CN108264550B - TCR (T cell receptor) for recognizing PRAME (platelet-derived antigen) antigen short peptide - Google Patents

TCR (T cell receptor) for recognizing PRAME (platelet-derived antigen) antigen short peptide Download PDF

Info

Publication number
CN108264550B
CN108264550B CN201710004628.2A CN201710004628A CN108264550B CN 108264550 B CN108264550 B CN 108264550B CN 201710004628 A CN201710004628 A CN 201710004628A CN 108264550 B CN108264550 B CN 108264550B
Authority
CN
China
Prior art keywords
tcr
chain
amino acid
seq
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710004628.2A
Other languages
Chinese (zh)
Other versions
CN108264550A (en
Inventor
李懿
相瑞瑞
贾英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangxue Life Science Technology (Guangdong) Co.,Ltd.
Original Assignee
Xiangxue Life Science Technology Guangdong Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangxue Life Science Technology Guangdong Co ltd filed Critical Xiangxue Life Science Technology Guangdong Co ltd
Priority to CN201710004628.2A priority Critical patent/CN108264550B/en
Publication of CN108264550A publication Critical patent/CN108264550A/en
Application granted granted Critical
Publication of CN108264550B publication Critical patent/CN108264550B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Abstract

The present invention provides a T Cell Receptor (TCR) capable of specifically binding short peptide VLDGLDVLL derived from PRAME antigen, said antigen short peptide VLDGLDVLL being capable of forming a complex with HLA a0201 and being presented together on the cell surface. The invention also provides nucleic acid molecules encoding the TCRs and vectors comprising the nucleic acid molecules. In addition, the invention provides cells that transduce a TCR of the invention.

