical patent/CN1167527A/zh
Application granted granted Critical
Publication of CN1082659C publication Critical patent/CN1082659C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ecology (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种探测光纤光腔涂层去除的传感器及其制造方法,采用嵌有一对布拉格光栅(20、30)的光纤(18),这对光栅被光腔(26)隔开。光腔的光路长度与光栅的中央反射波长一起设定以形成光谐振器。光腔的涂层(40),比如铝,可被腐蚀或以其它方式去除。涂层向光腔施加径向向内的力(46),使其折射率从而其光路长度发生变化,引起谐振器脱离谐振。当涂层腐蚀时,光腔上的作用力减小,谐振器再次进入谐振。另外,涂层不均匀带来的不均匀力使折射率产生不均匀的变化,因此会引起光损失。

Description

探测光纤光腔涂层去除的传感器及其制造方法
与本发明同时申请的、题目为“光纤布拉格光栅涂层去除探测装置”的WO-A-96/17223号文本中包含了与本发明所披露的内容相关的主题。
本发明涉及精巧结构、特别是光学腐蚀探测装置。
众所周知,在温度和应变的光测技术领域中,将传感器沿结构的表面布置或布置在结构的表面内。这种传感器能提供有关结构上不同点处产生的应力的信息,从而提供有关结构的疲劳、寿命和维护修理周期的信息。这种传感器集成装置和使之起作用的光学仪器和电子仪器就是公知的“精巧结构”。这样的一个系统已在题目为“能测量应变和温度的嵌入式光学传感器”的WO-A-95/24614号文本中加以描述。
除了测量结构中各点的应力和温度以外,还希望能弄清关于结构元件的腐蚀情况的信息,以确定何时该结构不适合其正常使用。例如,如果沿飞机机身或机翼在临界应力点处发生腐蚀,就可能导致结构失效。
因此,希望获得一种能够探测结构材料中的腐蚀的传感器。
本发明的目的是提供一种探测腐蚀的光学传感器。
根据本发明,一种探测光纤光腔涂层去除的传感器包括:构成光腔的光纤;一对嵌入到光纤内的反射光纤光栅,每一光栅均具有中央反射波长,所述光栅确定了光腔界限;光腔的光路长度和传播损失根据光纤光栅的中央反射波长而被设定(sized),以形成光谐振器;一层具有预定厚度的材料涂层,它包围光腔的圆周并沿光腔的至少一部分长度方向延伸;该涂层向光腔施加沿径向向内的力,这导致光腔的整体折射率变化,从而使光腔的光路长度改变并引起谐振器脱离谐振状态;当涂层至少被部分去除时,光腔上的作用力减小,从而使谐振器进入谐振状态。
本发明还涉及一种制造用于探测光纤光腔涂层去除的传感器的方法,其步骤包括:获得一种构成光腔的光纤,该光腔具有一对嵌入到所述光纤内的反射光纤光栅,每一光栅均具有中央反射波长,所述光栅确定了所述光腔的界限;与所述光纤光栅的中央反射波长一起设定所述光腔的光路长度和传播损失,以形成光谐振器;围绕所述光腔的圆周并沿所述光腔的至少一部分长度方向对所述光腔施加涂层;所述涂层向所述光腔施加沿径向向内的力,导致所述光腔的整体折射率变化,从而使所述光腔的光路长度改变并引起谐振器脱离谐振状态;当所述涂层至少被部分去除时,所述光腔上的作用力减小,从而使谐振器进入谐振状态。
根据本发明,来自涂层的力围绕并沿着光腔不均匀地分布,使得光腔的折射率变化,从而降低了光腔的光学效率。
本发明代表了精巧结构技术方面的一个进步,使得可通过发现涂覆有某种材料(比如铝)的光纤波导光腔在光路长度和光学波导特性上的变化来探测结构的腐蚀。本发明重量轻、价格便宜、容易安装且对腐蚀非常敏感。此外,本传感器容易与其它同样使用光纤布拉格光栅的精巧传感器(比如温度和/或应变传感器)连接起来。另外,可使用用于这种探测的谐振腔进行极为敏感的探测。
本发明上述和其它的目的、特征和优点将从对附图所示实施例的详细描述中更清楚地表现出来。
图1是依据本发明所述的、表示构成谐振腔的在两光纤布拉格光栅之间涂覆有铝涂层的光纤的附图;
图2是依据本发明所述的、表示了纤芯、包层和铝涂层的光纤截面图。