Description

TCR (T cell receptor) for recognizing PRAME (platelet-derived antigen) antigen short peptide
Technical Field
The present invention relates to a TCR capable of recognising a short peptide derived from the PRAME antigen, and to PRAME specific T cells obtained by transduction of such TCRs, and their use in the prevention and treatment of PRAME related diseases.
Background
PRAME is a melanoma-specific antigen (PRAME) that is expressed in 88% of primary and 95% of metastatic melanomas (Ikeda H, et al. immunity,1997,6(2):199- "208), while normal skin tissue and benign melanocytes are not expressed. PRAME is degraded into small polypeptides after intracellular production and is presented on the cell surface as a complex by binding to MHC (major histocompatibility complex) molecules. VLDGLDVLL is a short peptide derived from the PRAME antigen, which is a target for the treatment of PRAME related diseases. In addition to melanoma, PRAME is expressed in a variety of tumors including lung squamous cell carcinoma, breast cancer, renal cell carcinoma, head and neck tumors, Hodgkin's lymphoma, sarcoma, medulloblastoma, etc. (van't Veer LJ, et al Nature,2002,415(6871): 530-. For the treatment of the above diseases, chemotherapy, radiotherapy and the like can be used, but both of them cause damages to normal cells themselves.
T cell adoptive immunotherapy is the transfer of reactive T cells specific for a target cell antigen into a patient to act on the target cell. The T Cell Receptor (TCR) is a membrane protein on the surface of T cells that recognizes a corresponding short peptide antigen on the surface of a target cell. In the immune system, the direct physical contact between T cells and Antigen Presenting Cells (APC) is initiated by the binding of antigen short peptide specific TCR and short peptide-major histocompatibility complex (pMHC complex), and then other cell membrane surface molecules of the T cells and APC interact to cause a series of subsequent cell signaling and other physiological reactions, so that T cells with different antigen specificities exert immune effects on their target cells. Therefore, those skilled in the art have focused on isolating TCRs specific for PRAME antigen short peptides and transducing T cells with the TCRs to obtain T cells specific for PRAME antigen short peptides, thereby making them useful in cellular immunotherapy.
Disclosure of Invention
The invention aims to provide a T cell receptor for recognizing PRAME antigen short peptide.
In a first aspect of the invention, there is provided a T Cell Receptor (TCR) capable of binding to the VLDGLDVLL-HLA A0201 complex.
In another preferred embodiment, the TCR comprises a TCR alpha chain variable domain and a TCR beta chain variable domain, the amino acid sequence of CDR3 of the TCR alpha chain variable domain is AVARTYTGNQFY (SEQ ID NO: 12); and/or the amino acid sequence of CDR3 of the variable domain of the TCR beta chain is ASSSQKFSGIQPQH (SEQ ID NO: 15).
In another preferred embodiment, the 3 Complementarity Determining Regions (CDRs) of the TCR α chain variable domain are:
αCDR1-DRGSQS(SEQ ID NO:10)
αCDR2-IYSNGD(SEQ ID NO:11)
alpha CDR3-AVARTYTGNQFY (SEQ ID NO: 12); and/or
The 3 complementarity determining regions of the TCR β chain variable domain are:
βCDR1-SEHNR(SEQ ID NO:13)
βCDR2-FQNEAQ(SEQ ID NO:14)
βCDR3-ASSSQKFSGIQPQH(SEQ ID NO:15)。
in another preferred embodiment, the TCR comprises a TCR alpha chain variable domain which is an amino acid sequence having at least 90% sequence identity to SEQ ID No. 1, and a TCR beta chain variable domain; and/or the TCR β chain variable domain is identical to SEQ ID NO:5 an amino acid sequence having at least 90% sequence identity.
In another preferred embodiment, the TCR comprises the alpha chain variable domain amino acid sequence SEQ ID NO 1.
In another preferred embodiment, the TCR comprises the beta chain variable domain amino acid sequence SEQ ID NO 5.
In another preferred embodiment, the TCR is an α β heterodimer comprising a TCR α chain constant region TRAC 01 and a TCR β chain constant region TRBC1 01 or TRBC2 01.
In another preferred embodiment, the α chain amino acid sequence of the TCR is SEQ ID NO:3 and/or the beta chain amino acid sequence of the TCR is SEQ ID NO 7.
In another preferred embodiment, the TCR is soluble.
In another preferred embodiment, the TCR is single chain.
In another preferred embodiment, the TCR is formed by linking an α chain variable domain to a β chain variable domain via a peptide linker.
In another preferred embodiment, the TCR has one or more mutations in amino acid 11, 13, 19, 21, 53, 76, 89, 91, or 94 of the α chain variable region, and/or in the penultimate 3-, 5-, or 7-position of the short peptide amino acid of the α chain J gene; and/or the TCR has one or more mutations in beta chain variable region amino acid 11, 13, 19, 21, 53, 76, 89, 91, or 94 th, and/or beta chain J gene short peptide amino acid penultimate 2,4 or 6 th, wherein the amino acid position numbering is according to the position numbering listed in IMGT (international immunogenetic information system).
In another preferred embodiment, the α chain variable domain amino acid sequence of the TCR comprises SEQ ID NO 32 and/or the β chain variable domain amino acid sequence of the TCR comprises SEQ ID NO 34.
In another preferred embodiment, the amino acid sequence of the TCR is SEQ ID NO 30.
In another preferred embodiment, the TCR comprises (a) all or part of a TCR α chain, excluding the transmembrane domain; and (b) all or part of a TCR β chain, excluding the transmembrane domain;
and (a) and (b) each comprise a functional variable domain, or comprise a functional variable domain and at least a portion of the TCR chain constant domain.
In another preferred embodiment, the cysteine residues form an artificial disulfide bond between the alpha and beta chain constant domains of the TCR.
In another preferred embodiment, the cysteine residues forming the artificial disulfide bond in the TCR are substituted at one or more groups of sites selected from the group consisting of:
thr48 and TRBC1 × 01 of TRAC × 01 exon 1 or Ser57 of TRBC2 × 01 exon 1;
thr45 and TRBC1 × 01 of TRAC × 01 exon 1 or Ser77 of TRBC2 × 01 exon 1;
tyr10 and TRBC1 x 01 of exon 1 of TRAC x 01 or Ser17 of exon 1 of TRBC2 x 01;
thr45 and TRBC1 × 01 of TRAC × 01 exon 1 or Asp59 of TRBC2 × 01 exon 1;
ser15 and TRBC1 × 01 of TRAC × 01 exon 1 or Glu15 of TRBC2 × 01 exon 1;
arg53 and TRBC1 × 01 of TRAC × 01 exon 1 or Ser54 of TRBC2 × 01 exon 1;
pro89 and TRBC1 and 01 of exon 1 of TRAC 01 or Ala19 of exon 1 of TRBC2 and 01; and
tyr10 and TRBC1 × 01 of exon 1 of TRAC × 01 or Glu20 of exon 1 of TRBC2 × 01.
In another preferred embodiment, the α chain amino acid sequence of the TCR is SEQ ID NO 26 and/or the β chain amino acid sequence of the TCR is SEQ ID NO 28.
In another preferred embodiment, the TCR comprises an artificial interchain disulfide bond between the α chain variable region and the β chain constant region.
In another preferred embodiment, the cysteine residues that form the artificial interchain disulfide bond in the TCR are substituted at one or more groups of sites selected from the group consisting of:
amino acid 46 of TRAV and amino acid 60 of exon 1 of TRBC1 x 01 or TRBC2 x 01;
amino acid 47 of TRAV and amino acid 61 of exon 1 of TRBC1 x 01 or TRBC2 x 01;
amino acid 46 of TRAV and amino acid 61 of TRBC1 x 01 or TRBC2 x 01 exon 1; or
Amino acid 47 of TRAV and amino acid 60 of exon 1 of TRBC1 x 01 or TRBC2 x 01.
In another preferred embodiment, the TCR comprises an alpha chain variable domain and a beta chain variable domain and all or part of the beta chain constant domain, excluding the transmembrane domain, but which does not comprise an alpha chain constant domain, the alpha chain variable domain of the TCR forming a heterodimer with the beta chain.
In another preferred embodiment, the TCR has a conjugate attached to the C-or N-terminus of the alpha and/or beta chain.
In another preferred embodiment, the conjugate that binds to the T cell receptor is a detectable label, a therapeutic agent, a PK modifying moiety or a combination of any of these. Preferably, the therapeutic agent is an anti-CD 3 antibody.
In a second aspect of the invention, there is provided a multivalent TCR complex comprising at least two TCR molecules, and wherein at least one of the TCR molecules is a TCR according to the first aspect of the invention.
In a third aspect of the invention, there is provided a nucleic acid molecule comprising a nucleic acid sequence encoding a TCR molecule according to the first aspect of the invention, or the complement thereof.
In another preferred embodiment, the nucleic acid molecule comprises the nucleotide sequence encoding the variable domain of the TCR α chain SEQ ID NO:2 or SEQ ID NO: 33.
In another preferred embodiment, the nucleic acid molecule comprises the nucleotide sequence of SEQ ID NO:6 or SEQ ID NO 35.
In another preferred embodiment, the nucleic acid molecule comprises the nucleotide sequence encoding the TCR α chain SEQ ID NO:4 and/or comprises the nucleotide sequence encoding the TCR β chain SEQ ID NO: 8.
in a fourth aspect of the invention, there is provided a vector comprising a nucleic acid molecule according to the third aspect of the invention; preferably, the vector is a viral vector; more preferably, the vector is a lentiviral vector.
In a fifth aspect of the invention, there is provided an isolated host cell comprising a vector according to the fourth aspect of the invention or a genome into which has been integrated an exogenous nucleic acid molecule according to the third aspect of the invention.
In a sixth aspect of the invention, there is provided a cell which transduces a nucleic acid molecule according to the third aspect of the invention or a vector according to the fourth aspect of the invention; preferably, the cell is a T cell or a stem cell.
In a seventh aspect of the invention, there is provided a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a TCR according to the first aspect of the invention, a TCR complex according to the second aspect of the invention, a nucleic acid molecule according to the third aspect of the invention, a vector according to the fourth aspect of the invention, or a cell according to the sixth aspect of the invention.
In an eighth aspect, the invention provides the use of a T cell receptor according to the first aspect of the invention, or a TCR complex according to the second aspect of the invention, a nucleic acid molecule according to the third aspect of the invention, a vector according to the fourth aspect of the invention, or a cell according to the sixth aspect of the invention, for the manufacture of a medicament for the treatment of a tumour or an autoimmune disease.
In a ninth aspect of the invention, there is provided a method of treating a disease comprising administering to a subject in need thereof an amount of a T cell receptor according to the first aspect of the invention, or a TCR complex according to the second aspect of the invention, a nucleic acid molecule according to the third aspect of the invention, a vector according to the fourth aspect of the invention, or a cell according to the sixth aspect of the invention, or a pharmaceutical composition according to the seventh aspect of the invention;
preferably, the disease is a tumor, preferably the tumor includes melanoma, as well as other solid tumors such as gastric cancer, lung cancer (e.g., squamous cell carcinoma of the lung), esophageal cancer, bladder cancer, head and neck tumors (e.g., squamous cell carcinoma of the head and neck), prostate cancer, breast cancer, colon cancer, leukemia (e.g., acute lymphocytic leukemia, acute myelocytic leukemia), renal cell carcinoma, hodgkin's lymphoma, ovarian cancer, sarcoma, medulloblastoma, and the like.
It is to be understood that within the scope of the present invention, the above-described features of the present invention and those specifically described below (e.g., in the examples) may be combined with each other to form new or preferred embodiments. Not to be reiterated herein, but to the extent of space.
Drawings
FIG. 1a, FIG. 1b, FIG. 1c, FIG. 1d, FIG. 1e and FIG. 1f are the amino acid sequence of the TCR α chain variable domain, the nucleotide sequence of the TCR α chain variable domain, the amino acid sequence of the TCR α chain, the nucleotide sequence of the TCR α chain, the amino acid sequence of the TCR α chain with leader sequence and the nucleotide sequence of the TCR α chain with leader sequence, respectively.
Fig. 2a, fig. 2b, fig. 2c, fig. 2d, fig. 2e and fig. 2f are a TCR β chain variable domain amino acid sequence, a TCR β chain variable domain nucleotide sequence, a TCR β chain amino acid sequence, a TCR β chain nucleotide sequence, a TCR β chain amino acid sequence with a leader sequence and a TCR β chain nucleotide sequence with a leader sequence, respectively.
FIG. 3 is CD8 of monoclonal cells+And tetramer-PE double positive staining results.
Fig. 4a and 4b are the amino acid and nucleotide sequences, respectively, of a soluble TCR α chain.
Fig. 5a and 5b are the amino acid and nucleotide sequences, respectively, of a soluble TCR β chain.
Figure 6 is a gel diagram of the soluble TCR obtained after purification. The leftmost lane is reducing gel, the middle lane is molecular weight marker (marker), and the rightmost lane is non-reducing gel.
FIGS. 7a and 7b are the amino acid and nucleotide sequences, respectively, of a single-chain TCR.
FIGS. 8a and 8b are the amino acid and nucleotide sequences, respectively, of a single chain TCR α chain.
Fig. 9a and 9b are the amino acid and nucleotide sequences, respectively, of a single chain TCR β chain.
FIGS. 10a and 10b are the amino acid and nucleotide sequences, respectively, of a single-chain TCR linker sequence (linker).
FIG. 11 is a gel diagram of the soluble single chain TCR obtained after purification. The left lane is the molecular weight marker (marker) and the right lane is the non-reducing gel.
FIG. 12 is a BIAcore kinetic profile of binding of soluble TCRs of the invention to the VLDGLDVLL-HLA A0201 complex.
FIG. 13 is a BIAcore kinetic profile of binding of soluble single chain TCRs of the invention to VLDGLDVLL- -HLA A0201 complex.
FIG. 14 is a graph showing the results of functional experiments using T2 cells to demonstrate the transduction of effector cells of TCRs of the invention.
FIG. 15 is a graph showing the results of functional experiments using cell lines to verify the transduction of effector cells of TCRs of the invention.
Detailed Description
The present inventors have made extensive and intensive studies to find a TCR capable of specifically binding to PRAME antigen short peptide VLDGLDVLL (SEQ ID NO:9), which antigen short peptide VLDGLDVLL can form a complex with HLA A0201 and be presented together on the cell surface. The invention also provides nucleic acid molecules encoding the TCRs and vectors comprising the nucleic acid molecules. In addition, the invention provides cells that transduce a TCR of the invention.
Term(s) for
MHC molecules are proteins of the immunoglobulin superfamily, which may be MHC class I or class II molecules. Therefore, it is specific for antigen presentation, different individuals have different MHC, and different short peptides in one protein antigen can be presented on the cell surface of respective APC. Human MHC is commonly referred to as an HLA gene or HLA complex.
The T Cell Receptor (TCR), is the only receptor for a specific antigenic peptide presented on the Major Histocompatibility Complex (MHC). In the immune system, direct physical contact between T cells and Antigen Presenting Cells (APCs) is initiated by the binding of antigen-specific TCRs to pMHC complexes, and then other cell membrane surface molecules of both T cells and APCs interact, which causes a series of subsequent cell signaling and other physiological reactions, thereby allowing T cells of different antigen specificities to exert immune effects on their target cells.
TCRs are cell membrane surface glycoproteins that exist as heterodimers from either the α chain/β chain or the γ chain/δ chain. In 95% of T cells the TCR heterodimer consists of α and β chains, while 5% of T cells have TCRs consisting of γ and δ chains. Native α β heterodimeric TCRs have an α chain and a β chain, which constitute subunits of an α β heterodimeric TCR. Broadly, each of the α and β chains comprises a variable region, a linker region and a constant region, and the β chain also typically contains a short diversity region between the variable region and the linker region, but the diversity region is often considered to be part of the linker region. Each variable region comprises 3 CDRs (complementarity determining regions) CDR1, CDR2 and CDR3, which are chimeric in framework structures (framework regions). The CDR regions determine the binding of the TCR to the pMHC complex, where CDR3 is recombined from variable and connecting regions, referred to as hypervariable regions. The α and β chains of a TCR are generally regarded as having two "domains" each, namely a variable domain and a constant domain, the variable domain being made up of linked variable regions and linking regions. The sequences of TCR constant domains can be found in public databases of the international immunogenetic information system (IMGT), such as the constant domain sequence of the α chain of the TCR molecule is "TRAC 01", the constant domain sequence of the β chain of the TCR molecule is "TRBC 1 01" or "TRBC 2 01". In addition, the α and β chains of the TCR also comprise a transmembrane region and a cytoplasmic region, the cytoplasmic region being very short.
In the present invention, the terms "polypeptide of the invention", "TCR of the invention", "T cell receptor of the invention" are used interchangeably.
Natural interchain disulfide bond and artificial interchain disulfide bond
A set of disulfide bonds, referred to herein as "native interchain disulfide bonds," exist between the C α and C β chains of the membrane proximal region of native TCRs. In the present invention, the artificially introduced interchain covalent disulfide bond whose position is different from that of the natural interchain disulfide bond is referred to as an "artificial interchain disulfide bond".
For convenience of description of the positions of disulfide bonds, the positions of the amino acid sequences of TRAC 01 and TRBC1 × 01 or TRBC2 × 01 are numbered in the order from the N-terminus to the C-terminus, such as in TRBC1 × 01 or TRBC2 × 01, and the 60 th amino acid in the order from the N-terminus to the C-terminus is P (proline), and thus in the present invention it can be described as Pro60 of TRBC1 × 01 or TRBC2 × 01 exon 1, and also as the 60 th amino acid of TRBC1 × 01 or TRBC2 × 01 exon 1, and as in 737bc 3 × 01 or TRBC2 × 01, and the 61 th amino acid in the order from the N-terminus to the C-terminus is Q (glutamine), and thus in the present invention it can be described as TRBC1 × 01 or TRBC 6301 × 01, or TRBC 8501, and similarly as TRBC 8261 or glbc 891. In the present invention, the position numbering of the amino acid sequences of the variable regions TRAV and TRBV follows the position numbering listed in IMGT. If an amino acid in TRAV, the position listed in IMGT is numbered 46, it is described herein as the 46 th amino acid of TRAV, and so on. In the present invention, the sequence position numbers of other amino acids are specifically described.
Detailed Description
TCR molecules
During antigen processing, antigens are degraded within cells and then carried to the cell surface by MHC molecules. T cell receptors are capable of recognizing peptide-MHC complexes on the surface of antigen presenting cells. Accordingly, a first aspect of the invention provides a TCR molecule capable of binding VLDGLDVLL-HLA a0201 complex. Preferably, the TCR molecule is isolated or purified. The α and β chains of the TCR each have 3 Complementarity Determining Regions (CDRs).
In a preferred embodiment of the invention, the α chain of the TCR comprises CDRs having the amino acid sequence:
αCDR1-DRGSQS(SEQ ID NO:10)
αCDR2-IYSNGD(SEQ ID NO:11)
alpha CDR3-AVARTYTGNQFY (SEQ ID NO: 12); and/or
The 3 complementarity determining regions of the TCR β chain variable domain are:
βCDR1-SEHNR(SEQ ID NO:13)
βCDR2-FQNEAQ(SEQ ID NO:14)
βCDR3-ASSSQKFSGIQPQH(SEQ ID NO:15)。
chimeric TCRs can be prepared by embedding the above-described amino acid sequences of the CDR regions of the invention into any suitable framework. One skilled in the art can design or synthesize a TCR molecule with the corresponding function based on the CDR regions disclosed herein, so long as the framework structure is compatible with the CDR regions of the TCR of the invention. Thus, the TCR molecules of the invention are those which comprise the above-described α and/or β chain CDR region sequences and any suitable framework structure. The TCR α chain variable domain of the invention is an amino acid sequence having at least 90%, preferably 95%, more preferably 98% sequence identity to SEQ ID No. 1; and/or the TCR β chain variable domain of the invention is a variant of SEQ ID NO:5, having at least 90%, preferably 95%, more preferably 98% sequence identity.
In a preferred embodiment of the invention, the TCR molecules of the invention are heterodimers consisting of α and β chains. In particular, in one aspect the α chain of the heterodimeric TCR molecules comprises a variable domain and a constant domain, the α chain variable domain amino acid sequence comprising CDR1(SEQ ID NO: 10), CDR2(SEQ ID NO: 11) and CDR3(SEQ ID NO:12) of the above-described α chain. Preferably, the TCR molecule comprises the alpha chain variable domain amino acid sequence SEQ ID NO 1. More preferably, the amino acid sequence of the α chain variable domain of the TCR molecule is SEQ ID NO 1. In another aspect, the β chain of the heterodimeric TCR molecule comprises a variable domain and a constant domain, and the β chain variable domain amino acid sequence comprises CDR1(SEQ ID NO:13), CDR2(SEQ ID NO: 14), and CDR3(SEQ ID NO:15) of the above-described β chain. Preferably, the TCR molecule comprises the beta chain variable domain amino acid sequence SEQ ID NO 5. More preferably, the amino acid sequence of the β chain variable domain of the TCR molecule is SEQ ID NO 5.
In a preferred embodiment of the invention, the TCR molecules of the invention are single chain TCR molecules consisting of part or all of the α chain and/or part or all of the β chain. Single chain TCR molecules are described in Chung et al (1994) Proc. Natl. Acad. Sci. USA 91, 12654-. From the literature, those skilled in the art are readily able to construct single chain TCR molecules comprising the CDRs regions of the invention. In particular, the single chain TCR molecule comprises V α, V β and C β, preferably linked in order from N-terminus to C-terminus.
The alpha chain variable domain amino acid sequence of the single chain TCR molecule comprises the CDR1(SEQ ID NO: 10), CDR2(SEQ ID NO: 11) and CDR3(SEQ ID NO:12) of the alpha chain described above. Preferably, the single chain TCR molecule comprises the alpha chain variable domain amino acid sequence SEQ ID NO 1. More preferably, the α chain variable domain amino acid sequence of the single chain TCR molecule is SEQ ID NO 1. The amino acid sequence of the beta chain variable domain of the single chain TCR molecule comprises the CDR1(SEQ ID NO:13), CDR2(SEQ ID NO: 14) and CDR3(SEQ ID NO:15) of the above-described beta chain. Preferably, the single chain TCR molecule comprises the beta chain variable domain amino acid sequence SEQ ID NO 5. More preferably, the amino acid sequence of the β chain variable domain of the single chain TCR molecule is SEQ ID NO 5.
In a preferred embodiment of the invention, the constant domain of the TCR molecules of the invention is a human constant domain. The human constant domain amino acid sequences are known to those skilled in the art or can be obtained by consulting published databases of relevant books or IMGT (international immunogenetic information system). For example, the constant domain sequence of the α chain of the TCR molecules of the invention can be "TRAC 01", and the constant domain sequence of the β chain of the TCR molecules can be "TRBC 1 01" or "TRBC 2 01". Arg at position 53 of the amino acid sequence given in TRAC 01 of IMGT, here denoted: TRAC × 01 Arg53 of exon 1, and so on. Preferably, the amino acid sequence of the α chain of the TCR molecule of the invention is SEQ ID NO 3 and/or the amino acid sequence of the β chain is SEQ ID NO 7.
Naturally occurring TCRs are membrane proteins that are stabilized by their transmembrane regions. Like immunoglobulins (antibodies) as antigen recognition molecules, TCRs can also be developed for diagnostic and therapeutic applications, where soluble TCR molecules are required. Soluble TCR molecules do not include their transmembrane regions. Soluble TCRs have a wide range of uses, not only for studying the interaction of TCRs with pmhcs, but also as diagnostic tools for detecting infections or as markers for autoimmune diseases. Similarly, soluble TCRs can be used to deliver therapeutic agents (e.g., cytotoxic or immunostimulatory compounds) to cells presenting a specific antigen, and in addition, soluble TCRs can be conjugated to other molecules (e.g., anti-CD 3 antibodies) to redirect T cells to target them to cells presenting a particular antigen. The invention also provides soluble TCRs specific for PRAME antigen short peptides.
To obtain a soluble TCR, in one aspect, the inventive TCR may be one in which an artificial disulfide bond is introduced between residues of the constant domains of its alpha and beta chains. Cysteine residues form an artificial interchain disulfide bond between the alpha and beta chain constant domains of the TCR. Cysteine residues may be substituted for other amino acid residues at appropriate positions in native TCRs to form artificial interchain disulfide bonds. For example, a disulfide bond is formed by substituting Thr48 of exon 1 of TRAC × 01 and a cysteine residue of Ser57 of exon 1 of TRBC1 × 01 or TRBC2 × 01. Other sites for introducing cysteine residues to form disulfide bonds may also be: thr45 and TRBC1 × 01 of TRAC × 01 exon 1 or Ser77 of TRBC2 × 01 exon 1; tyr10 and TRBC1 x 01 of exon 1 of TRAC x 01 or Ser17 of exon 1 of TRBC2 x 01; thr45 and TRBC1 × 01 of TRAC × 01 exon 1 or Asp59 of TRBC2 × 01 exon 1; ser15 and TRBC1 × 01 of TRAC × 01 exon 1 or Glu15 of TRBC2 × 01 exon 1; arg53 and TRBC1 × 01 of TRAC × 01 exon 1 or Ser54 of TRBC2 × 01 exon 1; pro89 and TRBC1 and 01 of exon 1 of TRAC 01 or Ala19 of exon 1 of TRBC2 and 01; or Tyr10 and TRBC1 and 01 of TRAC 01 exon 1 or Glu20 of TRBC2 and 01 exon 1. I.e., a cysteine residue, in place of any of the above-described alpha and beta chain constant domains. The TCR constant domains of the invention may be truncated at one or more of their C-termini by up to 50, or up to 30, or up to 15, or up to 10, or up to 8 or fewer amino acids, so as not to include a cysteine residue for the purpose of deleting the native disulphide bond, or by mutating the cysteine residue forming the native disulphide bond to another amino acid.
As described above, the TCRs of the invention may comprise artificial disulfide bonds introduced between residues of the constant domains of their alpha and beta chains. It should be noted that the TCRs of the invention may each contain both TRAC constant domain sequences and TRBC1 or TRBC2 constant domain sequences, with or without the artificial disulfide bonds introduced as described above between the constant domains. The TRAC constant domain sequence and TRBC1 or TRBC2 constant domain sequences of the TCR may be linked by the native disulfide bond present in the TCR.
To obtain a soluble TCR, on the other hand, the inventive TCR also comprises a TCR having a mutation in its hydrophobic core region, preferably a mutation that enables an improved stability of the inventive soluble TCR, as described in the patent publication WO 2014/206304. Such TCRs may be mutated at the following variable domain hydrophobic core positions: (alpha and/or beta chain) variable region amino acid positions 11, 13, 19, 21, 53, 76, 89, 91, 94, and/or positions 3,5,7 of the reciprocal amino acid position of the short peptide of the alpha chain J gene (TRAJ), and/or positions 2,4,6 of the reciprocal amino acid position of the short peptide of the beta chain J gene (TRBJ), wherein the position numbering of the amino acid sequence is according to the position numbering listed in the International immunogenetic information System (IMGT). The above-mentioned international system of immunogenetics information is known to the skilled person and the position numbering of the amino acid residues of the different TCRs in IMGT can be derived from this database.
The TCR with the mutated hydrophobic core region of the invention can be a stable soluble single chain TCR formed by connecting the variable domains of the alpha and beta chains of the TCR by a flexible peptide chain. It should be noted that the flexible peptide chain of the present invention can be any peptide chain suitable for linking the TCR α and β chain variable domains. The single-chain soluble TCR constructed as in example 4 of the invention has an alpha chain variable domain amino acid sequence of SEQ ID NO. 32 and an encoded nucleotide sequence of SEQ ID NO. 33; the amino acid sequence of the beta chain variable domain is SEQ ID NO. 34, and the coded nucleotide sequence is SEQ ID NO. 35.
In addition, for stability, patent document 201510260322.4 also discloses that the introduction of an artificial interchain disulfide bond between the α chain variable region and the β chain constant region of the TCR can significantly improve the stability of the TCR. Thus, the high affinity TCRs of the invention may also contain an artificial interchain disulfide bond between the α chain variable region and the β chain constant region. Specifically, the cysteine residues that form the artificial interchain disulfide bond between the α chain variable region and the β chain constant region of the TCR are substituted for: amino acid 46 of TRAV and amino acid 60 of exon 1 of TRBC1 x 01 or TRBC2 x 01; amino acid 47 of TRAV and amino acid 61 of exon 1 of TRBC1 x 01 or TRBC2 x 01; amino acid 46 of TRAV and amino acid 61 of TRBC1 x 01 or TRBC2 x 01 exon 1; or amino acid 47 of TRAV and amino acid 60 of exon 1 of TRBC1 x 01 or TRBC2 x 01. Preferably, such a TCR may comprise (i) all or part of a TCR α chain, excluding its transmembrane domain, and (ii) all or part of a TCR β chain, excluding its transmembrane domain, wherein (i) and (ii) both comprise the variable domain and at least part of the constant domain of the TCR chain, the α chain forming a heterodimer with the β chain. More preferably, such a TCR may comprise the a chain variable domain and the β chain variable domain and all or part of the β chain constant domain, excluding the transmembrane domain, but which does not comprise the a chain constant domain, the a chain variable domain of the TCR forming a heterodimer with the β chain.
The TCRs of the invention may also be provided in the form of multivalent complexes. Multivalent TCR complexes of the invention comprise polymers formed by association of two, three, four or more TCRs of the invention, such as might be produced as a tetramer using the tetrameric domain of p53, or a complex formed by association of a plurality of TCRs of the invention with another molecule. The TCR complexes of the invention can be used to track or target cells presenting a particular antigen in vitro or in vivo, and can also be used to generate intermediates for other multivalent TCR complexes having such applications.
The TCRs of the invention may be used alone or in covalent or other association, preferably covalently, with a conjugate. The conjugates include a detectable label (for diagnostic purposes, wherein the TCR is used to detect the presence of cells presenting the VLDGLDVLL-HLA a0201 complex), a therapeutic agent, a PK (protein kinase) modifying moiety, or a combination of any of the above.
Detectable labels for diagnostic purposes include, but are not limited to: a fluorescent or luminescent label, a radioactive label, an MRI (magnetic resonance imaging) or CT (computed tomography) contrast agent, or an enzyme capable of producing a detectable product.
Therapeutic agents that may be associated or conjugated with the TCRs of the invention include, but are not limited to: 1. radionuclides (Koppe et al, 2005, Cancer metastasis reviews (Cancer metastasis) 24, 539); 2. biotoxicity (Chaudhary et al, 1989, Nature 339, 394; Epel et al, 2002, Cancer Immunology and Immunotherapy 51, 565); 3. cytokines such as IL-2 and the like (Gillies et al, 1992, Proc. Natl. Acad. Sci. USA (PNAS)89, 1428; Card et al, 2004, Cancer Immunology and Immunotherapy)53, 345; Halin et al, 2003, Cancer Research 63, 3202); 4. antibody Fc fragment (Mosquera et al, 2005, Journal Of Immunology 174, 4381); 5. antibody scFv fragments (Zhu et al, 1995, International Journal of Cancer 62,319); 6. gold nanoparticles/nanorods (Lapotko et al, 2005, Cancer letters 239, 36; Huang et al, 2006, Journal of the American Chemical Society 128, 2115); 7. viral particles (Peng et al, 2004, Gene therapy 11, 1234); 8. liposomes (Mamot et al, 2005, Cancer research 65, 11631); 9. nano magnetic particles; 10. prodrug activating enzymes (e.g., DT-diaphorase (DTD) or biphenyl hydrolase-like protein (BPHL)); 11. chemotherapeutic agents (e.g., cisplatin) or nanoparticles in any form, and the like.
In addition, the TCRs of the invention may also be hybrid TCRs comprising sequences derived from more than one species. For example, studies have shown that murine TCRs are more efficiently expressed in human T cells than human TCRs. Thus, the inventive TCR may comprise a human variable domain and a murine constant domain. The drawback of this approach is the possibility of eliciting an immune response. Thus, there should be a regulatory regimen to immunosuppresse when it is used for adoptive T cell therapy to allow for the engraftment of murine expressing T cells.
It should be understood that the amino acid names herein are expressed in terms of international single-letter or three-letter english letters, and the single-letter english letter and three-letter english letters of the amino acid names correspond to the following relationships: ala (A), Arg (R), Asn (N), Asp (D), Cys (C), Gln (Q), Glu (E), Gly (G), His (H), Ile (I), Leu (L), Lys (K), Met (M), Phe (F), Pro (P), Ser (S), Thr (T), Trp (W), Tyr (Y) and Val (V).
Nucleic acid molecules
A second aspect of the invention provides a nucleic acid molecule encoding a TCR molecule of the first aspect of the invention or a portion thereof, which may be one or more CDRs, variable domains of the alpha and/or beta chains, and the alpha and/or beta chains.
The nucleotide sequence encoding the α chain CDR regions of the TCR molecules of the first aspect of the invention is as follows:
αCDR1-gaccgaggttcccagtcc(SEQ ID NO:16)
αCDR2-atatactccaatggtgac(SEQ ID NO:17)
αCDR3-gccgtggccagaacgtacaccggtaaccagttctat(SEQ ID NO:18)
the nucleotide sequence encoding the β chain CDR regions of the TCR molecules of the first aspect of the invention is as follows:
βCDR1-tctgaacacaaccgc(SEQ ID NO:19)
βCDR2-ttccagaatgaagctcaa(SEQ ID NO:20)
βCDR3-gccagcagctcccaaaaattctccgggatccagccccagcat(SEQ ID NO:21)
thus, the nucleotide sequence of the nucleic acid molecule of the invention encoding the TCR alpha chain of the invention comprises SEQ ID NO 16, 17 and 18 and/or the nucleotide sequence of the nucleic acid molecule of the invention encoding the TCR beta chain of the invention comprises SEQ ID NO 19, 20 and 21.
The nucleotide sequence of the nucleic acid molecule of the invention may be single-stranded or double-stranded, the nucleic acid molecule may be RNA or DNA, and may or may not comprise an intron. Preferably, the nucleotide sequence of the nucleic acid molecule of the invention does not comprise an intron but is capable of encoding a polypeptide of the invention, e.g. the nucleotide sequence of the nucleic acid molecule of the invention encoding a TCR alpha chain variable domain of the invention comprises SEQ ID NO 2 and/or the nucleotide sequence of the nucleic acid molecule of the invention encoding a TCR beta chain variable domain of the invention comprises SEQ ID NO 6. Alternatively, the nucleotide sequence of a nucleic acid molecule of the invention encoding a TCR α chain variable domain of the invention comprises SEQ ID NO 33 and/or the nucleotide sequence of a nucleic acid molecule of the invention encoding a TCR β chain variable domain of the invention comprises SEQ ID NO 35. More preferably, the nucleotide sequence of the nucleic acid molecule of the invention comprises SEQ ID NO. 4 and/or SEQ ID NO. 8. Alternatively, the nucleotide sequence of the nucleic acid molecule of the invention is SEQ ID NO. 31.
It will be appreciated that, due to the degeneracy of the genetic code, different nucleotide sequences may encode the same polypeptide. Thus, the nucleic acid sequence encoding the TCR of the present invention may be identical to or a degenerate variant of the nucleic acid sequences shown in the figures of the present invention. As illustrated by one of the examples herein, a "degenerate variant" refers to a nucleic acid sequence that encodes a protein sequence having SEQ ID NO. 1, but differs from the sequence of SEQ ID NO. 2.