参见图1,光源10向分束器14提供光信号12,预定量的光16通过分束器14进入光纤18。光16入射到嵌入在光纤18内的第一光纤布拉格光栅20上。如公知的那样,光纤布拉格光栅将光的窄波长带反射,而使所有其它波长通过,从而如在Glenn等人的美国专利第4,725,110号中所讨论的那样,表现出窄波长反射特性。光栅20对光的窄波长带21进行反射,并使如线24所指示的剩余波长通过。光24沿光纤的一部分26传播到嵌入在光纤18内的第二光栅30,该第二光栅30对光的窄波长带32进行反射,并使如线34所指示的剩余波长通过。光34传出光纤18并入射到探测器35,该探测器35向线路36提供电信号,以指示入射到探测器35上的光34的强度。与此相类似,输出光22沿光纤18从一对光栅谐振器20、30(将在下文讨论)传出,并入射到分束器14,该分束器14将预定量的光37反射到探测器38上。探测器38提供电信号39,以指示入射到探测器38上的光37的强度。另外,光纤部分26由例如用铝制成的涂层40包围(涂覆方法将在下文讨论)。
现在参见图2,光纤18的一部分26的横截面包括一个由掺杂锌基的二氧化硅制成的光纤芯42,该光纤芯42的直径约为6-9μm。包围纤芯42的是由纯二氧化硅制成的光纤包层44,其外直径约为125μm。包围包层44的是铝涂层40,其外直径约为196μm。如果需要,也可使用其它材料和直径的纤芯、包层和涂层,它们应符合相应光纤谐振器的工作和性能要求。
铝涂层40在光纤包层44和光纤芯42上产生如线46所指示的、直接沿径向向内的径向压力(或力)。涂层40产生的整体平均压力使光纤部分26的有效折射率n发生整体平均变化,从而影响两光栅20、30之间的光路长度。
光栅20、30相匹配以在相同的中央反射波长处形成峰值反射率,从而在位于两光栅20、30之间的光纤18的一部分26中形成光谐振腔。该谐振腔可用作Fabry-Perot谐振器,它具有高精细或高品质因数的窄波长频带谐振器响应特性。如已知的那样,如果光栅20、30的中央反射波长和谐振腔26的光路长度被精确设置以形成光谐振,则两光栅20、30和谐振腔26作为光谐振器而进行工作。另外,谐振器性能可以通过减小光栅之间的光损失(将在下文讨论)而得以优化。
当存在光谐振时,如公知的那样,所传送的输出光束34(将谐振腔26和光栅20、30看作谐振器系统)表现出谐振频率(或波长)上的峰值,并且由于输出光束22、34之间的互补关系,输出光22表现为最小。反之,当光谐振存在,输出光束22表现出谐振频率(或波长)上的峰值时,如公知的那样,输出光34将为最小。由于谐振器具有窄的波长带宽,所以在光栅20、30之间的光路长度的任何微小变化都将导致在谐振波长上的输出光34的强度明显减小。因此,将该谐振器设计成不将涂层40施加在光纤26上而谐振的形式。这样,如前面所讨论的那样,当施加涂层40时,由涂层40产生的整体平均压力将使光纤26的平均折射率改变。结果是,光路长度从产生谐振所需的光路长度进行变化,并使得在谐振波长上的输出强度大为减小(即谐振器脱离谐振状态)。
当发生腐蚀时,由涂层40产生的压力减小,并且光路长度恢复到其最初未被涂覆时的值。因此,表现出光谐振现象(即光腔再次进入谐振状态),在谐振波长上的输出光强度增加,并且探测器35、38的输出信号增加。
如果涂层仅部分地被去除,即涂层仅变薄、或仅在某些区域而不是其它区域被去除,则在对未涂覆的光腔的谐振器响应中的相应变化将会发生。在光腔发生变化前所需的涂层去除量取决于由涂层施加给光腔的初始力、涂层材料的刚性和剩余涂层的厚度,并可由本领域的技术人员很容易地确定。
另一方面,如果将谐振器设计成在施加有涂层40的情况下谐振,则当发生腐蚀时,压力减小且光腔的光路长度变化,此系统会脱离谐振状态,而且在谐振波长上的输出光的功率将大为减小。
另外,当由涂层40施加的径向压力46变化时,如公知的那样,根据泊松比,光纤部分26的物理长度L也会变化。这种效果是由光路长度的整体变化引起的。但是,相对于前面所讨论的其它效果来说,这种效果非常小。
另外,包围包层44圆周的涂层40的厚度并非完全均匀一致,沿光纤26的纵轴(或长度)上的涂层40的厚度也并非完全均匀一致。其结果是,涂覆后的光纤承受不均匀的随机变化的压力46(称为“微小弯曲(microbends)”),它会引起光腔26的折射率的不均匀的随机变化。因此,当涂层40存在时(即在腐蚀之前),光腔26中的光24、32会在光栅20、30之间损失或不能有效传送,从而改变了谐振器的品质因数Q(或性能)。因此,当涂层存在于光腔周围时,谐振腔中的光损失可能会最大。所以,当将谐振器设计成以未涂有涂层的光腔进行谐振时,谐振腔可达到最小损失。
如上面所讨论的那样,光腔是处于谐振状态还是处于非谐振状态,这与光路长度(或折射率)有关,而该光路长度与由涂层施加在光纤光腔上的整体平均力有关。另外,如前所述,光腔传输损失(或低效)是由上述微小弯曲(或施加在光腔上的不均匀的力)引起的。结果是,我们发现用于涂覆光腔的方法和所用的涂层材料的类型决定了光路长度的变化量和在谐振器中产生的光损失的量。
因此,如果当光纤处于铝的熔点温度时用铝对该光纤进行涂覆,即通过在大约650℃的温度下将光纤浸入熔融铝、再移走光纤以易于冷却并使涂层粘在光纤表面,光纤和铝在热膨胀系数上的较大差异会导致在冷却过程中较大的整体力作用在光纤上,这会引起光腔的平均折射率发生较大变化。这种技术叫作“冷冻涂覆(freezecoating)”。
但是,如果在涂覆过程中光纤基本保持在环境温度下(即,通过喷镀或蒸镀),则光纤的冷却温度梯度、从而也就是作用在光纤上的整体平均力并不象上文所讨论的浸渍技术那样大。因此,平均折射率的变化和光路长度的相应变化会更小。另外,当使用这种方法时,涂层会更光滑和均匀一致。这样,上文所讨论的不均匀或微小弯曲、从而也就是光损失量比上述浸渍技术少。
因此,我们发现可以通过调整施加在光腔上的整体平均力的大小来修整折射率的变化量(和在光路长度中的相应变化),所述平均力的大小直接与涂覆时光纤的温度和涂覆材料的热膨胀系数有关。另外,还可以通过调整施加在光腔上的涂层的光滑性和均匀性来修整沿光腔的光损失量。
本发明可对涂层去除量进行极为敏感的探测。具体地说,已知基于光谐振器、例如光纤Fabry-Perot干涉仪的传感器能探测干扰所产生的、小到几微弧度(一度的几分之一)相位漂移。这样,可以探测大约10-5弧度的相位变化(△φ/φ)。还已知沿光纤的相位漂移(它直接与光路长度的变化有关)可用下式计算:
△φ/φ=△L/L+△n/n    [等式1]
其中,△L是在物理路径长度L中干扰所产生的变化长度,△n是在平均有效的纤芯折射率n中干扰所产生的折射率的变化。这种相位漂移就主要分量而言可再写成如下等式,所述分量与作用在光纤上并产生干扰的轴向应变ε2及径向应变εr有关:
△φ/φ=0.7ε2+0.4εr    [等式2]
如上所述,用冷冻涂覆的方法将光纤涂上诸如铝之类的材料会施加横切的径向压力和纵向的应力,这会产生径向和纵向的应变分量。这些涂层所产生的应变分量会产生约为10-3数量级的弧度上的明显相位漂移。因此,当使用这里所讨论的光谐振器时,本发明能够探测出由腐蚀产生的、铝涂层特性上的非常小(即小于1%)的变化。
代替使用纯Fabry-Perot谐振器型光腔26,光纤部分26可替代地涂有预定的掺杂剂,以产生光纤激光。这种光纤激光已在Ball等人的题目为“单一纵向模式泵送光学波导激光装置”的美国专利US5,305,335中加以讨论。当使用具有光学激光构造的本发明时,与前述谐振器的设计一样,会存在同样的设计限制。具体地说,为了产生激光,关键是要有适当的光路长度。这种光路长度可与光栅的反射波长一起设计,以在不施加涂层时能产生激光。当再对光腔或光腔的一部分施加涂层后,光路长度变化,激光减少或不会产生。于是当发生腐蚀时,光路长度恢复至其最初的未涂覆状态并产生激光(或使强度增加),输出光将表现出在激光波长上的强度峰值。另一种方案是,可将光纤激光设计成当施加涂层时产生激光,从而当发生腐蚀时,使输出光在激光波长上减弱,和/或表现出在激光波长上相位移动现象。
应理解到光源10可以是宽频带光源,探测器38可以是光学分光仪,该分光仪可提供指示波长反射性能曲线(即反射波长和相关联的强度)的电信号39。在可替换的方案中,光源可以是不同的光源,比如在题目为“光栅传感器的诊断系统”的WO-A-96/17224号文本中所描述的那种。如果需要,也可采用其它结构,以探测由于腐蚀而引起的光学输出信号的变化。也可用分析光学输出信号22或34(取决于在反射或传送中设备是否操作)的任何其它装置来探测由于腐蚀而引起的光学输出信号的变化。
另外,除了铝,其它材料也可用作围绕光腔的涂层,该涂层可用腐蚀、蒸发、去薄或其它方式被部分地或完全地从光腔的涂层上去除,以减小作用在光腔上的力。因此,本发明可用于探测围绕光腔的任何涂层的部分或全部去除量,并如前所述,所提供的一种对作用在光栅上的整体平均力的变化和力的不均匀性的预定判断准则是令人满意的。
另外,取代向光腔的整个长度施加涂层这种方案,可以只有光腔长度的一部分被涂覆涂层。