The nucleotide sequence may be codon optimized. Different cells differ in the utilization of specific codons, and the expression level can be increased by changing the codons in the sequence according to the type of the cell. Codon usage tables for mammalian cells as well as for various other organisms are well known to those skilled in the art.
The full-length sequence of the nucleic acid molecule of the present invention or a fragment thereof can be obtained by, but not limited to, PCR amplification, recombination, or artificial synthesis. At present, DNA sequences encoding the TCRs of the invention (or fragments or derivatives thereof) have been obtained entirely by chemical synthesis. The DNA sequence may then be introduced into various existing DNA molecules (or vectors, for example) and cells known in the art. The DNA may be the coding strand or the non-coding strand.
Carrier
The invention also relates to vectors comprising the nucleic acid molecules of the invention, including expression vectors, i.e. constructs capable of expression in vivo or in vitro. Commonly used vectors include bacterial plasmids, bacteriophages and animal and plant viruses.
Viral delivery systems include, but are not limited to, adenoviral vectors, adeno-associated virus (AAV) vectors, herpes viral vectors, retroviral vectors, lentiviral vectors, baculoviral vectors.
Preferably, the vector can transfer the nucleotide of the invention into a cell, e.g., a T cell, such that the cell expresses a TCR specific for the PRAME antigen. Ideally, the vector should be capable of sustained high level expression in T cells.
Cells
The invention also relates to genetically engineered host cells that have been engineered with the vectors or coding sequences of the invention. The host cell comprises a vector of the invention or has integrated into its chromosome a nucleic acid molecule of the invention. The host cell is selected from: prokaryotic and eukaryotic cells, such as E.coli, yeast cells, CHO cells, and the like.
In addition, the invention also includes isolated cells, particularly T cells, that express the TCRs of the invention. The T cell may be derived from a T cell isolated from a subject, or may be part of a mixed population of cells isolated from a subject, such as a population of Peripheral Blood Lymphocytes (PBLs). For example, the cells may be isolated from Peripheral Blood Mononuclear Cells (PBMC), which may be CD4+Helper T cell or CD8+Cytotoxic T cells. The cell may be in CD4+Helper T cell/CD 8+A mixed population of cytotoxic T cells. Generally, the cells can be activated with an antibody (e.g., an anti-CD 3 or anti-CD 28 antibody) to render them more amenable to transfection, e.g., transfection with a vector comprising a nucleotide sequence encoding a TCR molecule of the invention.
Alternatively, the cell of the invention may also be or be derived from a stem cell, such as a Hematopoietic Stem Cell (HSC). Gene transfer to HSCs does not result in TCR expression on the cell surface, since the CD3 molecule is not expressed on the stem cell surface. However, when stem cells differentiate into lymphoid precursors (lymphoid precursors) that migrate to the thymus, expression of the CD3 molecule will initiate expression of the introduced TCR molecule on the surface of the thymocytes.
There are many methods suitable for T cell transfection using DNA or RNA encoding the TCR of the invention (e.g., Robbins et al, (2008) J.Immunol.180: 6116-. T cells expressing the TCRs of the invention may be used for adoptive immunotherapy. Those skilled in the art will be able to recognize many suitable methods for adoptive therapy (e.g., Rosenberg et al, (2008) Nat Rev Cancer8 (4): 299-308).
PRAME antigen associated diseases
The invention also relates to a method of treating and/or preventing a PRAME-associated disease in a subject comprising the step of adoptively transferring PRAME-specific T cells to the subject. The PRAME-specific T cells recognized VLDGLDVLL-HLA A0201 complex.
The PRAME specific T cells of the invention may be used to treat any PRAME-associated disease that presents the PRAME antigen short peptide VLDGLDVLL-HLA a0201 complex. Including but not limited to tumors such as melanoma, as well as other solid tumors such as squamous cell carcinoma of the lung, breast carcinoma, renal cell carcinoma, head and neck tumors, hodgkin's lymphoma, sarcoma, medulloblastoma, and the like.
Method of treatment
Treatment may be effected by isolating T cells from patients or volunteers suffering from a disease associated with the PRAME antigen and introducing the TCR of the invention into such T cells, followed by reinfusion of these genetically engineered cells into the patient. Accordingly, the present invention provides a method of treating a PRAME-related disease comprising infusing into a patient an isolated T cell expressing a TCR of the invention, preferably the T cell is derived from the patient per se. Generally, this involves (1) isolating T cells from the patient, (2) transducing T cells in vitro with a nucleic acid molecule of the invention or a nucleic acid molecule capable of encoding a TCR molecule of the invention, and (3) infusing the genetically modified T cells into the patient. The number of cells isolated, transfected and transfused can be determined by a physician.
The main advantages of the invention are:
(1) the TCR disclosed by the invention can be combined with a PRAME antigen short peptide complex VLDGLDVLL-HLA A0201, and cells transduced with the TCR disclosed by the invention can be specifically activated and have a strong killing effect on target cells.
The following specific examples further illustrate the invention. It should be understood that these examples are for illustrative purposes only and are not intended to limit the scope of the present invention. The experimental procedures, for which specific conditions are not indicated in the following examples, are generally carried out according to conventional conditions, for example as described in Sambrook and Russell et al, Molecular Cloning: A Laboratory Manual (third edition) (2001) CSHL Press, or according to the conditions as recommended by the manufacturer. Unless otherwise indicated, percentages and parts are by weight. Unless otherwise indicated, percentages and parts are by weight. The test materials and reagents used in the following examples are commercially available without specific reference.
Example 1 cloning of PRAME antigen short peptide specific T cells
Peripheral Blood Lymphocytes (PBLs) from healthy volunteers of genotype HLA-A0201 were stimulated with synthetic short peptide VLDGLDVLL (SEQ ID NO. 9; Peking Saibance Gene technology, Inc.). VLDGLDVLL short peptide and HLA-A0201 with biotin label are renatured to prepare pHLA haploid. These haploids were combined with streptavidin labeled with PE (BD Co.) to form PE-labeled tetramers, which were sorted for double positive anti-CD 8-APC cells. The sorted cells were expanded and subjected to secondary sorting as described above, followed by single cloning by limiting dilution. Monoclonal cells were stained with tetramer and double positive clones were selected as shown in FIG. 3.
Example 2 construction of TCR Gene and vector for obtaining PRAME antigen short peptide specific T cell clone
Using Quick-RNATMMiniPrep (ZYMO research) extracted the total RNA of the T cell clone specific to the antigen short peptide VLDGLDVLL and restricted by HLA-A0201 selected in example 1. cDNA was synthesized using the SMART RACE cDNA amplification kit from clontech, using primers designed to preserve the C-terminal region of the human TCR gene. The sequences were cloned into the T vector (TAKARA) and sequenced. It should be noted that the sequence is a complementary sequence, not including introns. The alpha chain and beta chain sequence structures of the TCR expressed by the double positive clone are respectively shown as the figure by sequencing, and the figure 1a, the figure 1b, the figure 1c, the figure 1d, the figure 1e and the figure 1f are respectively a TCR alpha chain variable domain amino acid sequence, a TCR alpha chain variable domain nucleotide sequence, a TCR alpha chain amino acid sequence, a TCR alpha chain nucleotide sequence, a TCR alpha chain amino acid sequence with a leader sequence and a TCR alpha chain nucleotide sequence with the leader sequence; fig. 2a, fig. 2b, fig. 2c, fig. 2d, fig. 2e and fig. 2f are a TCR β 0 chain variable domain amino acid sequence, a TCR β 1 chain variable domain nucleotide sequence, a TCR β 2 chain amino acid sequence, a TCR β 3 chain nucleotide sequence, a TCR β chain amino acid sequence with a leader sequence and a TCR β chain nucleotide sequence with a leader sequence, respectively.
The alpha chain was identified to comprise CDRs with the following amino acid sequences:
α CDR1-DRGSQS (SEQ ID NO:10)
α CDR2-IYSNGD (SEQ ID NO:11)
α CDR3-AVARTYTGNQFY (SEQ ID NO:12)
the beta chain comprises CDRs having the following amino acid sequences:
β CDR1-SEHNR (SEQ ID NO:13)
β CDR2-FQNEAQ (SEQ ID NO:14)
β CDR3-ASSSQKFSGIQPQH (SEQ ID NO:15)
the full length genes for the TCR α and β chains were cloned into the lentiviral expression vector pllenti (addendum) by overlap (overlap) PCR, respectively. The method specifically comprises the following steps: the TCR alpha chain and the TCR beta chain are connected by overlap PCR to obtain the TCR alpha-2A-TCR beta segment. And (3) carrying out enzyme digestion and connection on the lentivirus expression vector and the TCR alpha-2A-TCR beta to obtain pLenti-TRA-2A-TRB-IRES-NGFR plasmid. As a control, a lentiviral vector pLenti-eGFP expressing eGFP was also constructed. The pseudovirus was then packaged again at 293T/17.
Example 3 expression, refolding and purification of PRAME antigen short peptide specific soluble TCR
To obtain soluble TCR molecules, the α and β chains of the TCR molecules of the invention may comprise only the variable and part of the constant domains thereof, respectively, and a cysteine residue has been introduced into the constant domains of the α and β chains, respectively, to form artificial interchain disulfide bonds, at the positions Thr48 of exon 1 TRAC × 01 and Ser57 of exon 1 TRBC2 × 01, respectively; the amino acid sequence and nucleotide sequence of the alpha chain are shown in FIGS. 4a and 4b, respectively, and the amino acid sequence and nucleotide sequence of the beta chain are shown in FIGS. 5a and 5b, respectively, and the introduced cysteine residues are shown in bold and underlined letters. The above-mentioned gene sequences of interest for the TCR alpha and beta chains were synthesized and inserted into the expression vector pET28a + (Novagene) by standard methods described in Molecular Cloning A Laboratory Manual (third edition, Sambrook and Russell), and the upstream and downstream Cloning sites were NcoI and NotI, respectively. The insert was confirmed by sequencing without error.
Expression vectors for TCR alpha and beta chainsRespectively transformed into expression bacteria BL21(DE3) by chemical transformation, and the bacteria are grown in LB culture solution at OD600Inclusion bodies formed after expression of the α and β chains of the TCR were extracted by BugBuster Mix (Novagene) and washed repeatedly with BugBuster solution several times at 0.6 final induction with final concentration of 0.5mM IPTG, and finally dissolved in 6M guanidine hydrochloride, 10mM Dithiothreitol (DTT),10mM ethylenediaminetetraacetic acid (EDTA),20mM Tris (pH 8.1).
The TCR α and β chains after lysis were separated by 1: 1 was rapidly mixed in 5M urea, 0.4M arginine, 20mM Tris (pH 8.1),3.7mM cystamine,6.6mM β -mercaptamine (4 ℃) to a final concentration of 60 mg/mL. After mixing, the solution was dialyzed against 10 volumes of deionized water (4 ℃ C.) and after 12 hours, the deionized water was changed to a buffer (20mM Tris, pH 8.0) and dialysis was continued at 4 ℃ for 12 hours. The solution after completion of dialysis was filtered through a 0.45. mu.M filter and then purified by an anion exchange column (HiTrap Q HP,5ml, GE Healthcare). The TCR eluted with peaks containing successfully renatured α and β dimers was confirmed by SDS-PAGE gel. The TCR was subsequently further purified by gel filtration chromatography (HiPrep 16/60, Sephacryl S-100HR, GE Healthcare). The purity of the purified TCR was greater than 90% as determined by SDS-PAGE and the concentration was determined by BCA. The SDS-PAGE gel of the soluble TCR of the invention is shown in FIG. 6.
Example 4 Generation of soluble Single chain TCR specific for PRAME antigen short peptides
According to the disclosure of WO2014/206304, the variable domains of TCR α and β chains in example 2 were constructed as a stable soluble single-chain TCR molecule linked by a short flexible peptide (linker) using site-directed mutagenesis. The amino acid sequence and the nucleotide sequence of the single-chain TCR molecule are shown in FIG. 7a and FIG. 7b, respectively. The amino acid sequence and nucleotide sequence of the alpha chain variable domain are shown in FIG. 8a and FIG. 8b, respectively; the amino acid sequence and nucleotide sequence of its beta-chain variable domain are shown in FIG. 9a and FIG. 9b, respectively; the amino acid sequence and the nucleotide sequence of the linker sequence are shown in FIG. 10a and FIG. 10b, respectively.
The target gene was digested simultaneously with Nco I and Not I, and ligated with pET28a vector digested simultaneously with Nco I and Not I. The ligation product was transformed into e.coli DH5 α, spread on LB plates containing kanamycin, cultured at 37 ℃ for overnight inversion, positive clones were selected for PCR screening, positive recombinants were sequenced, and after the sequence was determined to be correct, recombinant plasmids were extracted and transformed into e.coli BL21(DE3) for expression.
Example 5 expression, renaturation and purification of soluble Single chain TCR specific for the PRAME antigen short peptide
The BL21(DE3) colony containing the recombinant plasmid pET28 a-template strand prepared in example 4 was inoculated in its entirety into LB medium containing kanamycin, cultured at 37 ℃ to OD600 of 0.6 to 0.8, IPTG was added to a final concentration of 0.5mM, and the culture was continued at 37 ℃ for 4 hours. The cell pellet was harvested by centrifugation at 5000rpm for 15min, the cell pellet was lysed by Bugbuster Master Mix (Merck), inclusion bodies were recovered by centrifugation at 6000rpm for 15min, washed with Bugbuster (Merck) to remove cell debris and membrane components, and centrifuged at 6000rpm for 15min to collect the inclusion bodies. The inclusion bodies were dissolved in buffer (20mM Tris-HCl pH 8.0,8M urea), the insoluble material was removed by high speed centrifugation, the supernatant was quantified by BCA method and split charged, and stored at-80 ℃ for further use.
To 5mg of solubilized single-chain TCR inclusion body protein, 2.5mL of buffer (6M Gua-HCl, 50mM Tris-HCl pH 8.1, 100mM NaCl, 10mM EDTA) was added, DTT was added to a final concentration of 10mM, and treatment was carried out at 37 ℃ for 30 min. The treated single-chain TCR was added dropwise to 125mL of renaturation buffer (100mM Tris-HCl pH 8.1,0.4M L-arginine, 5M urea, 2mM EDTA,6.5mM beta-mercaptoethylamine, 1.87mM Cystamine) with a syringe, stirred at 4 ℃ for 10min, and then the renaturation solution was filled into a cellulose membrane dialysis bag with a cut-off of 4kDa, and the bag was placed in 1L of precooled water and stirred slowly at 4 ℃ overnight. After 17 hours, the dialysate was changed to 1L of pre-chilled buffer (20mM Tris-HCl pH 8.0), dialysis was continued at 4 ℃ for 8h, and then dialysis was continued overnight with the same fresh buffer. After 17 hours, the sample was filtered through a 0.45 μ M filter, vacuum degassed and then passed through an anion exchange column (HiTrap Q HP, GE Healthcare), the protein was purified using a 0-1M NaCl linear gradient eluent formulated in 20mM Tris-HCl pH 8.0, the collected fractions were subjected to SDS-PAGE analysis, the fractions containing single-stranded TCR were concentrated and then further purified using a gel filtration column (Superdex 7510/300, GE Healthcare), and the target fraction was also subjected to SDS-PAGE analysis.
The eluted fractions for BIAcore analysis were further tested for purity using gel filtration. The conditions are as follows: the chromatographic column Agilent Bio SEC-3(300A, phi 7.8X 300mM) and the mobile phase are 150mM phosphate buffer solution, the flow rate is 0.5mL/min, the column temperature is 25 ℃, and the ultraviolet detection wavelength is 214 nm.
The SDS-PAGE gel of the soluble single-chain TCR obtained by the invention is shown in FIG. 11.
Example 6 binding characterization
BIAcore analysis
This example demonstrates that soluble TCR molecules of the invention are capable of specifically binding to the VLDGLDVLL-HLA a0201 complex.
Binding activity of the TCR molecules obtained in examples 3 and 5 to the VLDGLDVLL-HLA A0201 complex was measured using a BIAcore T200 real-time assay system. Anti-streptavidin antibody (GenScript) was added to coupling buffer (10mM sodium acetate buffer, pH 4.77), and then the antibody was passed through CM5 chip previously activated with EDC and NHS to immobilize the antibody on the chip surface, and finally the unreacted activated surface was blocked with ethanolamine hydrochloric acid solution to complete the coupling process at a coupling level of about 15,000 RU.
The low concentration of streptavidin was flowed over the antibody coated chip surface, then VLDGLDVLL-HLA A0201 complex was flowed over the detection channel, the other channel served as the reference channel, and 0.05mM biotin was flowed over the chip at a flow rate of 10. mu.L/min for 2min to block the remaining binding sites of streptavidin.
The VLDGLDVLL-HLA A0201 complex is prepared as follows:
a. purification of
Collecting 100ml E.coli liquid for inducing expression of heavy chain or light chain, centrifuging at 4 ℃ for 10min at 8000g, washing the thalli once with 10ml PBS, then resuspending the thalli with 5ml BugBuster Master Mix Extraction Reagents (Merck) by vigorous shaking, rotatably incubating at room temperature for 20min, centrifuging at 4 ℃ for 15min at 6000g, discarding supernatant, and collecting inclusion body.
Resuspending the inclusion bodies in 5ml of BugBuster Master Mix, and rotary incubating at room temperature for 5 min; adding 30ml of 10-fold diluted BugBuster, uniformly mixing, and centrifuging at 4 ℃ at 6000g for 15 min; discarding the supernatant, adding 30ml of 10-fold diluted BugBuster to resuspend the inclusion bodies, mixing uniformly, centrifuging at 4 ℃ for 15min at 6000g, repeating twice, adding 30ml of 20mM Tris-HCl pH 8.0 to resuspend the inclusion bodies, mixing uniformly, centrifuging at 4 ℃ for 15min at 6000g, finally dissolving the inclusion bodies by using 20mM Tris-HCl 8M urea, detecting the purity of the inclusion bodies by SDS-PAGE, and detecting the concentration by using a BCA kit.