Claims (11)

1、一种探测光纤光腔涂层去除的传感器,其特征在于包括:
一种构成光腔的光纤;
一对嵌入到所述光纤内的反射光纤光栅,每一光栅均具有中央反射波长,所述光栅确定了所述光腔的界限;
所述光腔的光路长度和传播损失与所述光纤光栅的中央反射波长一起设定,以形成光谐振器;
一层具有预定厚度的材料涂层,它包围光腔的圆周并沿所述光腔的至少一部分长度方向延伸;
所述涂层向所述光腔施加沿径向向内的力,导致所述光腔的整体折射率变化,从而使所述光腔的光路长度改变并引起谐振器脱离谐振状态;
当所述涂层至少被部分去除时,所述光腔上的作用力减小,从而使谐振器进入谐振状态。
2、如权利要求1的光学传感器,其特征在于,所述的光纤包括纤芯和包围该纤芯的包层。
3、如权利要求1的光学传感器,其特征在于,所述光腔包括增益介质,从而形成激光光腔。
4、如权利要求1的传感器,其特征在于,来自所述涂层的所述力沿着所述光腔不均匀地分布于所述光腔周围,使得光腔的折射率变化,从而减小了所述光腔的光学效率。
5、如权利要求1的传感器,其特征在于,所述涂层包括铝。
6、如权利要求1的传感器,其特征在于,对所述涂层的去除包括腐蚀所述涂层。
7、一种制造用于探测光纤光腔涂层去除的传感器的方法,其特征在于包括:
获得一种构成光腔的光纤,该光腔具有一对嵌入到所述光纤内的反射光纤光栅,每一光栅均具有中央反射波长,所述光栅确定了所述光腔的界限;
与所述光纤光栅的中央反射波长一起设定所述光腔的光路长度和传播损失,以形成光谐振器;
围绕所述光腔的圆周并沿所述光腔的至少一部分长度方向对所述光腔施加涂层;
所述涂层向所述光腔施加沿径向向内的力,导致所述光腔的整体折射率变化,从而使所述光腔的光路长度改变并引起谐振器脱离谐振状态;
当所述涂层至少被部分去除时,所述光腔上的作用力减小,从而使谐振器进入谐振状态。
8、如权利要求7的方法,其特征在于,所述涂层包括铝。
9、如权利要求7的方法,其特征在于,所述的施加所述涂层的步骤包括蒸镀。
10、如权利要求7的方法,其特征在于,所述的施加所述涂层的步骤包括冷冻涂覆。
11、如权利要求7的方法,其特征在于,对所述涂层的去除包括腐蚀所述涂层。
CN95196508A 1994-11-29 1995-11-22 探测光纤光腔涂层去除的传感器及其制造方法 Expired - Lifetime CN1082659C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/346,104 1994-11-29
US08/346,104 US5493113A (en) 1994-11-29 1994-11-29 Highly sensitive optical fiber cavity coating removal detection

Publications (2)

Publication Number Publication Date
CN1167527A CN1167527A (zh) 1997-12-10
CN1082659C true CN1082659C (zh) 2002-04-10

Family

ID=23357970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95196508A Expired - Lifetime CN1082659C (zh) 1994-11-29 1995-11-22 探测光纤光腔涂层去除的传感器及其制造方法

Country Status (8)

Country Link
US (1) US5493113A (zh)
EP (1) EP0795118B1 (zh)
JP (1) JP3710816B2 (zh)
KR (1) KR100316846B1 (zh)
CN (1) CN1082659C (zh)
DE (1) DE69523334T2 (zh)
DK (1) DK0795118T3 (zh)
WO (1) WO1996017225A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091762A (zh) * 2015-05-26 2015-11-25 雷艳梅 一种光刀透射式试剂药液涂抹均匀性检测方法及装置

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9302903D0 (en) * 1993-02-13 1993-03-31 Univ Strathclyde Detection system
US5684297A (en) * 1994-11-17 1997-11-04 Alcatel Cable Method of detecting and/or measuring physical magnitudes using a distributed sensor
JP3410101B2 (ja) * 1994-11-29 2003-05-26 ユナイテッド テクノロジーズ コーポレイション 光ファイバブラッググレーティングによるコーティング消滅検出
US5650856A (en) * 1995-06-16 1997-07-22 Brown University Research Foundation Fiber laser intra-cavity spectroscope
US5748312A (en) * 1995-09-19 1998-05-05 United States Of American As Represented By The Secretary Of The Navy Sensing apparatus and method for detecting strain between fiber bragg grating sensors inscribed into an optical fiber
US5646401A (en) * 1995-12-22 1997-07-08 Udd; Eric Fiber optic grating and etalon sensor systems
US6111681A (en) 1996-02-23 2000-08-29 Ciena Corporation WDM optical communication systems with wavelength-stabilized optical selectors
US5828059A (en) * 1996-09-09 1998-10-27 Udd; Eric Transverse strain measurements using fiber optic grating based sensors
US5767411A (en) * 1996-12-31 1998-06-16 Cidra Corporation Apparatus for enhancing strain in intrinsic fiber optic sensors and packaging same for harsh environments
US6056436A (en) * 1997-02-20 2000-05-02 University Of Maryland Simultaneous measurement of temperature and strain using optical sensors
US5925879A (en) * 1997-05-09 1999-07-20 Cidra Corporation Oil and gas well packer having fiber optic Bragg Grating sensors for downhole insitu inflation monitoring
US5945665A (en) * 1997-05-09 1999-08-31 Cidra Corporation Bolt, stud or fastener having an embedded fiber optic Bragg Grating sensor for sensing tensioning strain
US5973317A (en) * 1997-05-09 1999-10-26 Cidra Corporation Washer having fiber optic Bragg Grating sensors for sensing a shoulder load between components in a drill string
US6144026A (en) * 1997-10-17 2000-11-07 Blue Road Research Fiber optic grating corrosion and chemical sensor
US6175108B1 (en) 1998-01-30 2001-01-16 Cidra Corporation Accelerometer featuring fiber optic bragg grating sensor for providing multiplexed multi-axis acceleration sensing
DE19807891A1 (de) 1998-02-25 1999-08-26 Abb Research Ltd Faserlaser-Drucksensor
US6659957B1 (en) 1998-03-05 2003-12-09 Gil M. Vardi Optical-acoustic imaging device
US6191414B1 (en) 1998-06-05 2001-02-20 Cidra Corporation Composite form as a component for a pressure transducer