b. Renaturation
The synthesized short peptide VLDGLDVLL (Beijing Baisheng Gene technology Co., Ltd.) was dissolved in DMSO to a concentration of 20 mg/ml. Inclusion of light and heavy chains was solubilized with 8M Urea, 20mM Tris pH 8.0, 10mM DTT and further denatured by addition of 3M guanidine hydrochloride, 10mM sodium acetate, 10mM EDTA prior to renaturation. VLDGLDVLL peptide was added to a renaturation buffer (0.4M L-arginine, 100mM Tris pH 8.3, 2mM EDTA, 0.5mM oxidative glutathione, 5mM reduced glutathione, 0.2mM PMSF, cooled to 4 ℃) at 25mg/L (final concentration), followed by the addition of 20mg/L of light chain and 90mg/L of heavy chain in sequence (final concentration, heavy chain was added in three portions, 8 h/time), and renaturation was carried out at 4 ℃ for at least 3 days until completion, and SDS-PAGE checked for success or failure of the renaturation.
c. Purification after renaturation
The renaturation buffer was replaced by dialysis against 10 volumes of 20mM Tris pH 8.0, at least twice to reduce the ionic strength of the solution sufficiently. After dialysis, the protein solution was filtered through a 0.45 μm cellulose acetate filter and then loaded onto a HiTrap Q HP (GE general electric) anion exchange column (5ml bed volume). The protein was eluted using an Akta purifier (GE general electric) with a 0-400mM NaCl linear gradient prepared in 20mM Tris pH 8.0, pMHC was eluted at about 250mM NaCl, the peak fractions were collected, and the purity was checked by SDS-PAGE.
d. Biotinylation of the compound
The purified pMHC molecules were concentrated using Millipore ultrafiltration tubes while displacing the buffer to 20mM Tris pH 8.0, followed by addition of biotinylation reagent 0.05M Bicine pH 8.3, 10mM ATP, 10mM MgOAc, 50. mu. M D-Biotin, 100. mu.g/ml BirA enzyme (GST-BirA), incubation of the mixture overnight at room temperature, and SDS-PAGE to determine the completion of biotinylation.
e. Purification of biotinylated complexes
The biotinylated pMHC molecules were concentrated to 1ml using Millipore ultrafiltration tubes, the biotinylated pMHC was purified by gel filtration chromatography, and HiPrep was pre-equilibrated with filtered PBS using Akta purifier (GE general electric Co., Ltd.)TM16/60S200HR column (GE general electric) was loaded with 1ml of concentrated biotinylated pMHC molecules and then eluted with PBS at a flow rate of 1 ml/min. Biotinylated pMHC molecules appeared as a unimodal elution at approximately 55 ml. The fractions containing the protein were pooled, concentrated using Millipore ultrafiltration tubes, protein concentration was determined by BCA (Thermo), and biotinylated pMHC molecules were stored in aliquots at-80 ℃ by addition of the protease inhibitor cocktail (Roche).
Kinetic parameters were calculated by BIAcore Evaluation software, and kinetic profiles of the soluble TCR molecules of the invention and the binding of the soluble single-chain TCR molecules constructed by the invention to VLDGLDVLL-HLA A0201 complex were obtained as shown in FIGS. 12 and 13, respectively. The maps show that both soluble TCR molecules and soluble single-chain TCR molecules obtained by the invention can be combined with VLDGLDVLL-HLA A0201 complex. Meanwhile, the method is used for detecting the binding activity of the soluble TCR molecule and the short peptides of other unrelated antigens and the HLA complex, and the result shows that the TCR molecule is not bound with other unrelated antigens.
Example 7 validation of the function of effector cells transducing TCRs of the invention Using T2 cells
ELISPOT scheme
The following assay was performed to demonstrate the specific activation response of TCR-transduced T cells to target cells. IFN-. gamma.production as measured by the ELISPOT assay was used as a readout for T cell activation.
Reagent
Test medium: 10% FBS (Gibbo, catalog number 16000-
Wash buffer (PBST): 0.01M PBS/0.05% Tween 20
PBS (Gibbo Co., catalog number C10010500BT)
PVDF ELISPOT 96-well plate (Merck Millipore, Cat. No. MSIPS4510)
Human IFN-. gamma.ELISPOT PVDF-enzyme kit (BD) contains all other reagents required (capture and detection antibody, streptavidin-alkaline phosphatase and BCIP/NBT solution)
Method
Target cell preparation
The target cells used in this experiment were T2 cells. Target cells were prepared in experimental media: the concentration of the target cells is adjusted to 2.0X 105One/ml, 100. mu.l/well to obtain 2.0X 104Individual cells/well.
Effector cell preparation
The effector cells (T cells) of this experiment were CD8+ T cells transduced with the TCR of the invention, and CD8+ T cells of the same volunteer, which were not transfected with the TCR of the invention, were used as a control. T cells were stimulated with anti-CD 3/CD28 coated beads (T cell amplicons, life technologies), transduced with lentiviruses carrying the TCR gene of the invention (according to example 7), expanded in 1640 medium containing 10% FBS with 50IU/ml IL-2 and 10ng/ml IL-7 until 9-12 days post transduction, then placed in test medium and washed by centrifugation at 300g for 10min at RT. The cells were then resuspended in the test medium at 2 × the desired final concentration. Negative control effector cells were treated as well.
Preparation of short peptide solution
The corresponding short peptide was added to the corresponding target cell (T2) test group so that the final concentrations of the short peptide in the ELISPOT well plate were 1. mu.g/ml, 0.1. mu.g/ml, 0.01. mu.g/ml, 0.001. mu.g/ml and 0. mu.g/ml, respectively, and further, the non-specific short peptide was also added to the test group, which was labeled (NC) as a control group and the final concentration of the non-specific short peptide in the ELISPOT well plate was 1. mu.g/ml.
ELISPOT
The well plate was prepared as follows according to the manufacturer's instructions: 10ml of sterile PBS per plate 1: anti-human IFN-. gamma.capture antibody was diluted at 200, and 100. mu.l of the diluted capture antibody was aliquoted into each well. The plates were incubated overnight at 4 ℃. After incubation, the well plates were washed to remove excess capture antibody. 100 μ l/well of RPMI 1640 medium containing 10% FBS was added and the well plates were incubated at room temperature for 2 hours to close the well plates. The media was then washed from the well plate, and any residual wash buffer was removed by flicking and tapping the ELISPOT well plate on paper.
The components of the assay were then added to ELISPOT well plates in the following order:
100 microliter of target cells 2 x 105Cells/ml (total of about 2 x 10 was obtained)4Individual target cells/well).
100 microliter of effector cells (1 x 10)4Individual control effector cells/well and PRAME TCR positive T cells/well).
All wells were prepared in duplicate for addition.
The well plates were then incubated overnight (37 ℃/5% CO)2) The next day, the medium was discarded, the well plate was washed 2 times with double distilled water and 3 times with wash buffer, and tapped on a paper towel to remove residual wash buffer. Then, the mixture was mixed with PBS containing 10% FBS at a ratio of 1: the detection antibody was diluted at 200 and added to each well at 100. mu.l/well. The well plate was incubated at room temperature for 2 hours, washed 3 times with wash buffer and the well plate was tapped on a paper towel to remove excess wash buffer.
PBS containing 10% FBS was used at 1: streptavidin-alkaline phosphatase was diluted 100, 100 microliters of diluted streptavidin-alkaline phosphatase was added to each well and the wells were incubated for 1 hour at room temperature. The plates were then washed 2 times with 4 washes of PBS and tapped on a paper towel to remove excess wash buffer and PBS. After washing, 100 microliter of BCIP/NBT solution provided by the kit is added for development. And covering the well plate with tinfoil paper in the developing period, keeping the well plate in the dark, and standing for 5-15 minutes. Spots on the developing plate were routinely detected during this period to determine the optimum time for terminating the reaction. The BCIP/NBT solution was removed and the well plate was rinsed with double-distilled water to stop the development reaction, spun-dried, then the bottom of the well plate was removed, the well plate was dried at room temperature until each well was completely dried, and then the spots formed in the bottom film of the well plate were counted using an immune spot plate counter (CTL, cell Technology Limited).
Results
The TCR-transduced T cells of the invention were tested for IFN- γ release in response to target cells loaded with PRAME antigen short peptide VLDGLDVLL by ELISPOT assay (as described above). The number of ELSPOT spots observed in each well was plotted using a graphipad prism 6.
The experimental results are shown in fig. 14, and the T cells transduced with the TCR of the present invention showed a good activation response to the target cells loaded with the specific short peptides thereof, and showed no activation response to the target cells not loaded with the corresponding short peptides and the target cells loaded with the non-specific short peptides.
Example 8 functional validation of effector cells transduced with a TCR of the invention Using cell lines
ELISPOT experiments were performed according to the ELISPOT protocol described in example 7, using cell lines to verify the function of effector cells transducing the TCR of the invention.
Method
Target cell preparation
The target cells used in this experiment were 293T-PRAME (PRAME over-expressed), SW620-PRAME (PRAME over-expressed), K562-A2, MEL526, SW620 and K526-A24. The expression level of the PRAME antigen in the cell line was determined by nanostring, wherein SW620 hardly expressed the PRAME antigen, MEL526 expression level was relatively low, K562-A2 expression level was relatively high, and the genotype of K526-A24 was A2402 and not A0201, although the expression level was also high. Therefore, SW620 and K526-A24 served as controls. Target cells will be prepared in experimental media: the concentration of the target cells is adjusted to 2.0X 105One/ml, 100. mu.l/well to obtain 2.0X 104Individual cells/well.
Effector cell preparation
The effector cells (T cells) of this experiment were CD8+ T cells transduced with the TCR of the invention, and CD8+ T cells from the same volunteer not transduced with the TCR of the invention were used as a control (NC). Effector cells were prepared in experimental media: the effector cell concentration is adjusted to 2.0 × 104Each positive cell/ml, 100. mu.l/well to obtain 2.0X 103Individual positive cells/well.
ELISPOT
The well plate was prepared as follows according to the manufacturer's instructions: 5ml of sterile PBS per plate 1: anti-human IFN-. gamma.capture antibody was diluted at 200, and 50. mu.l of the diluted capture antibody was aliquoted into each well. The plates were incubated overnight at 4 ℃. After incubation, the well plates were washed to remove excess capture antibody. 200 PBS containing 5% FBS was added and the well plate was incubated at room temperature for 2 hours to close the well plate. The blocking solution was decanted, and the ELISPOT plate was flicked and tapped to remove any residual blocking solution.
The components of the assay were then added to ELISPOT well plates in the following order:
100 microliter of target cells 2 x 105Cells/ml (total of about 2 x 10 was obtained)4Individual target cells/well).
100 microliters of effector cells (yielding a total of about 2.0X 103Individual positive cells/well and control effector cells/well).
All wells were prepared in duplicate for addition.
The well plates were then incubated overnight (37 ℃/5% CO)2) The next day, the medium was discarded, the well plate was washed 2 times with double distilled water and 3 times with wash buffer, and tapped on a paper towel to remove residual wash buffer. Then, the mixture was mixed with PBS containing 5% FBS at a ratio of 1: the detection antibody was diluted at 200 and added to each well at 50. mu.l/well. The well plate was incubated at room temperature for 2 hours, washed 3 times with wash buffer and the well plate was tapped on a paper towel to remove excess wash buffer.
PBS containing 5% FBS was used at 1: streptavidin-alkaline phosphatase was diluted 100, 50 microliters of diluted streptavidin-alkaline phosphatase was added to each well and the wells were incubated for 1 hour at room temperature. The plate was then washed 3 times with wash buffer and 3 times with PBS, and the plate was tapped on a paper towel to remove excess wash buffer and PBS. After washing, 50 microliter/hole of BCIP/NBT solution provided by the kit is added for development. And covering the well plate with tinfoil paper in the developing period, keeping the well plate in the dark, and standing for 5-15 minutes. Spots on the developing plate were routinely detected during this period to determine the optimum time for terminating the reaction. The BCIP/NBT solution was removed and the well plate was rinsed with double-distilled water to stop the development reaction, spun-dried, then the bottom of the well plate was removed, the well plate was dried at room temperature until each well was completely dried, and then the spots formed in the bottom film of the well plate were counted using an immune spot plate counter (CTL, cell Technology Limited).
Results
The TCR transduced T cells of the invention were tested by ELISPOT assay (as described above) to release IFN-. gamma.in response to positive cells 293T-PRAME, SW620-PRAME, K562-A2, MEL526 and were not functional on negative cells SW620 and K526-A24. The number of ELSPOT spots observed in each well was plotted using a graphipad prism 6.
The results are shown in FIG. 15, where T cells transduced with the TCR of the invention all expressed PRAME, and the higher the expression level, the stronger the activation, and no activation was observed in cell lines not expressing PRAME or in cell lines of different genotypes. At the same time, the NC group of T cells not transduced with the inventive TCR had essentially no activation response.
All documents referred to herein are incorporated by reference into this application as if each were individually incorporated by reference. Furthermore, it should be understood that various changes and modifications of the present invention can be made by those skilled in the art after reading the above teachings of the present invention, and these equivalents also fall within the scope of the present invention as defined by the appended claims.
Sequence listing
<110> Guangzhou Xiangxue pharmaceutical products Co., Ltd
<120> a TCR recognizing a short peptide derived from PRAME antigen
<130> P2016-2263
<160> 37
<170> PatentIn version 3.5
<210> 1
<211> 113
<212> PRT
<213> Artificial sequence
<220>
<223> TCR alpha chain variable Domain
<400> 1
Gln Lys Glu Val Glu Gln Asn Ser Gly Pro Leu Ser Val Pro Glu Gly
1 5 10 15
Ala Ile Ala Ser Leu Asn Cys Thr Tyr Ser Asp Arg Gly Ser Gln Ser
20 25 30
Phe Phe Trp Tyr Arg Gln Tyr Ser Gly Lys Ser Pro Glu Leu Ile Met
35 40 45
Ser Ile Tyr Ser Asn Gly Asp Lys Glu Asp Gly Arg Phe Thr Ala Gln
50 55 60
Leu Asn Lys Ala Ser Gln Tyr Val Ser Leu Leu Ile Arg Asp Ser Gln
65 70 75 80
Pro Ser Asp Ser Ala Thr Tyr Leu Cys Ala Val Ala Arg Thr Tyr Thr
85 90 95
Gly Asn Gln Phe Tyr Phe Gly Thr Gly Thr Ser Leu Thr Val Ile Pro
100 105 110
Asn
<210> 2
<211> 339
<212> DNA
<213> Artificial sequence
<220>
<223> TCR alpha chain variable Domain
<400> 2
cagaaggagg tggagcagaa ttctggaccc ctcagtgttc cagagggagc cattgcctct 60
ctcaactgca cttacagtga ccgaggttcc cagtccttct tctggtacag acaatattct 120
gggaaaagcc ctgagttgat aatgtccata tactccaatg gtgacaaaga agatggaagg 180
tttacagcac agctcaataa agccagccag tatgtttctc tgctcatcag agactcccag 240
cccagtgatt cagccaccta cctctgtgcc gtggccagaa cgtacaccgg taaccagttc 300
tattttggga cagggacaag tttgacggtc attccaaat 339
<210> 3
<211> 253
<212> PRT
<213> Artificial sequence
<220>
<223> TCR alpha chain
<400> 3
Gln Lys Glu Val Glu Gln Asn Ser Gly Pro Leu Ser Val Pro Glu Gly
1 5 10 15
Ala Ile Ala Ser Leu Asn Cys Thr Tyr Ser Asp Arg Gly Ser Gln Ser
20 25 30
Phe Phe Trp Tyr Arg Gln Tyr Ser Gly Lys Ser Pro Glu Leu Ile Met
35 40 45
Ser Ile Tyr Ser Asn Gly Asp Lys Glu Asp Gly Arg Phe Thr Ala Gln
50 55 60
Leu Asn Lys Ala Ser Gln Tyr Val Ser Leu Leu Ile Arg Asp Ser Gln
65 70 75 80
Pro Ser Asp Ser Ala Thr Tyr Leu Cys Ala Val Ala Arg Thr Tyr Thr
85 90 95
Gly Asn Gln Phe Tyr Phe Gly Thr Gly Thr Ser Leu Thr Val Ile Pro
100 105 110
Asn Ile Gln Asn Pro Asp Pro Ala Val Tyr Gln Leu Arg Asp Ser Lys
115 120 125
Ser Ser Asp Lys Ser Val Cys Leu Phe Thr Asp Phe Asp Ser Gln Thr
130 135 140
Asn Val Ser Gln Ser Lys Asp Ser Asp Val Tyr Ile Thr Asp Lys Thr
145 150 155 160
Val Leu Asp Met Arg Ser Met Asp Phe Lys Ser Asn Ser Ala Val Ala
165 170 175
Trp Ser Asn Lys Ser Asp Phe Ala Cys Ala Asn Ala Phe Asn Asn Ser
180 185 190
Ile Ile Pro Glu Asp Thr Phe Phe Pro Ser Pro Glu Ser Ser Cys Asp
195 200 205
Val Lys Leu Val Glu Lys Ser Phe Glu Thr Asp Thr Asn Leu Asn Phe
210 215 220
Gln Asn Leu Ser Val Ile Gly Phe Arg Ile Leu Leu Leu Lys Val Ala
225 230 235 240
Gly Phe Asn Leu Leu Met Thr Leu Arg Leu Trp Ser Ser
245 250
<210> 4
<211> 759
<212> DNA
<213> Artificial sequence
<220>
<223> TCR alpha chain
<400> 4
cagaaggagg tggagcagaa ttctggaccc ctcagtgttc cagagggagc cattgcctct 60
ctcaactgca cttacagtga ccgaggttcc cagtccttct tctggtacag acaatattct 120
gggaaaagcc ctgagttgat aatgtccata tactccaatg gtgacaaaga agatggaagg 180
tttacagcac agctcaataa agccagccag tatgtttctc tgctcatcag agactcccag 240
cccagtgatt cagccaccta cctctgtgcc gtggccagaa cgtacaccgg taaccagttc 300
tattttggga cagggacaag tttgacggtc attccaaata tccagaaccc tgaccctgcc 360
gtgtaccagc tgagagactc taaatccagt gacaagtctg tctgcctatt caccgatttt 420
gattctcaaa caaatgtgtc acaaagtaag gattctgatg tgtatatcac agacaaaact 480
gtgctagaca tgaggtctat ggacttcaag agcaacagtg ctgtggcctg gagcaacaaa 540
tctgactttg catgtgcaaa cgccttcaac aacagcatta ttccagaaga caccttcttc 600
cccagcccag aaagttcctg tgatgtcaag ctggtcgaga aaagctttga aacagatacg 660
aacctaaact ttcaaaacct gtcagtgatt gggttccgaa tcctcctcct gaaagtggcc 720
gggtttaatc tgctcatgac gctgcggctg tggtccagc 759
<210> 5
<211> 116
<212> PRT
<213> Artificial sequence
<220>
<223> TCR beta chain variable domain
<400> 5
Asp Thr Gly Val Ser Gln Asp Pro Arg His Lys Ile Thr Lys Arg Gly
1 5 10 15
Gln Asn Val Thr Phe Arg Cys Asp Pro Ile Ser Glu His Asn Arg Leu
20 25 30
Tyr Trp Tyr Arg Gln Thr Leu Gly Gln Gly Pro Glu Phe Leu Thr Tyr
35 40 45
Phe Gln Asn Glu Ala Gln Leu Glu Lys Ser Arg Leu Leu Ser Asp Arg
50 55 60
Phe Ser Ala Glu Arg Pro Lys Gly Ser Phe Ser Thr Leu Glu Ile Gln
65 70 75 80
Arg Thr Glu Gln Gly Asp Ser Ala Met Tyr Leu Cys Ala Ser Ser Ser
85 90 95
Gln Lys Phe Ser Gly Ile Gln Pro Gln His Phe Gly Asp Gly Thr Arg