DE19827258A1 (de) * 1998-06-18 1999-12-23 Siemens Ag Faseroptisches Datenübermittlungssystem und Verfahren zum Betrieb eines Datenübermittlungssystems
WO2000037925A1 (en) * 1998-12-18 2000-06-29 Future Fibre Technologies Pty Ltd Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
US6233374B1 (en) 1999-06-04 2001-05-15 Cidra Corporation Mandrel-wound fiber optic pressure sensor
US6626043B1 (en) * 2000-01-31 2003-09-30 Weatherford/Lamb, Inc. Fluid diffusion resistant glass-encased fiber optic sensor
US6601671B1 (en) 2000-07-10 2003-08-05 Weatherford/Lamb, Inc. Method and apparatus for seismically surveying an earth formation in relation to a borehole
DE10037501C1 (de) * 2000-08-01 2001-11-29 Reinhausen Maschf Scheubeck Verfahren und Vorrichtung zur Wellenlängendetektion
US7330271B2 (en) * 2000-11-28 2008-02-12 Rosemount, Inc. Electromagnetic resonant sensor with dielectric body and variable gap cavity
AU2002225765A1 (en) * 2000-11-28 2002-06-11 Rosemount, Inc. Arrangement for measuring physical parameters with an optical sensor
US6739154B2 (en) * 2001-04-24 2004-05-25 Corning Incorporated Method for manufacturing optical gratings
US7088877B2 (en) * 2001-06-13 2006-08-08 Intel Corporation Method and apparatus for tuning a bragg grating in a semiconductor substrate
US6753520B2 (en) * 2001-09-17 2004-06-22 Centro De Investigacion Cientifica Y De Educacion Superior De Ensenada (Cicese) Fiber optic sensor with transmission/reflection analyzer
US6950577B2 (en) * 2002-07-01 2005-09-27 Intel Corporation Waveguide-based Bragg gratings with spectral sidelobe suppression and method thereof
US7245792B2 (en) * 2002-08-16 2007-07-17 Intel Corporation Silicon-based tunable single passband optical filter
GB2393781B (en) * 2002-10-01 2006-01-11 Lattice Intellectual Property Corrosion prediction
US7245789B2 (en) 2002-10-07 2007-07-17 Vascular Imaging Corporation Systems and methods for minimally-invasive optical-acoustic imaging
US7024060B2 (en) * 2002-12-02 2006-04-04 University Of South Florida Method and apparatus for continuous measurement of the refractive index of fluid
US7043115B2 (en) * 2002-12-18 2006-05-09 Rosemount, Inc. Tunable optical filter
US6840114B2 (en) * 2003-05-19 2005-01-11 Weatherford/Lamb, Inc. Housing on the exterior of a well casing for optical fiber sensors
US6957574B2 (en) * 2003-05-19 2005-10-25 Weatherford/Lamb, Inc. Well integrity monitoring system
US7077566B2 (en) * 2003-12-11 2006-07-18 General Electric Company Methods and apparatus for temperature measurement and control in electromagnetic coils
CN100494975C (zh) * 2005-03-02 2009-06-03 中国科学院上海光学精密机械研究所 金属锈蚀监测光纤光栅传感装置
CN100363768C (zh) * 2005-07-29 2008-01-23 中国船舶重工集团公司第七二五研究所 铜离子检测用长周期光纤光栅的制备方法
CN100387972C (zh) * 2005-07-29 2008-05-14 中国船舶重工集团公司第七二五研究所 光纤传感腐蚀检测铝材料初始误差的消除方法
US7599588B2 (en) 2005-11-22 2009-10-06 Vascular Imaging Corporation Optical imaging probe connector
WO2010039950A1 (en) 2008-10-02 2010-04-08 Eberle Michael J Optical ultrasound receiver
FR2949572B1 (fr) * 2009-08-31 2012-09-21 Kloe S A Dispositif et procede de mesure a fibre optique
US8773650B2 (en) 2009-09-18 2014-07-08 Intuitive Surgical Operations, Inc. Optical position and/or shape sensing
CN101701450B (zh) * 2009-09-30 2011-12-21 法尔胜集团公司 内置光纤光栅传感器的桥梁用智能缆索系统
JP5952736B2 (ja) * 2009-10-23 2016-07-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 生物物理学的なパラメータの迅速な分散測定のための光検知可能な介入器具
JP5999421B2 (ja) * 2012-08-10 2016-09-28 国立研究開発法人日本原子力研究開発機構 光ファイバーを用いた水分センサ
US20140275950A1 (en) * 2013-03-13 2014-09-18 Volcano Corporation Imaging guidewire with pressure sensing
US20140276110A1 (en) * 2013-03-14 2014-09-18 Volcano Corporation Imaging guidewire system with flow visualization
TW201508249A (zh) * 2013-06-12 2015-03-01 Optics Balzers Ag 一體型光波導感測器系統
US10261243B2 (en) * 2015-11-24 2019-04-16 Halliburton Energy Services, Inc. Fiber optic sensing using soluble layers
US10914047B2 (en) 2016-03-03 2021-02-09 Network Integrity Systems, Inc. System and method for monitoring a fiber and a detector attached to the fiber
KR101756364B1 (ko) 2016-05-19 2017-07-12 제주대학교 산학협력단 광섬유 브래그 격자를 이용한 분광기
JP6833587B2 (ja) * 2017-03-29 2021-02-24 太平洋セメント株式会社 腐食検出方法
CN110410679A (zh) * 2019-07-15 2019-11-05 无锡必创传感科技有限公司 一种煤油感应光纤和煤油泄漏监测系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3586052D1 (de) * 1984-08-13 1992-06-17 United Technologies Corp Verfahren zum einlagern optischer gitter in faseroptik.
US4761073A (en) * 1984-08-13 1988-08-02 United Technologies Corporation Distributed, spatially resolving optical fiber strain gauge
US4824455A (en) * 1987-04-28 1989-04-25 Hughes Aircraft Company Polarization preserving optical fiber and method of manufacturing
JPH01158326A (ja) * 1987-09-11 1989-06-21 Toshiba Corp 温度測定装置
US5305335A (en) * 1989-12-26 1994-04-19 United Technologies Corporation Single longitudinal mode pumped optical waveguide laser arrangement
CA2074289C (en) * 1992-07-21 1999-09-14 Claude Belleville Fabry-perot optical sensing device for measuring a physical parameter
US5361130A (en) * 1992-11-04 1994-11-01 The United States Of America As Represented By The Secretary Of The Navy Fiber grating-based sensing system with interferometric wavelength-shift detection
US5359681A (en) * 1993-01-11 1994-10-25 University Of Washington Fiber optic sensor and methods and apparatus relating thereto
US5299271A (en) * 1993-02-26 1994-03-29 The United States Of America As Represented By The Secretary Of The Air Force System and method of embedding optical fibers in honeycomb panels
US5351324A (en) * 1993-09-10 1994-09-27 The Regents Of The University Of California, Office Of Technology Transfer Fiber optic security seal including plural Bragg gratings
US5401956A (en) * 1993-09-29 1995-03-28 United Technologies Corporation Diagnostic system for fiber grating sensors
US5394488A (en) * 1993-11-30 1995-02-28 United Technologies Corporation Optical fiber grating based sensor
US5367583A (en) * 1994-02-09 1994-11-22 University Of Maryland Fiber optic stress-corrosion sensor and system
US5399854A (en) * 1994-03-08 1995-03-21 United Technologies Corporation Embedded optical sensor capable of strain and temperature measurement using a single diffraction grating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091762A (zh) * 2015-05-26 2015-11-25 雷艳梅 一种光刀透射式试剂药液涂抹均匀性检测方法及装置