100 105 110
Leu Ser Ile Leu
115
<210> 6
<211> 348
<212> DNA
<213> Artificial sequence
<220>
<223> TCR beta chain variable domain
<400> 6
gatactggag tctcccagga ccccagacac aagatcacaa agaggggaca gaatgtaact 60
ttcaggtgtg atccaatttc tgaacacaac cgcctttatt ggtaccgaca gaccctgggg 120
cagggcccag agtttctgac ttacttccag aatgaagctc aactagaaaa atcaaggctg 180
ctcagtgatc ggttctctgc agagaggcct aagggatctt tctccacctt ggagatccag 240
cgcacagagc agggggactc ggccatgtat ctctgtgcca gcagctccca aaaattctcc 300
gggatccagc cccagcattt tggtgatggg actcgactct ccatccta 348
<210> 7
<211> 293
<212> PRT
<213> Artificial sequence
<220>
<223> TCR beta chain
<400> 7
Asp Thr Gly Val Ser Gln Asp Pro Arg His Lys Ile Thr Lys Arg Gly
1 5 10 15
Gln Asn Val Thr Phe Arg Cys Asp Pro Ile Ser Glu His Asn Arg Leu
20 25 30
Tyr Trp Tyr Arg Gln Thr Leu Gly Gln Gly Pro Glu Phe Leu Thr Tyr
35 40 45
Phe Gln Asn Glu Ala Gln Leu Glu Lys Ser Arg Leu Leu Ser Asp Arg
50 55 60
Phe Ser Ala Glu Arg Pro Lys Gly Ser Phe Ser Thr Leu Glu Ile Gln
65 70 75 80
Arg Thr Glu Gln Gly Asp Ser Ala Met Tyr Leu Cys Ala Ser Ser Ser
85 90 95
Gln Lys Phe Ser Gly Ile Gln Pro Gln His Phe Gly Asp Gly Thr Arg
100 105 110
Leu Ser Ile Leu Glu Asp Leu Asn Lys Val Phe Pro Pro Glu Val Ala
115 120 125
Val Phe Glu Pro Ser Glu Ala Glu Ile Ser His Thr Gln Lys Ala Thr
130 135 140
Leu Val Cys Leu Ala Thr Gly Phe Phe Pro Asp His Val Glu Leu Ser
145 150 155 160
Trp Trp Val Asn Gly Lys Glu Val His Ser Gly Val Ser Thr Asp Pro
165 170 175
Gln Pro Leu Lys Glu Gln Pro Ala Leu Asn Asp Ser Arg Tyr Cys Leu
180 185 190
Ser Ser Arg Leu Arg Val Ser Ala Thr Phe Trp Gln Asn Pro Arg Asn
195 200 205
His Phe Arg Cys Gln Val Gln Phe Tyr Gly Leu Ser Glu Asn Asp Glu
210 215 220
Trp Thr Gln Asp Arg Ala Lys Pro Val Thr Gln Ile Val Ser Ala Glu
225 230 235 240
Ala Trp Gly Arg Ala Asp Cys Gly Phe Thr Ser Val Ser Tyr Gln Gln
245 250 255
Gly Val Leu Ser Ala Thr Ile Leu Tyr Glu Ile Leu Leu Gly Lys Ala
260 265 270
Thr Leu Tyr Ala Val Leu Val Ser Ala Leu Val Leu Met Ala Met Val
275 280 285
Lys Arg Lys Asp Phe
290
<210> 8
<211> 879
<212> DNA
<213> Artificial sequence
<220>
<223> TCR beta chain
<400> 8
gatactggag tctcccagga ccccagacac aagatcacaa agaggggaca gaatgtaact 60
ttcaggtgtg atccaatttc tgaacacaac cgcctttatt ggtaccgaca gaccctgggg 120
cagggcccag agtttctgac ttacttccag aatgaagctc aactagaaaa atcaaggctg 180
ctcagtgatc ggttctctgc agagaggcct aagggatctt tctccacctt ggagatccag 240
cgcacagagc agggggactc ggccatgtat ctctgtgcca gcagctccca aaaattctcc 300
gggatccagc cccagcattt tggtgatggg actcgactct ccatcctaga ggacctgaac 360
aaggtgttcc cacccgaggt cgctgtgttt gagccatcag aagcagagat ctcccacacc 420
caaaaggcca cactggtgtg cctggccaca ggcttcttcc ccgaccacgt ggagctgagc 480
tggtgggtga atgggaagga ggtgcacagt ggggtcagca cggacccgca gcccctcaag 540
gagcagcccg ccctcaatga ctccagatac tgcctgagca gccgcctgag ggtctcggcc 600
accttctggc agaacccccg caaccacttc cgctgtcaag tccagttcta cgggctctcg 660
gagaatgacg agtggaccca ggatagggcc aaacccgtca cccagatcgt cagcgccgag 720
gcctggggta gagcagactg tggctttacc tcggtgtcct accagcaagg ggtcctgtct 780
gccaccatcc tctatgagat cctgctaggg aaggccaccc tgtatgctgt gctggtcagc 840
gcccttgtgt tgatggccat ggtcaagaga aaggatttc 879
<210> 9
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> antigen short peptide
<400> 9
Val Leu Asp Gly Leu Asp Val Leu Leu
1 5
<210> 10
<211> 6
<212> PRT
<213> Artificial sequence
<220>
<223> α CDR1
<400> 10
Asp Arg Gly Ser Gln Ser
1 5
<210> 11
<211> 6
<212> PRT
<213> Artificial sequence
<220>
<223> α CDR2
<400> 11
Ile Tyr Ser Asn Gly Asp
1 5
<210> 12
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> α CDR3
<400> 12
Ala Val Ala Arg Thr Tyr Thr Gly Asn Gln Phe Tyr
1 5 10
<210> 13
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> β CDR1
<400> 13
Ser Glu His Asn Arg
1 5
<210> 14
<211> 6
<212> PRT
<213> Artificial sequence
<220>
<223> β CDR2
<400> 14
Phe Gln Asn Glu Ala Gln
1 5
<210> 15
<211> 14
<212> PRT
<213> Artificial sequence
<220>
<223> β CDR3
<400> 15
Ala Ser Ser Ser Gln Lys Phe Ser Gly Ile Gln Pro Gln His
1 5 10
<210> 16
<211> 18
<212> DNA
<213> Artificial sequence
<220>
<223> α CDR1
<400> 16
gaccgaggtt cccagtcc 18
<210> 17
<211> 18
<212> DNA
<213> Artificial sequence
<220>
<223> α CDR2
<400> 17
atatactcca atggtgac 18
<210> 18
<211> 36
<212> DNA
<213> Artificial sequence
<220>
<223> α CDR3
<400> 18
gccgtggcca gaacgtacac cggtaaccag ttctat 36
<210> 19
<211> 15
<212> DNA
<213> Artificial sequence
<220>
<223> β CDR1
<400> 19
tctgaacaca accgc 15
<210> 20
<211> 18
<212> DNA
<213> Artificial sequence
<220>
<223> β CDR2
<400> 20
ttccagaatg aagctcaa 18
<210> 21
<211> 42
<212> DNA
<213> Artificial sequence
<220>
<223> β CDR3
<400> 21
gccagcagct cccaaaaatt ctccgggatc cagccccagc at 42
<210> 22
<211> 274
<212> PRT
<213> Artificial sequence
<220>
<223> TCR alpha chain having leader sequence
<400> 22
Met Lys Ser Leu Arg Val Leu Leu Val Ile Leu Trp Leu Gln Leu Ser
1 5 10 15
Trp Val Trp Ser Gln Gln Lys Glu Val Glu Gln Asn Ser Gly Pro Leu
20 25 30
Ser Val Pro Glu Gly Ala Ile Ala Ser Leu Asn Cys Thr Tyr Ser Asp
35 40 45
Arg Gly Ser Gln Ser Phe Phe Trp Tyr Arg Gln Tyr Ser Gly Lys Ser
50 55 60
Pro Glu Leu Ile Met Ser Ile Tyr Ser Asn Gly Asp Lys Glu Asp Gly
65 70 75 80
Arg Phe Thr Ala Gln Leu Asn Lys Ala Ser Gln Tyr Val Ser Leu Leu
85 90 95
Ile Arg Asp Ser Gln Pro Ser Asp Ser Ala Thr Tyr Leu Cys Ala Val
100 105 110
Ala Arg Thr Tyr Thr Gly Asn Gln Phe Tyr Phe Gly Thr Gly Thr Ser
115 120 125
Leu Thr Val Ile Pro Asn Ile Gln Asn Pro Asp Pro Ala Val Tyr Gln
130 135 140
Leu Arg Asp Ser Lys Ser Ser Asp Lys Ser Val Cys Leu Phe Thr Asp
145 150 155 160
Phe Asp Ser Gln Thr Asn Val Ser Gln Ser Lys Asp Ser Asp Val Tyr
165 170 175
Ile Thr Asp Lys Thr Val Leu Asp Met Arg Ser Met Asp Phe Lys Ser
180 185 190
Asn Ser Ala Val Ala Trp Ser Asn Lys Ser Asp Phe Ala Cys Ala Asn
195 200 205
Ala Phe Asn Asn Ser Ile Ile Pro Glu Asp Thr Phe Phe Pro Ser Pro
210 215 220
Glu Ser Ser Cys Asp Val Lys Leu Val Glu Lys Ser Phe Glu Thr Asp
225 230 235 240
Thr Asn Leu Asn Phe Gln Asn Leu Ser Val Ile Gly Phe Arg Ile Leu
245 250 255
Leu Leu Lys Val Ala Gly Phe Asn Leu Leu Met Thr Leu Arg Leu Trp
260 265 270
Ser Ser
<210> 23
<211> 822
<212> DNA
<213> Artificial sequence
<220>
<223> TCR alpha chain having leader sequence
<400> 23
atgaaatcct tgagagtttt actagtgatc ctgtggcttc agttgagctg ggtttggagc 60
caacagaagg aggtggagca gaattctgga cccctcagtg ttccagaggg agccattgcc 120
tctctcaact gcacttacag tgaccgaggt tcccagtcct tcttctggta cagacaatat 180
tctgggaaaa gccctgagtt gataatgtcc atatactcca atggtgacaa agaagatgga 240
aggtttacag cacagctcaa taaagccagc cagtatgttt ctctgctcat cagagactcc 300
cagcccagtg attcagccac ctacctctgt gccgtggcca gaacgtacac cggtaaccag 360
ttctattttg ggacagggac aagtttgacg gtcattccaa atatccagaa ccctgaccct 420
gccgtgtacc agctgagaga ctctaaatcc agtgacaagt ctgtctgcct attcaccgat 480
tttgattctc aaacaaatgt gtcacaaagt aaggattctg atgtgtatat cacagacaaa 540
actgtgctag acatgaggtc tatggacttc aagagcaaca gtgctgtggc ctggagcaac 600
aaatctgact ttgcatgtgc aaacgccttc aacaacagca ttattccaga agacaccttc 660
ttccccagcc cagaaagttc ctgtgatgtc aagctggtcg agaaaagctt tgaaacagat 720
acgaacctaa actttcaaaa cctgtcagtg attgggttcc gaatcctcct cctgaaagtg 780
gccgggttta atctgctcat gacgctgcgg ctgtggtcca gc 822
<210> 24
<211> 312
<212> PRT
<213> Artificial sequence
<220>
<223> TCR beta chain having leader sequence
<400> 24
Met Gly Thr Ser Leu Leu Cys Trp Met Ala Leu Cys Leu Leu Gly Ala
1 5 10 15
Asp His Ala Asp Thr Gly Val Ser Gln Asp Pro Arg His Lys Ile Thr
20 25 30
Lys Arg Gly Gln Asn Val Thr Phe Arg Cys Asp Pro Ile Ser Glu His
35 40 45
Asn Arg Leu Tyr Trp Tyr Arg Gln Thr Leu Gly Gln Gly Pro Glu Phe
50 55 60
Leu Thr Tyr Phe Gln Asn Glu Ala Gln Leu Glu Lys Ser Arg Leu Leu
65 70 75 80
Ser Asp Arg Phe Ser Ala Glu Arg Pro Lys Gly Ser Phe Ser Thr Leu
85 90 95
Glu Ile Gln Arg Thr Glu Gln Gly Asp Ser Ala Met Tyr Leu Cys Ala
100 105 110
Ser Ser Ser Gln Lys Phe Ser Gly Ile Gln Pro Gln His Phe Gly Asp
115 120 125
Gly Thr Arg Leu Ser Ile Leu Glu Asp Leu Asn Lys Val Phe Pro Pro
130 135 140
Glu Val Ala Val Phe Glu Pro Ser Glu Ala Glu Ile Ser His Thr Gln
145 150 155 160
Lys Ala Thr Leu Val Cys Leu Ala Thr Gly Phe Phe Pro Asp His Val
165 170 175
Glu Leu Ser Trp Trp Val Asn Gly Lys Glu Val His Ser Gly Val Ser
180 185 190
Thr Asp Pro Gln Pro Leu Lys Glu Gln Pro Ala Leu Asn Asp Ser Arg
195 200 205
Tyr Cys Leu Ser Ser Arg Leu Arg Val Ser Ala Thr Phe Trp Gln Asn
210 215 220
Pro Arg Asn His Phe Arg Cys Gln Val Gln Phe Tyr Gly Leu Ser Glu
225 230 235 240
Asn Asp Glu Trp Thr Gln Asp Arg Ala Lys Pro Val Thr Gln Ile Val
245 250 255
Ser Ala Glu Ala Trp Gly Arg Ala Asp Cys Gly Phe Thr Ser Val Ser
260 265 270
Tyr Gln Gln Gly Val Leu Ser Ala Thr Ile Leu Tyr Glu Ile Leu Leu
275 280 285
Gly Lys Ala Thr Leu Tyr Ala Val Leu Val Ser Ala Leu Val Leu Met
290 295 300
Ala Met Val Lys Arg Lys Asp Phe
305 310
<210> 25
<211> 936
<212> DNA
<213> Artificial sequence
<220>
<223> TCR beta chain having leader sequence
<400> 25
atgggcacca gcctcctctg ctggatggcc ctgtgtctcc tgggggcaga tcacgcagat 60
actggagtct cccaggaccc cagacacaag atcacaaaga ggggacagaa tgtaactttc 120
aggtgtgatc caatttctga acacaaccgc ctttattggt accgacagac cctggggcag 180
ggcccagagt ttctgactta cttccagaat gaagctcaac tagaaaaatc aaggctgctc 240
agtgatcggt tctctgcaga gaggcctaag ggatctttct ccaccttgga gatccagcgc 300
acagagcagg gggactcggc catgtatctc tgtgccagca gctcccaaaa attctccggg 360
atccagcccc agcattttgg tgatgggact cgactctcca tcctagagga cctgaacaag 420
gtgttcccac ccgaggtcgc tgtgtttgag ccatcagaag cagagatctc ccacacccaa 480
aaggccacac tggtgtgcct ggccacaggc ttcttccccg accacgtgga gctgagctgg 540
tgggtgaatg ggaaggaggt gcacagtggg gtcagcacgg acccgcagcc cctcaaggag 600
cagcccgccc tcaatgactc cagatactgc ctgagcagcc gcctgagggt ctcggccacc 660
ttctggcaga acccccgcaa ccacttccgc tgtcaagtcc agttctacgg gctctcggag 720
aatgacgagt ggacccagga tagggccaaa cccgtcaccc agatcgtcag cgccgaggcc 780
tggggtagag cagactgtgg ctttacctcg gtgtcctacc agcaaggggt cctgtctgcc 840
accatcctct atgagatcct gctagggaag gccaccctgt atgctgtgct ggtcagcgcc 900
cttgtgttga tggccatggt caagagaaag gatttc 936
<210> 26
<211> 206
<212> PRT
<213> Artificial sequence
<220>
<223> soluble TCR alpha chain
<400> 26
Gln Lys Glu Val Glu Gln Asn Ser Gly Pro Leu Ser Val Pro Glu Gly
1 5 10 15
Ala Ile Ala Ser Leu Asn Cys Thr Tyr Ser Asp Arg Gly Ser Gln Ser
20 25 30
Phe Phe Trp Tyr Arg Gln Tyr Ser Gly Lys Ser Pro Glu Leu Ile Met
35 40 45
Ser Ile Tyr Ser Asn Gly Asp Lys Glu Asp Gly Arg Phe Thr Ala Gln
50 55 60
Leu Asn Lys Ala Ser Gln Tyr Val Ser Leu Leu Ile Arg Asp Ser Gln
65 70 75 80
Pro Ser Asp Ser Ala Thr Tyr Leu Cys Ala Val Ala Arg Thr Tyr Thr
85 90 95
Gly Asn Gln Phe Tyr Phe Gly Thr Gly Thr Ser Leu Thr Val Ile Pro
100 105 110
Asn Ile Gln Asn Pro Asp Pro Ala Val Tyr Gln Leu Arg Asp Ser Lys
115 120 125
Ser Ser Asp Lys Ser Val Cys Leu Phe Thr Asp Phe Asp Ser Gln Thr
130 135 140
Asn Val Ser Gln Ser Lys Asp Ser Asp Val Tyr Ile Thr Asp Lys Cys
145 150 155 160
Val Leu Asp Met Arg Ser Met Asp Phe Lys Ser Asn Ser Ala Val Ala
165 170 175
Trp Ser Asn Lys Ser Asp Phe Ala Cys Ala Asn Ala Phe Asn Asn Ser
180 185 190
Ile Ile Pro Glu Asp Thr Phe Phe Pro Ser Pro Glu Ser Ser
195 200 205
<210> 27
<211> 618
<212> DNA
<213> Artificial sequence
<220>
<223> soluble TCR alpha chain
<400> 27
cagaaagaag tggaacagaa ttctggaccc ctcagtgttc cagagggagc cattgcctct 60
ctcaactgca cttacagtga ccgaggttcc cagtccttct tctggtacag acaatattct 120
gggaaaagcc ctgagttgat aatgtccata tactccaatg gtgacaaaga agatggaagg 180
tttacagcac agctcaataa agccagccag tatgtttctc tgctcatcag agactcccag 240
cccagtgatt cagccaccta cctctgtgcc gtggccagaa cgtacaccgg taaccagttc 300
tattttggga cagggacaag tttgacggtc attccaaata tccagaaccc tgaccctgcc 360
gtgtaccagc tgagagactc taagtcgagt gacaagtctg tctgcctatt caccgatttt 420
gattctcaaa caaatgtgtc acaaagtaag gattctgatg tgtatatcac agacaaatgt 480
gtgctagaca tgaggtctat ggacttcaag agcaacagtg ctgtggcctg gagcaacaaa 540
tctgactttg catgtgcaaa cgccttcaac aacagcatta ttccagaaga caccttcttc 600
cccagcccag aaagttcc 618
<210> 28
<211> 246
<212> PRT
<213> Artificial sequence
<220>
<223> soluble TCR beta chain
<400> 28
Asp Thr Gly Val Ser Gln Asp Pro Arg His Lys Ile Thr Lys Arg Gly
1 5 10 15
Gln Asn Val Thr Phe Arg Cys Asp Pro Ile Ser Glu His Asn Arg Leu
20 25 30
Tyr Trp Tyr Arg Gln Thr Leu Gly Gln Gly Pro Glu Phe Leu Thr Tyr
35 40 45
Phe Gln Asn Glu Ala Gln Leu Glu Lys Ser Arg Leu Leu Ser Asp Arg
50 55 60
Phe Ser Ala Glu Arg Pro Lys Gly Ser Phe Ser Thr Leu Glu Ile Gln
65 70 75 80
Arg Thr Glu Gln Gly Asp Ser Ala Met Tyr Leu Cys Ala Ser Ser Ser
85 90 95
Gln Lys Phe Ser Gly Ile Gln Pro Gln His Phe Gly Asp Gly Thr Arg
100 105 110
Leu Ser Ile Leu Glu Asp Leu Lys Asn Val Phe Pro Pro Glu Val Ala
115 120 125
Val Phe Glu Pro Ser Glu Ala Glu Ile Ser His Thr Gln Lys Ala Thr
130 135 140
Leu Val Cys Leu Ala Thr Gly Phe Tyr Pro Asp His Val Glu Leu Ser
145 150 155 160
Trp Trp Val Asn Gly Lys Glu Val His Ser Gly Val Cys Thr Asp Pro
165 170 175
Gln Pro Leu Lys Glu Gln Pro Ala Leu Asn Asp Ser Arg Tyr Ala Leu
180 185 190
Ser Ser Arg Leu Arg Val Ser Ala Thr Phe Trp Gln Asp Pro Arg Asn
195 200 205
His Phe Arg Cys Gln Val Gln Phe Tyr Gly Leu Ser Glu Asn Asp Glu
210 215 220
Trp Thr Gln Asp Arg Ala Lys Pro Val Thr Gln Ile Val Ser Ala Glu
225 230 235 240
Ala Trp Gly Arg Ala Asp
245
<210> 29
<211> 738
<212> DNA
<213> Artificial sequence
<220>
<223> soluble TCR beta chain
<400> 29
gataccggcg tgagccagga ccccagacac aagatcacaa agaggggaca gaatgtaact 60
ttcaggtgtg atccaatttc tgaacacaac cgcctttatt ggtaccgaca gaccctgggg 120
cagggcccag agtttctgac ttacttccag aatgaagctc aactagaaaa atcaaggctg 180
ctcagtgatc ggttctctgc agagaggcct aagggatctt tctccacctt ggagatccag 240
cgcacagagc agggggactc ggccatgtat ctctgtgcca gcagctccca aaaattctcc 300
gggatccagc cccagcattt tggtgatggg actcgactct ccatcctaga ggacctgaaa 360
aacgtgttcc cacccgaggt cgctgtgttt gagccatcag aagcagagat ctcccacacc 420
caaaaggcca cactggtgtg cctggccacc ggtttctacc ccgaccacgt ggagctgagc 480
tggtgggtga atgggaagga ggtgcacagt ggggtctgca cagacccgca gcccctcaag 540
gagcagcccg ccctcaatga ctccagatac gctctgagca gccgcctgag ggtctcggcc 600
accttctggc aggacccccg caaccacttc cgctgtcaag tccagttcta cgggctctcg 660
gagaatgacg agtggaccca ggatagggcc aaacccgtca cccagatcgt cagcgccgag 720
gcctggggta gagcagac 738
<210> 30
<211> 252
<212> PRT
<213> Artificial sequence
<220>
<223> Single-chain TCR
<400> 30
Gln Lys Glu Val Glu Gln Asn Ser Gly Pro Leu Ser Val Pro Glu Gly
1 5 10 15
Ala Ile Val Ser Ile Asn Cys Thr Tyr Ser Asp Arg Gly Ser Gln Ser
20 25 30
Phe Phe Trp Tyr Arg Gln Tyr Pro Gly Lys Ser Pro Glu Leu Ile Met
35 40 45
Ser Ile Tyr Ser Asn Gly Asp Lys Glu Asp Gly Arg Phe Thr Ala Gln
50 55 60
Leu Asn Lys Ala Ser Gln Tyr Val Ser Leu Leu Ile Arg Asp Val Gln
65 70 75 80
Pro Ser Asp Ser Ala Thr Tyr Phe Cys Ala Val Ala Arg Thr Tyr Thr
85 90 95
Gly Asn Gln Phe Tyr Phe Gly Thr Gly Thr Ser Leu Thr Val Ile Pro
100 105 110
Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly
115 120 125
Gly Gly Ser Glu Gly Gly Thr Gly Asp Thr Gly Val Ser Gln Asp Pro
130 135 140
Arg His Leu Ile Val Lys Arg Gly Gln Asn Val Thr Leu Arg Cys Asp
145 150 155 160
Pro Ile Ser Glu His Asn Arg Leu Tyr Trp Tyr Arg Gln Thr Pro Gly
165 170 175
Gln Gly Leu Glu Phe Leu Thr Tyr Phe Gln Asn Glu Ala Gln Leu Glu
180 185 190
Lys Ser Arg Leu Leu Ser Asp Arg Phe Ser Ala Glu Arg Pro Lys Gly
195 200 205
Ser Phe Ser Thr Leu Glu Ile Gln Arg Val Glu Pro Gly Asp Ser Ala
210 215 220
Met Tyr Phe Cys Ala Ser Ser Ser Gln Lys Phe Ser Gly Ile Gln Pro
225 230 235 240
Gln His Phe Gly Asp Gly Thr Arg Leu Ser Val Leu
245 250
<210> 31
<211> 756
<212> DNA
<213> Artificial sequence
<220>
<223> Single-chain TCR
<400> 31
caaaaagaag ttgaacaaaa cagcggtccg ctgagcgtgc cggagggtgc gatcgttagc 60
attaactgca cctacagcga tcgtggtagc cagagcttct tttggtaccg tcaatatccg 120
ggcaaaagcc cggagctgat catgagcatt tatagcaacg gtgacaagga agatggccgt 180
tttaccgcgc agctgaacaa agcgagccaa tacgtgagcc tgctgatccg tgacgttcag 240
ccgagcgata gcgcgaccta tttctgcgcg gtggcgcgta cctacaccgg taaccagttc 300
tattttggta ccggcaccag cctgaccgtt attccgggtg gcggtagcga gggcggtggc 360
agcgaaggtg gcggtagcga gggcggtggc agcgaaggtg gcaccggtga caccggcgtt 420
agccaggatc cgcgtcacct gatcgtgaag cgtggtcaaa acgttaccct gcgttgcgac 480
ccgattagcg agcacaaccg tctgtactgg tatcgtcaga ccccgggtca aggcctggaa 540
ttcctgacct actttcagaa cgaggcgcaa ctggaaaaga gccgtctgct gagcgaccgt 600
tttagcgcgg aacgtccgaa aggtagcttc agcaccctgg agatccagcg tgtggaaccg 660
ggcgatagcg cgatgtattt ctgcgcgagc agcagccaaa aatttagcgg tattcagccg 720
caacacttcg gtgacggcac ccgtctgagc gttctg 756
<210> 32
<211> 112
<212> PRT
<213> Artificial sequence
<220>
<223> Single-chain TCR alpha chain
<400> 32
Gln Lys Glu Val Glu Gln Asn Ser Gly Pro Leu Ser Val Pro Glu Gly
1 5 10 15
Ala Ile Val Ser Ile Asn Cys Thr Tyr Ser Asp Arg Gly Ser Gln Ser
20 25 30
Phe Phe Trp Tyr Arg Gln Tyr Pro Gly Lys Ser Pro Glu Leu Ile Met
35 40 45
Ser Ile Tyr Ser Asn Gly Asp Lys Glu Asp Gly Arg Phe Thr Ala Gln
50 55 60
Leu Asn Lys Ala Ser Gln Tyr Val Ser Leu Leu Ile Arg Asp Val Gln
65 70 75 80
Pro Ser Asp Ser Ala Thr Tyr Phe Cys Ala Val Ala Arg Thr Tyr Thr
85 90 95
Gly Asn Gln Phe Tyr Phe Gly Thr Gly Thr Ser Leu Thr Val Ile Pro
100 105 110
<210> 33
<211> 336
<212> DNA
<213> Artificial sequence
<220>
<223> Single-chain TCR alpha chain
<400> 33
caaaaagaag ttgaacaaaa cagcggtccg ctgagcgtgc cggagggtgc gatcgttagc 60
attaactgca cctacagcga tcgtggtagc cagagcttct tttggtaccg tcaatatccg 120
ggcaaaagcc cggagctgat catgagcatt tatagcaacg gtgacaagga agatggccgt 180
tttaccgcgc agctgaacaa agcgagccaa tacgtgagcc tgctgatccg tgacgttcag 240
ccgagcgata gcgcgaccta tttctgcgcg gtggcgcgta cctacaccgg taaccagttc 300
tattttggta ccggcaccag cctgaccgtt attccg 336
<210> 34
<211> 116
<212> PRT
<213> Artificial sequence
<220>
<223> Single chain TCR beta chain
<400> 34
Asp Thr Gly Val Ser Gln Asp Pro Arg His Leu Ile Val Lys Arg Gly
1 5 10 15
Gln Asn Val Thr Leu Arg Cys Asp Pro Ile Ser Glu His Asn Arg Leu
20 25 30
Tyr Trp Tyr Arg Gln Thr Pro Gly Gln Gly Leu Glu Phe Leu Thr Tyr
35 40 45
Phe Gln Asn Glu Ala Gln Leu Glu Lys Ser Arg Leu Leu Ser Asp Arg
50 55 60
Phe Ser Ala Glu Arg Pro Lys Gly Ser Phe Ser Thr Leu Glu Ile Gln
65 70 75 80
Arg Val Glu Pro Gly Asp Ser Ala Met Tyr Phe Cys Ala Ser Ser Ser
85 90 95
Gln Lys Phe Ser Gly Ile Gln Pro Gln His Phe Gly Asp Gly Thr Arg
100 105 110
Leu Ser Val Leu
115
<210> 35
<211> 348
<212> DNA
<213> Artificial sequence
<220>
<223> Single chain TCR beta chain
<400> 35
gacaccggcg ttagccagga tccgcgtcac ctgatcgtga agcgtggtca aaacgttacc 60
ctgcgttgcg acccgattag cgagcacaac cgtctgtact ggtatcgtca gaccccgggt 120
caaggcctgg aattcctgac ctactttcag aacgaggcgc aactggaaaa gagccgtctg 180
ctgagcgacc gttttagcgc ggaacgtccg aaaggtagct tcagcaccct ggagatccag 240
cgtgtggaac cgggcgatag cgcgatgtat ttctgcgcga gcagcagcca aaaatttagc 300
ggtattcagc cgcaacactt cggtgacggc acccgtctga gcgttctg 348
<210> 36
<211> 24
<212> PRT
<213> Artificial sequence
<220>
<223> Single-chain TCR linker sequence
<400> 36
Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly
1 5 10 15
Gly Gly Ser Glu Gly Gly Thr Gly
20
<210> 37
<211> 72
<212> DNA
<213> Artificial sequence
<220>
<223> Single-chain TCR linker sequence
<400> 37
ggtggcggta gcgagggcgg tggcagcgaa ggtggcggta gcgagggcgg tggcagcgaa 60
ggtggcaccg gt 72

Claims (37)

1. A T Cell Receptor (TCR) capable of binding to the VLDGLDVLL-HLA a0201 complex, the TCR comprising a TCR a chain variable domain and a TCR β chain variable domain, and wherein the 3 Complementarity Determining Regions (CDRs) of the TCR a chain variable domain are:
α CDR1- DRGSQS (SEQ ID NO: 10)
α CDR2- IYSNGD (SEQ ID NO: 11)
alpha CDR3-AVARTYTGNQFY (SEQ ID NO: 12); and
the 3 complementarity determining regions of the TCR β chain variable domain are:
β CDR1- SEHNR (SEQ ID NO: 13)
β CDR2- FQNEAQ (SEQ ID NO: 14)
β CDR3- ASSSQKFSGIQPQH (SEQ ID NO: 15)。
2. a TCR as claimed in claim 1 wherein the TCR α chain variable domain is an amino acid sequence having at least 90% sequence identity to SEQ ID No. 1.
3. A TCR as claimed in claim 1 wherein the TCR β chain variable domain is substantially identical to SEQ ID NO:5 an amino acid sequence having at least 90% sequence identity.
4. A TCR as claimed in claim 1 which comprises the α chain variable domain amino acid sequence SEQ ID NO 1.
5. A TCR as claimed in claim 1 which comprises the β chain variable domain amino acid sequence SEQ ID NO 5.
6. A TCR as claimed in claim 1 which is an α β heterodimer comprising a TCR α chain constant region TRAC 01 and a TCR β chain constant region TRBC1 01 or TRBC2 01.
7. A TCR as claimed in claim 6 wherein the α chain amino acid sequence of the TCR is SEQ ID NO:3 and/or the beta chain amino acid sequence of the TCR is SEQ ID NO 7.
8. A TCR as claimed in any one of claims 1 to 5 which is soluble.
9. A TCR as claimed in claim 8 which is single chain.
10. A TCR as claimed in claim 9 which is formed by the α chain variable domain linked to the β chain variable domain by a peptide linker sequence.
11. A TCR as claimed in claim 10 which has one or more mutations in amino acid 11, 13, 19, 21, 53, 76, 89, 91 or 94 of the α chain variable region and/or in the penultimate 3,5 or 7 position of the short peptide amino acid of the α chain J gene; and/or the TCR has one or more mutations in beta chain variable region amino acid 11, 13, 19, 21, 53, 76, 89, 91, or 94 th, and/or beta chain J gene short peptide amino acid penultimate 2,4 or 6 th, wherein the amino acid position numbering is according to the position numbering listed in IMGT (international immunogenetic information system).
12. A TCR as claimed in claim 11 in which the α chain variable domain amino acid sequence of the TCR comprises SEQ ID No. 32 and/or the β chain variable domain amino acid sequence of the TCR comprises SEQ ID No. 34.
13. A TCR as claimed in claim 12 which has the amino acid sequence SEQ ID No. 30.
14. A TCR as claimed in claim 8 which comprises (a) all or part of the TCR α chain, excluding the transmembrane domain; and (b) all or part of a TCR β chain, excluding the transmembrane domain;
and (a) and (b) each comprise a functional variable domain.
15. A TCR as claimed in claim 14 wherein (a) and (b) each further comprise at least a portion of the constant domain of the TCR chain.
16. A TCR as claimed in claim 15 in which the cysteine residues form an artificial disulphide bond between the α and β chain constant domains of the TCR.
17. A TCR as claimed in claim 16 wherein the cysteine residues which form the artificial disulphide bond in the TCR are substituted at one or more groups selected from:
thr48 and TRBC1 × 01 of TRAC × 01 exon 1 or Ser57 of TRBC2 × 01 exon 1;
thr45 and TRBC1 × 01 of TRAC × 01 exon 1 or Ser77 of TRBC2 × 01 exon 1;
tyr10 and TRBC1 x 01 of exon 1 of TRAC x 01 or Ser17 of exon 1 of TRBC2 x 01;
thr45 and TRBC1 × 01 of TRAC × 01 exon 1 or Asp59 of TRBC2 × 01 exon 1;
ser15 and TRBC1 × 01 of TRAC × 01 exon 1 or Glu15 of TRBC2 × 01 exon 1;
arg53 and TRBC1 × 01 of TRAC × 01 exon 1 or Ser54 of TRBC2 × 01 exon 1;
pro89 and TRBC1 and 01 of exon 1 of TRAC 01 or Ala19 of exon 1 of TRBC2 and 01; and
tyr10 and TRBC1 × 01 of exon 1 of TRAC × 01 or Glu20 of exon 1 of TRBC2 × 01.
18. A TCR as claimed in claim 17 in which the α chain amino acid sequence of the TCR is SEQ ID No. 26 and/or the β chain amino acid sequence of the TCR is SEQ ID No. 28.
19. A TCR as claimed in claim 15 which comprises an artificial interchain disulphide bond between the α chain variable region and the β chain constant region of the TCR.
20. A TCR as claimed in claim 19 in which the cysteine residues forming the artificial interchain disulphide bond in the TCR are substituted at one or more groups selected from:
amino acid 46 of TRAV and amino acid 60 of exon 1 of TRBC1 x 01 or TRBC2 x 01;
amino acid 47 of TRAV and amino acid 61 of exon 1 of TRBC1 x 01 or TRBC2 x 01;
amino acid 46 of TRAV and amino acid 61 of TRBC1 x 01 or TRBC2 x 01 exon 1; or
Amino acid 47 of TRAV and amino acid 60 of exon 1 of TRBC1 x 01 or TRBC2 x 01.
21. A TCR as claimed in claim 19 or claim 20 which comprises the α chain variable domain and the β chain variable domain and all or part of the β chain constant domain, excluding the transmembrane domain, but which does not comprise the α chain constant domain, the α chain variable domain of the TCR forming a heterodimer with the β chain.
22. A TCR as claimed in claim 1 wherein a conjugate is attached to the C-or N-terminus of the α and/or β chains of the TCR.
23. A TCR as claimed in claim 22 wherein the conjugate to which the TCR is bound is a detectable label, a therapeutic agent, a PK modifying moiety or a combination thereof.
24. A TCR as claimed in claim 23 wherein the therapeutic agent is an anti-CD 3 antibody.
25. A multivalent TCR complex comprising at least two TCR molecules, and wherein at least one TCR molecule is a TCR as claimed in any one of claims 1 to 24.
26. A nucleic acid molecule comprising a nucleic acid sequence encoding a TCR according to any one of claims 1 to 24, or the complement thereof.
27. The nucleic acid molecule of claim 26, wherein said nucleic acid molecule comprises the nucleotide sequence of SEQ ID NO:2 or SEQ ID NO: 33.
28. The nucleic acid molecule of claim 26 or 27, wherein said nucleic acid molecule comprises the nucleotide sequence of SEQ ID NO:6 or SEQ ID NO 35.
29. The nucleic acid molecule of claim 26, comprising the nucleotide sequence encoding a TCR α chain of SEQ ID NO:4 and/or comprises the nucleotide sequence encoding the TCR β chain SEQ ID NO: 8.
30. a vector comprising the nucleic acid molecule of any one of claims 26-29.
31. The vector of claim 30, wherein said vector is a viral vector.
32. The vector of claim 31, wherein said vector is a lentiviral vector.
33. An isolated host cell comprising the vector of claim 30 or a nucleic acid molecule of any one of claims 26-29 integrated into the chromosome.
34. A cell transduced with the nucleic acid molecule of any one of claims 26 to 29 or the vector of claim 30.
35. The cell of claim 34, wherein the cell is a T cell.
36. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a TCR according to any one of claims 1 to 24, a TCR complex according to claim 25 or a cell according to claim 34.
37. Use of a TCR as claimed in any one of claims 1 to 24 or a TCR complex as claimed in claim 25 or a cell as claimed in claim 34 in the manufacture of a medicament for the treatment of a tumour.
CN201710004628.2A 2017-01-04 2017-01-04 TCR (T cell receptor) for recognizing PRAME (platelet-derived antigen) antigen short peptide Active CN108264550B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710004628.2A CN108264550B (en) 2017-01-04 2017-01-04 TCR (T cell receptor) for recognizing PRAME (platelet-derived antigen) antigen short peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710004628.2A CN108264550B (en) 2017-01-04 2017-01-04 TCR (T cell receptor) for recognizing PRAME (platelet-derived antigen) antigen short peptide