Also Published As

Publication number Publication date
WO1996017225A3 (en) 1996-09-06
EP0795118B1 (en) 2001-10-17
DE69523334T2 (de) 2002-07-04
DE69523334D1 (de) 2001-11-22
US5493113A (en) 1996-02-20
CN1167527A (zh) 1997-12-10
DK0795118T3 (da) 2002-02-11
JPH10510364A (ja) 1998-10-06
KR100316846B1 (ko) 2002-01-16
JP3710816B2 (ja) 2005-10-26
WO1996017225A2 (en) 1996-06-06
EP0795118A2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
CN1082659C (zh) 探测光纤光腔涂层去除的传感器及其制造方法
KR100322430B1 (ko) 광센서및그제조방법
US5118931A (en) Fiber optic microbending sensor arrays including microbend sensors sensitive over different bands of wavelengths of light
Gardner Microbending loss in optical fibers
Jin et al. Sensitivity characteristics of Fabry-Perot pressure sensors based on hollow-core microstructured fibers
FI71842C (fi) Fiberoptisk spaenningssensor.
WO2006107277A1 (en) Optical fiber strain sensor
AU2003252876A1 (en) Fiber optic fabry-perot interferometer and associated methods
CA2497842C (en) Intrinsic fabry-perot optical fiber sensors and their multiplexing
EP1350084A2 (en) Method and apparatus for crack and fracture detection utilizing bragg gratings
Li et al. A Fabry–Pérot interferometer strain sensor composed of a rounded rectangular air cavity with a thin wall for high sensitivity and interference contrast
CN205941335U (zh) 一种高灵敏度的光纤efpi传感器
CN107946887A (zh) 一种基于特殊等效相移的光纤光栅双波长激光器及装置
CN115077581A (zh) 一种同时测量应力、折射率光纤传感器及其控制方法、制备方法
Zahra et al. Widely tunable long period gratings using 3D printed periodic grooved plates
Clark et al. Modern fibre optic sensors
Bagnoli et al. Erbium-doped fiber lasers as deep-sea hydrophones
Zhang et al. Feedback stabilized optical Fabry–Perot interferometer based on twin-core fiber for multidimension microdisplacement sensing
Seo et al. Monitoring of fatigue crack growth of cracked thick aluminum plate repaired with a bonded composite patch using transmission-type extrinsic Fabry–Perot interferometric optical fiber sensors
LeBlanc et al. Fiber optic Bragg intra-grating strain gradient sensing
Wang et al. High sensitivity distributed lateral pressure sensor based on BOTDR
Dianov et al. Catastrophic damage in specialty optical fibers under CW medium-power laser radiation
Kang et al. Suppression of the polarization dependence of fiber Bragg grating interrogation based on a wavelength-swept fiber laser
Brininstool Techniques for measuring longitudinal strain in graded index optical fibers
Tapanes et al. Practical Applications of Fibre Optic Sensors to Engineered Structures for Real-Time, Nondestructive Evaluation Using a Composite Materials Patch

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20020410

EXPY Termination of patent right or utility model