Publications (2)

Publication Number Publication Date
CN108264550A CN108264550A (en) 2018-07-10
CN108264550B true CN108264550B (en) 2021-04-23

Family

ID=62770860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710004628.2A Active CN108264550B (en) 2017-01-04 2017-01-04 TCR (T cell receptor) for recognizing PRAME (platelet-derived antigen) antigen short peptide

Country Status (1)

Country Link
CN (1) CN108264550B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109879957B (en) * 2017-12-06 2022-03-18 香雪生命科学技术(广东)有限公司 High affinity T cell receptors for PRAME
CA3113536A1 (en) * 2018-09-21 2020-03-26 Xlifesc, Ltd. High affinity t cell receptor for recognizing afp antigen
AU2020211922A1 (en) * 2019-01-22 2021-08-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services HLA class II-restricted T cell receptors against RAS with G12R mutation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101548008A (en) * 2006-10-04 2009-09-30 詹森药业有限公司 Preparation of inactivated artificial antigen presenting cells and their use in cell therapies
CN101668770A (en) * 2007-01-15 2010-03-10 葛兰素史密丝克莱恩生物有限公司 Vaccine
CN101687022A (en) * 2007-03-26 2010-03-31 莱顿大学医学中心附属莱顿教学医院 prame derived peptides and immunogenic compositions comprising these
WO2014206304A1 (en) * 2013-06-26 2014-12-31 广州市香雪制药股份有限公司 High-stability t-cell receptor and preparation method and application thereof
WO2016191246A2 (en) * 2015-05-22 2016-12-01 Memorial Sloan-Kettering Cancer Center T cell receptor-like antibodies specific for a prame peptide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101548008A (en) * 2006-10-04 2009-09-30 詹森药业有限公司 Preparation of inactivated artificial antigen presenting cells and their use in cell therapies
CN101668770A (en) * 2007-01-15 2010-03-10 葛兰素史密丝克莱恩生物有限公司 Vaccine
CN101687022A (en) * 2007-03-26 2010-03-31 莱顿大学医学中心附属莱顿教学医院 prame derived peptides and immunogenic compositions comprising these
WO2014206304A1 (en) * 2013-06-26 2014-12-31 广州市香雪制药股份有限公司 High-stability t-cell receptor and preparation method and application thereof
WO2016191246A2 (en) * 2015-05-22 2016-12-01 Memorial Sloan-Kettering Cancer Center T cell receptor-like antibodies specific for a prame peptide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis;J H Kessler等;《J Exp Med.》;20010101;第193卷(第1期);摘要,第74页左栏第1段-第85页右栏第2段 *
T细胞受体基因修饰在过继免疫治疗中的应用;邰文;《药物评价研究》;20110430;第34卷(第2期);全文 *

Also Published As

Publication number Publication date
CN108264550A (en) 2018-07-10

Similar Documents

Publication Publication Date Title
CN110950949B (en) T cell receptor for recognizing SSX2 antigen
CN106632660B (en) TCR for recognizing NY-ESO-1 antigen short peptide
CN107197625B (en) T cell receptor for recognizing NY-ESO-1 antigen short peptide
CN112646024B (en) T cell receptor for identifying KRAS mutation and coding sequence thereof
CN106749620B (en) T cell receptor for recognizing MAGE-A1 antigen short peptide
CN110776562B (en) T cell receptor for identifying AFP antigen
CN110343167B (en) T cell receptor recognizing SSX2 antigen short peptide
CN110343166B (en) T cell receptor recognizing AFP antigen short peptides
CN106831978B (en) T cell receptor recognizing PRAME antigen
CN110577591B (en) T cell receptor for identifying AFP antigen short peptide and its coding sequence
CN109575121B (en) T cell receptor recognizing AFP antigen short peptides
CN106632658B (en) TCR for recognizing NY-ESO-1 antigen short peptide
CN113321726A (en) T cell receptor for identifying HPV
CN108264550B (en) TCR (T cell receptor) for recognizing PRAME (platelet-derived antigen) antigen short peptide
WO2021016887A1 (en) T cell receptor for recognizing ssx2 antigen short peptide
WO2021170117A1 (en) T cell receptor recognizing afp antigen short peptide and encoding sequence thereof
CN113321725A (en) T cell receptor for identifying AFP
CN113072635A (en) T cell receptor for identifying HPV antigen and its coding sequence
CN109251243B (en) T cell receptor for recognizing SAGE1 antigen and nucleic acid for encoding receptor
CN110407927B (en) TCR (T cell receptor) capable of recognizing AFP (alpha fetoprotein) antigen
CN109400697B (en) TCR (T cell receptor) for identifying PRAME (platelet-activating antigen) short peptide and related composition thereof
CN109400696B (en) TCR for identifying PRAME antigen short peptide
CN110577590B (en) TCR capable of recognizing AFP antigen and encoding nucleic acid thereof
CN108948184B (en) T cell receptor for recognizing PRAME antigen-derived short peptide
CN110627894B (en) T cell receptor for recognizing NY-ESO-1 antigen short peptide and coding sequence thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210331

Address after: 519031 2715 office building, no.3000 Huandao East Road, Hengqin New District, Zhuhai City, Guangdong Province

Applicant after: Xiangxue Life Science Technology (Guangdong) Co.,Ltd.

Address before: 510663 No.2, jinfengyuan Road, Science City, Guangzhou hi tech Industrial Development Zone, Guangdong Province

Applicant before: GUANGZHOU XIANGXUE PHARMACEUTICAL Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant