CN108250206B - 一种联芳木脂素类化合物及其中间体的合成方法 - Google Patents

一种联芳木脂素类化合物及其中间体的合成方法 Download PDF

Info

Publication number
CN108250206B
CN108250206B CN201810052151.XA CN201810052151A CN108250206B CN 108250206 B CN108250206 B CN 108250206B CN 201810052151 A CN201810052151 A CN 201810052151A CN 108250206 B CN108250206 B CN 108250206B
Authority
CN
China
Prior art keywords
biaryl
alkynyl
aldehyde
follows
lignan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810052151.XA
Other languages
English (en)
Other versions
CN108250206A (zh
Inventor
史炳锋
廖港
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810052151.XA priority Critical patent/CN108250206B/zh
Publication of CN108250206A publication Critical patent/CN108250206A/zh
Application granted granted Critical
Publication of CN108250206B publication Critical patent/CN108250206B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/52Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition by dehydration and rearrangement involving two hydroxy groups in the same molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0825Preparations of compounds not comprising Si-Si or Si-cyano linkages
    • C07F7/083Syntheses without formation of a Si-C bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种高对映体选择性合成联芳木脂素(+)‑Isoschizandrin和(+)‑Steganone的方法,在钯催化剂催化下,联芳基醛与炔基溴在银盐和添加剂,氨基酸的存在下发生反应,反应结束后经过后处理得到所述的炔基化产物;所得的高对映体选择性的炔基化产物经过后续官能团化能够合成(+)‑Isoschizandrin和(+)‑Steganone的中间体;本发明操作条件简单,条件温和,步骤简短;反应底物的产率和对映体选择性较高,在转化过程中对映体选择性不降低。

Description

一种联芳木脂素类化合物及其中间体的合成方法
技术领域
本发明涉及一种高对映体选择性合成联芳木脂素(+)-Isoschizandrin和(+)-Steganone的方法,属于天然分子的合成领域。
背景技术
轴手性联芳结构广泛存在于天然产物、药物和先进材料中。并且常用的手性催化剂如联萘芳结构的手性二醇、手性磷酸都具有轴手性联芳结构,这些轴手性化合物在不对称合成中都具有非常重要的地位。目前,约有100种联芳木脂素从五味子类植物中分离出来;由于联芳环戊二烯木脂素具有独特的轴手性结构和重要的生理活性,化学家们对其越来越感兴趣,并把这类结构作为合成目标,参见a)R.S.Ward,Nat.Prod.Rep.1990,7,349;b)J.Chang,J.Reiner,J.Xie,Chem.Rev.2005,105,4581;c)G.Bringmann,T.Gulder,T.A.M.Gulder,M.Breuning,Chem.Rev.2011,111,563;
Figure GDA0002513335680000011
表1.联芳环戊二烯木脂素类天然分子
近年来,一些文献报道了不同条件下合成联芳环戊二烯木脂素结构的天然产物(表1),例如(+)-isoschizandrin和其衍生物起源于中国北方的五味子,被中医和日本传统医学作为镇咳和滋补品,参见a)D.A.Whiting,Nat.Prod.Rep.1985,2,191;b)D.A.Whiting,Nat.Prod.Rep.1987,4,499;(-)-steganone和其衍生物起源于Steganotaenia araliacea,在老鼠中对P-338型白血病具有很好的活性,同时对人体鼻癌细胞也具有很好的活性,参见S.M.Kupchan,R.W.Britton,M.F.Zeigler,C.J.Gilmore,R.J.Restivo,R.F.Bryan,J.Am.Chem.Soc.1973,95,1335.;正是由于其具有非常重要的活性,很多方法被应用于这类结构的全合成之中,isoschizandrin的全合成参加a)Takeya,T.;Ohguchi,A.;Tobinaga,S.Chem.Pharm.Bull.1994,42,438;b)G.A.Molander,K.M.George,L.G.MonovichJ.Org.Chem.2003,68,9533;c)W.-W.Chen,Q.Zhao,M.-H.Xu,G.-Q.Lin,Org.Lett.2010,12,1072;d)K.Mori,T.Itakura,T.Akiyama,Angew.Chem.Int.Ed.2016,55,11642.e)M.Tanaka,C.Mukaiyama,H.Mitsuhashi,M.Maruno,T Wakamatsu,J.Org.Chem.1995,60,4339;Steganone的全合成,参见a)A.I.Meyers,J.R.Flisak,R.A.Aitken,J.Am.Chem.Soc.1987,109,5446.b)L.G.Monovich,Y.L.Hue′rou,M.
Figure GDA0002513335680000021
G.A.Molander,J.Am.Chem.Soc.2000,122,52;c)R.S.Coleman,S.R.Gurrala,S.Mitra,A.Raao,J.Org.Chem.2005,70,8932;d)P.Magnus,J.Schultz,T.Gallagher,J.Am.Chem.Soc.1985,107,4984.e)R.Dhal,J.P.Robin,E.Brown,Tetrahedron 1983,39,2787.f)M.Mervic,Y.Ben-David,E.Ghera,Tetrahedron Lett.1981,22,5091.g)F.E.Ziegler,I.C.Chliwner,K.W.Fowler,S.J.Kanfer,S.J.Kuo,N.D.Sinha,J.Am.Chem.Soc.1980,102,790.h)E.Brown,R.Dhal,J.P.Robin,Tetrahedron Lett.1979,20,733.i)E.R.Larson,R.A.Raphael,TetrahedronLett.1979,20,5041.j)D.Becker,L.R.Hughes,R.A.Raphael,J.Chem.Soc.,PerkinTrans.1977,1,1674.k)L.R.Hughes,R.A.Raphael,Tetrahedron Lett.1976,17,1543.l)A.S.Kende,L.S.Liebeskind,J.Am.Chem.Soc.1976,98,267.m)Tomioka,K.;Ishiguro,T.;Iitaka,Y.;Koga,K.Tetrahedron 1984,40,1303.n)E.R.Larson,R.A.Raphael,J.Chem.Soc.,Perkin Trans.1982,1,521.o)Robin,J.P.;Gringgore,O.;Brown,E.Tetrahedron Lett.1980,21,2709.p)M.Uemura,A.Daimon,Y.Hayashi,J.Chem.Soc.,Chem.Commun.1995,19,1943。尽管这些合成方法能够构筑联芳环戊二烯木脂素结构的天然分子,但也存在一定的问题,如较低的立体控制及冗长的合成步骤、较少的合成量。基于此,我们发展了氨基酸作为瞬态导向基来构筑轴手性化合物,利用钯催化不对称炔基化作为核心步骤完成了(+)-Isoschizandrin和(+)-Steganone的形式合成,其对天然产物的合成以及新药筛选等都有重要意义。
发明内容
本发明的目的是提供一种反应条件温和、步骤简短、产物产率和对映体选择性较高的(+)-Isoschizandrin和(+)-Steganone及其中间体的高效合成方法。
一种联芳木脂素中间体的合成方法,包括以下步骤:在钯催化剂催化下,联芳基醛与炔基溴在银盐和添加剂,氨基酸的存在下发生反应,反应结束后经过后处理得到高对映体选择性的联芳木脂素中间体;
所述的联芳木脂素中间体的结构如式(I)所示:
Figure GDA0002513335680000031
所述的联芳基醛的结构如式(II)所示:
Figure GDA0002513335680000032
式(I)~(II)中,R1为H或甲氧基;
R2和R3独立地选择H、甲氧基或者R2、R3与同其相连的C共同形成五元环。
作为优选,所述的联芳木脂素中间体的结构如式(I-1)或式(I-2)所示:
Figure GDA0002513335680000033
作为优选,所述的钯催化剂为醋酸钯,添加剂为磷酸二氢钾,所述的银盐为三氟乙酸银,所述的有机溶剂为醋酸、所述的氨基酸为手性纯的叔亮氨酸,所述的炔为三异丙基硅乙炔溴,反应温度为55℃,反应时间为48~58小时;联芳、保护的炔基溴、钯催化剂、添加剂、氨基酸和银盐的摩尔比为1:1.5~3:0.1:2:0.3:2。
本发明还提供了一种联芳木脂素类化合物的合成方法,包括以下步骤:
(1)按照权利要求1~3任一项所述的方法得到联芳木脂素中间体;
(2)步骤(1)得到的联芳木脂素中间体经过后续官能团化得到所述的联芳木脂素类化合物;
所述的联芳木脂素类化合物为(+)-Isoschizandrin或(+)-Steganone以及他们的类似物;
Figure GDA0002513335680000041
作为优选,所述的联芳木脂素类化合物为(+)-Isoschizandrin,该方法包括以下步骤:
(1)炔基的引入:以联芳为原料,加入磷酸二氢钾,三异丙基硅乙炔溴,三氟乙酸银,醋酸、手性纯的叔亮氨酸,在醋酸钯催化下反应温度为55℃,反应时间为48~58小时,然后后处理,柱色谱纯化可以得到炔基化的联芳基醛;
(2)醛的保护:使用催化量的对甲苯磺酸,原甲酸三甲酯为溶剂,在室温条件下反应24h,得到保护后的联芳化合物;
(3)硅基的脱除与甲基的引入:加入TBAF脱除硅基后,快速后处理得到端炔粗产物,在-78℃下加入正丁基锂反应2小时后加入碘甲烷得到目标联芳化合物;
(4)炔基的顺式还原:Ti(OiPr)4/iPrMgBr条件下还原炔成顺式烯烃;
(5)脱除保护基得到目标化合物:使用稀盐酸将保护基脱除得到(+)-Isoschizandrin;
(6)中间体通过文献可以转化为目标分子(+)-isoschizandrin(G.A.Molander,K.M.George,L.G.Monovich J.Org.Chem.2003,68,9533)。
作为优选,所述的联芳木脂素类化合物为(+)-Steganone,该方法包括以下步骤:
(1)炔基的引入:以联芳为原料,加入磷酸二氢钾,三氟乙酸银,醋酸、手性纯的叔亮氨酸,在醋酸钯催化下反应温度为55℃,反应时间为48~58小时,然后后处理,柱色谱纯化可以得到炔基化的联芳基醛;
(2)Knoevenagel缩合引入侧链:使用丙二酸二甲酯,在脯氨酸催化下发生Knoevenagel缩合反应;
(3)烯烃的还原:Ni(Rany)还原得到烯烃还原后的产物;
(4)硅基的脱除与溴代:TBAF条件下脱除硅基,后处理后的粗产物在AgNO3/NBS条件下得到溴代产物;
(5)炔烃的水合:Hg(OTf)2/AgSbF6条件下,以二氯甲烷、水、甲醇作为溶剂得到水合后的产物;
(6)关环得到(+)-Steganone的中间体;
(7)中间体通过文献可以转化为目标分子(+)-Steganone(A.I.Meyers,J.R.Flisak,R.A.Aitken,J.Am.Chem.Soc.1987,109,5446)。
同现有技术相比,本发明的有益效果体现在:
(1)操作条件简单,条件温和,步骤简短;
(2)反应底物的产率和对映体选择性较高;
(3)反应立体选择性强,通过氨基酸手性控制,可以使产物具有很高的ee值,在转化过程中对映体选择性不降低。
附图说明
图1为化合物11的HPLC图谱,色谱条件为:AD-H,Hex/iPrOH=99/1,rate=0.5mL/min,220nm;
图2为化合物13的HPLC图谱,色谱条件为:AD-H,Hex/iPrOH=95/5,rate=0.8mL/min,220nm
图3为化合物15的HPLC图谱,色谱条件为:AS-H/AS-H,Hex/iPrOH=95/5,rate=0.30mL/min,220nm
图4为化合物17的HPLC图谱,色谱条件为:AD-H,Hex/iPrOH=95/5,rate=0.5mL/min,220nm
图5为化合物18的HPLC图谱,色谱条件为:AD-H,Hex/iPrOH=80/20,rate=0.8mL/min,220nm
图6为化合物19的HPLC图谱,色谱条件为:AD-H,Hex/iPrOH=80/20,rate=0.8mL/min,220nm
图7为化合物20的HPLC图谱,色谱条件为:AD-H,Hex/iPrOH=60/40,rate=1.0mL/min,220nm。
具体实施方式
实施例1
合成(+)-isoschizandrin.的反应路线如下:
Figure GDA0002513335680000061
反应条件:(a)Pd(OAc)2,L1,AgTFA,KH2PO4,2a,HOAc,55℃,58h,N2,85%;(b)TsOH,trimethyl orthoformate;(c)TBAF,THF,rt;(d)n-BuLi,MeI,THF,-78℃,91%for 3steps;(e)Ti(iOPr)4,iPrMgCl,Et2O,-78℃ to-45℃;(f)H2O,1M HCl,rt,88%for 2steps.DME=dimethoxyethane.
(1)化合物11:在250mL的希莱克管中加入底物10(1.81g,5.0mmol),TIPS-保护的炔溴2a(15.0mmol),Pd(OAc)2(112.3mg,0.50mmol),L-叔亮氨酸(196.8mg,1.50mmol),AgTFA(2.21g,10.0mmol),KH2PO4(2.73g,10.0mmol),HOAc(40mL).管内置换氮气,55℃下反应58小时。冷却到室温,用乙酸乙酯稀释后用硅藻土过滤,滤液浓缩后用饱和碳酸氢钠淬灭(60mL),并且用乙酸乙酯萃取(3×40mL).将合并有机相,用无水硫酸钠干燥,过滤,浓缩;所得的粗产物进行柱层析(石油醚/乙酸乙酯,6:1),得到淡黄色油状物11 2.30g,85%,98%ee).1H NMR(400MHz,CDCl3)δ9.59(s,1H),7.34(s,1H),6.87(s,1H),3.96(s,3H),3.93(s,6H),3.90(s,3H),3.70(s,3H),3.67(s,3H),0.88(s,21H).13C NMR(101MHz,CDCl3)δ190.93,153.47,153.45,152.33,151.73,147.80,143.33,130.21,129.83,123.79,120.07,111.05,105.26,105.08,94.37,61.16,61.09,61.04,60.87,56.24,56.22,18.59,18.58,11.20.HRMS(EI-TOF)calcd for C30H42O7Si(M+):542.2700,found:542.2698;Enantiomericexcess was determined by HPLC with a Daicel Chiralpak AD-H,图1,正己烷/异丙醇=99/1,v=0.5mL·min-1,λ=220nm,t(minor)=19.1min,t(major)=22.3min,98%ee;[α]D 20=+40.4(c=1.0,CHCl3).
(2)化合物12:在100毫升烧瓶中加入11(2.30g,4.25mmol),TsOH(37.9mg,0.22mmol),原甲酸三甲酯(20ml).反应12小时,然后用饱和碳酸氢钠淬灭(20mL),乙酸乙酯萃取(3×30mL).合并有机相并用硫酸钠干燥,过滤,浓缩.将其溶于四氢呋喃中(20ml),室温下加入四丁基氟化氨(1M in THF,6.4ml).一小时后,反应混合物加入水淬灭(20mL),并且用乙酸乙酯萃取(3×30mL).合并后的有机相水洗(40ml),硫酸钠干燥,浓缩。将其溶解在无水四氢呋喃中(20ml),冷却到-78℃。加入正丁基锂(2.5M in hexanes,4.3mL)。反应1小时后,加入碘甲烷(0.69mL,1,57g,11mmol),撤走低温。在反应混合中加入饱和氯化氨溶液(20mL).加入乙酸乙酯(50mL)萃取后,有机相用饱和氯化钠洗,硫酸钠干燥,浓缩。柱层析得到淡黄色油状12(1.71g,91%).1H NMR(400MHz,CDCl3)δ6.98(s,1H),6.79(s,1H),4.85(s,1H),3.91(s,3H),3.86(s,9H),3.69(s,3H),3.65(s,3H),1.75(s,3H).13C NMR(101MHz,CDCl3)δ152.78,152.57,151.98,151.58,142.33,142.00,132.86,125.61,123.62,119.87,110.41,104.51,102.44,87.92,78.90,60.91,60.89,60.79,60.48,55.93,55.90,54.90,53.70,4.24.HRMS(EI-TOF)calcd for C24H30O8(M+):446.1935,found:446.1942;
(3)化合物13:四异丙醇钛(5.7ml,19.1mmol)和醛12(1.71g,3.82mmol)溶于无水乙醚中(30ml).在-78℃下,反应两小时后慢慢滴入异丙基溴化镁(2.0M in diethylether,28.7mL)。反应4小时后缓慢升温至-45℃,12小时后撤出低温,加入水淬灭(20ml),室温搅拌两小时。乙酸乙酯萃取(3×30mL),有机相用硫酸钠干燥,过滤,旋干。将粗产物溶于丙酮(40ml),加入稀盐酸(1M,40mL).2小时后,浓缩,乙酸乙酯萃取(3x 50mL).有机相用饱和食盐水洗(50mL),硫酸钠干燥,旋干,柱层析得到醛13(1.35g,88%,98%ee).1H NMR(400MHz,CDCl3)δ9.41(s,1H),7.25(s,1H),6.64(s,1H),5.80(dd,J=11.5,1.7Hz,1H),5.49(dq,J=11.6,7.0Hz,1H),3.90(s,3H),3.87(s,3H),3.84(s,3H),3.83(s,3H),1.71(dd,J=7.1,1.6Hz,3H).13C NMR(101MHz,CDCl3)δ191.37,153.18,152.94,152.03,151.42,147.61,140.84,133.22,129.87,129.29,128.84,127.21,119.21,108.36,104.73,60.98,60.95,60.66,60.64,56.02,56.01,14.47.HRMS(EI-TOF)calcd for C22H26O7(M+):402.1673,found:402.1682;Enantiomeric excess was determined by HPLC with aDaicel Chiralpak AD-H,图2,正己烷/异丙醇=95/5,v=0.8mL·min-1,λ=220nm,t(minor)=9.1min,t(major)=11.2min,98%ee;[α]D 20=+66.7(c=1.0,CHCl3).
(4)(+)-isoschizandrin的合成:化合物13通过文献可以转化为目标分子(+)-isoschizandrin,参见:ref)G.A.Molander,K.M.George,L.G.Monovich J.Org.Chem.2003,68,9533
实施例2
合成(+)-steganone.的反应路线如下:
Figure GDA0002513335680000091
反应条件:(a)Pd(OAc)2,L1,AgTFA,KH2PO4,2a,HOAc,55℃,48h,N2,68%;(b)L-Proline,DMM,DMSO,Et3N,rt,94%;(c)Raney-Ni,H2,THF,rt,100%;(d)TBAF,THF 0℃;(e)AgNO3,NBS,acetone,0℃ 91%for 3steps;(f)Hg(OTf)2,AgSbF6,CH3OH,DCM,H2O,rt,61%;(g)DBU,THF,rt,90%.DMM=dimethyl malonate,DCM=dichloromethane,DMSO=dimethylsulfoxide,NBS=N-bromosuccinimide,DBU=1,8-Diazabicyclo[5.4.0]undec-7-ene.
(1)化合物15:在250mL的希莱克管中加入底物14(1.81g,5.0mmol),TIPS-保护的炔溴2a(7.5mmol),Pd(OAc)2(112.3mg,0.50mmol),L-叔亮氨酸(196.8mg,1.50mmol),AgTFA(2.21g,10.0mmol),KH2PO4(2.73g,10.0mmol),HOAc(40mL).管内置换氮气,55℃下反应48小时。冷却到室温,用乙酸乙酯稀释后用硅藻土过滤,滤液浓缩后用饱和碳酸氢钠淬灭(60mL),并且用乙酸乙酯萃取(3×40mL).将合并有机相,用无水硫酸钠干燥,过滤,浓缩;所得的粗产物进行柱层析(石油醚/乙酸乙酯,6:1),得到淡黄色油状物15(3.40g,68%,98%ee,o:o’=5.9:1)。1H NMR(400MHz,CDCl3)δ9.61(s,1H),7.33(s,1H),7.02(s,1H),6.77(s,1H),6.05(d,J=1.7Hz,2H),3.98(s,3H),3.93(s,3H),3.68(s,3H),0.88(s,21H).13C NMR(101MHz,CDCl3)δ190.76,153.40,151.39,147.98,147.80,147.41,132.99,131.07,130.23,118.18,111.81,111.12,105.23,101.87,93.65,61.27,61.10,56.26,18.54,11.16.HRMS(EI-TOF)calcd for C28H36O6Si(M+):496.2276,found:496.2275;Enantiomericexcess was determined by HPLC with two Daicel Chiralpak AS-H,图3,n-hexane/2-propanol=95/5,v=0.3mL·min-1,λ=220nm,t(minor)=27.4min,t(major)=32.3min,98%ee;[α]D 20=-36.4(c=0.50,CHCl3).
(2)化合物16:在100mL烧瓶中,底物15(3.40g,6.8mmol),L-脯氨酸(230.3mg,2.0mmol),丙二酸二甲酯(13.6mmol,1.56ml),DMSO(20ml),三乙胺(2ml).室温下反应24h。乙酸乙酯萃取EtOAc(10×60mL).有机相用无水硫酸钠干燥,过滤,浓缩,柱层析得到16(3.89g,94%,o:o’=5.7:1).1H NMR(400MHz,CDCl3)δ7.48(s,1H),7.01(s,1H),6.84(s,1H),6.59(s,1H),6.01(d,J=4.4Hz,2H),3.90(s,3H),3.82(s,3H),3.79(s,3H),3.73(s,3H),3.67(s,3H),0.89(s,21H).13C NMR(101MHz,CDCl3)δ167.57,164.43,152.96,151.75,148.09,147.15,144.25,141.87,133.31,130.39,127.94,125.45,116.78,112.14,111.18,106.86,105.43,101.75,92.84,61.19,60.98,56.13,52.65,52.59,18.55,11.19.HRMS(ESI +)calcd for C33H43O9Si(M+H)+:611.2671,found:611.2680;[α]D 20=-179.0(c=1.00,CHCl3).
(3)化合物17:将16(6.39mmol)溶于30mL四氢呋喃溶液中,用0.5毫升Ni(Raney)(THF剧烈搅拌),用氢气球将体系内其他置换为氢气,室温下进行氢化。1小时后,将反应混合物用硅藻土过滤,浓缩得到目标产物(>99%,98%ee,o:o’=5.7:1).1H NMR(400MHz,CDCl3)δ7.00(s,1H),6.65(s,1H),6.55(s,1H),6.01(d,J=7.4Hz,2H),3.84(s,3H),3.82(s,3H),3.64(s,3H),3.63(s,3H),3.61(s,3H),0.90(s,21H).13C NMR(101MHz,CDCl3)δ169.56,169.37,152.76,151.63,148.00,146.79,141.17,134.60,132.37,127.91,117.12,112.24,110.90,108.98,105.69,101.64,92.08,61.10,60.91,56.16,52.57,52.51,52.44,32.44,18.57,11.22.HRMS(ESI+)calcd for C33H45O9Si(M+H)+:613.2827,found:613.2828;Enantiomeric excess was determined by HPLC with a Daicel Chiralpak AD-H,图4,正己烷/异丙醇=95/5,v=0.5mL·min-1,λ=220nm,t(minor)=9.3min,t(major)=10.9min,98%ee;
(4)化合物18:在100ml烧瓶中,17(2.89g,4.72mmol)溶于四氢呋喃(20ml)中,在0℃下加入四丁基氟化氨(1M in THF,9.6ml).2小时后,加入水淬灭(20mL),乙酸乙酯萃取(3×40mL).有机相用水(40ml)洗后,无水硫酸钠干燥,,过滤,旋干。将其溶于丙酮(20ml)中,冷却到0℃。加入AgNO3(320.7mg,1.89mmol)反应1小时,NBS(1.0g)的丙酮溶液(10ml)在5小时内缓慢加入。再反应3小时,反应混合物用硅藻土过滤,柱层析得到目标产物18(2.30g,91%,97%ee,o:o’=8.9:1)。1H NMR(400MHz,CDCl3)δ6.97(s,1H),6.63(s,1H),6.57(s,1H),6.03(d,J=8.2Hz,2H),3.86(s,6H),3.68(s,3H),3.64(s,3H),3.64(s,3H),3.48(t,J=7.8Hz,1H),3.02–2.90(m,2H).13C NMR(101MHz,CDCl3)δ169.58,169.35,152.86,151.82,148.37,146.87,140.99,135.10,131.79,127.16,116.48,112.01,110.75,108.61,101.80,79.14,61.22,60.99,56.09,52.67,52.64,52.27,51.03,32.48.HRMS(ESI+)calcd forC24H24O9Br(M+H)+:535.0598,found:535.0605;Enantiomeric excess was determined byHPLC with a Daicel Chiralpak AD-H,图5,n-hexane/2-propanol=80/20,v=0.8mL·min-1,λ=220nm,t(minor)=8.6min,t(major)=17.0min,97%ee;[α]D 20=+70.9(c=1.00,CHCl3).
(5)化合物19:在100ml烧瓶中,加入18(2.30g,4.30mmol),三氟甲磺酸汞(428.8mg),六氟锑酸银(1.48g),甲醇(10.0ml),二氯甲烷(10.0ml),水(1.0ml).室温下反应5小时,硅藻土过滤,旋干.柱层析得到19(1.45g,61%,95%ee)。1H NMR(400MHz,CDCl3)δ7.30(s,1H),6.64(s,1H),6.56(s,1H),6.09(d,J=5.9Hz,2H),4.06(d,J=13.5Hz,1H),3.94(d,J=13.5Hz,1H),3.85(s,3H),3.83(s,3H),3.65(s,3H),3.63(s,3H),3.60(s,3H),3.48(t,J=7.7Hz,1H),2.99(dd,J=14.6,7.5Hz,1H),2.90(dd,J=14.6,7.9Hz,1H).13CNMR(101MHz,CDCl3)δ192.20,169.22,153.32,150.89,150.80,147.41,141.07,132.01,131.31,130.66,127.14,111.83,109.48,108.36,102.29,60.99,60.88,56.04,52.76,52.74,51.90,34.61,32.08.HRMS(ESI+)calcd for C24H26O10Br(M+H)+:553.0705,found:553.0717;Enantiomeric excess was determined by HPLC with a Daicel ChiralpakAD-H,图6,n-hexane/2-propanol=80/20,v=0.8mL·min-1,λ=220nm,t(minor)=17.4min,t(major)=21.8min,95%ee;[α]D 20=-1.9(c=1.0,CHCl3).
(6)化合物20:在100ml烧瓶中,19(1.43g,2.60mmol)溶于四氢呋喃中(20ml),加入DBU(0.43ml,2.86mmol).反应在室温下搅拌30分钟后,硅藻土过滤旋干。得到20(1.11g,90%,96%ee)。1H NMR(400MHz,CDCl3)δ7.54(s,1H),6.62(s,1H),6.42(s,1H),6.06(s,1H),6.03(s,1H),3.89(s,3H),3.83(s,3H),3.77(s,3H),3.72(s,3H),3.54(s,3H),3.29(d,J=13.8Hz,1H),3.18(d,J=13.8Hz,1H),3.04(d,J=13.8Hz,1H),2.74(d,J=13.8Hz,1H).13CNMR(101MHz,CDCl3)δ196.46,170.66,170.30,153.42,151.73,151.16,147.89,141.88,132.54,132.33,130.58,127.77,112.64,108.94,107.54,102.15,61.33,61.17,59.07,56.06,53.27,53.13,45.20,36.41.HRMS(ESI+)calcd for C24H24O10(M+H)+:473.1442,found:473.1450;Enantiomeric excess was determined by HPLC with a DaicelChiralpak AD-H,图7,n-hexane/2-propanol=60/40,v=1.0mL·min-1,λ=220nm,t(minor)=9.3min,t(major)=12.6min,96%ee;[α]D 20=+69.2(c=1.0,CHCl3).
(7)(+)-steganone的合成:化合物20通过文献可以转化为目标分子(+)-steganone,参见:ref)A.I.Meyers,J.R.Flisak,R.A.Aitken,J.Am.Chem.Soc.1987,109,5446。

Claims (4)

1.一种联芳木脂素中间体的合成方法,其特征在于,包括以下步骤:在钯催化剂催化下,联芳基醛与炔基溴在银盐和添加剂,氨基酸的存在下发生反应,反应结束后经过后处理得到高对映体选择性的联芳木脂素中间体;
所述的联芳木脂素中间体的结构如式(I)所示:
Figure DEST_PATH_IMAGE001
(I)
所述的联芳基醛的结构如式(II)所示:
Figure 78991DEST_PATH_IMAGE002
(II)
式(I)~(II)中,R1为H或甲氧基;
R2和R3独立地选择H、甲氧基或者R2、R3与同其相连的C共同形成五元环;
所述的钯催化剂为醋酸钯,添加剂为磷酸二氢钾,所述的银盐为三氟乙酸银,所述的有机溶剂为醋酸、所述的氨基酸为手性纯的叔亮氨酸,所述的炔基溴为三异丙基硅乙炔溴,反应温度为55℃ ,反应时间为48~58小时;联芳基醛、炔基溴、钯催化剂、添加剂、氨基酸和银盐的摩尔比为1 :1.5~3 :0.1 :2 : 0.3 :2。
2.根据权利要求1所述的联芳木脂素中间体的合成方法,其特征在于,所述的联芳木脂素中间体的结构如式(I-1)或式(I-2)所示:
Figure DEST_PATH_IMAGE003
3.一种联芳木脂素类化合物的合成方法,其特征在于,所述的联芳木脂素类化合物为(+)-Isoschizandrin,方法包括以下步骤:
(1) 炔基的引入:以联芳基醛为原料,加入磷酸二氢钾,三异丙基硅乙炔溴,三氟乙酸银,醋酸、手性纯的叔亮氨酸,在醋酸钯催化下反应,反应温度为55℃ ,反应时间为48~58小时,然后后处理,柱色谱纯化得到炔基化的联芳基醛;
所述的联芳基醛的结构式如下:
Figure 527290DEST_PATH_IMAGE004
所述的炔基化的联芳基醛的结构式如下:
Figure DEST_PATH_IMAGE005
(2) 醛的保护、硅基的脱除与甲基的引入:使用催化量的对甲苯磺酸,原甲酸三甲酯为溶剂,所述的炔基化的联芳基醛在室温条件下反应24h,加入TBAF脱除硅基后,快速后处理得到端炔粗产物,在-78℃ 下加入正丁基锂反应2小时后加入碘甲烷得到目标联芳化合物;
所述的目标联芳化合物的结构式如下:
Figure 838186DEST_PATH_IMAGE006
(3) 炔基的顺式还原和脱除保护基:Ti(OiPr)4/iPrMgBr条件下还原炔成顺式烯烃;再使用稀盐酸将保护基脱除得到(+)-Isoschizandrin的中间体;
所述的(+)-Isoschizandrin的中间体的结构式如下:
Figure DEST_PATH_IMAGE007
(4)中间体转化为目标分子(+)-Isoschizandrin;
所述的目标分子(+)-Isoschizandrin的结构式如下:
Figure 515286DEST_PATH_IMAGE008
4.一种联芳木脂素类化合物的合成方法,其特征在于,所述的联芳木脂素类化合物为(+)-Steganone,方法包括以下步骤:
(1) 炔基的引入:以联芳基醛为原料,加入磷酸二氢钾,三氟乙酸银,醋酸、手性纯的叔亮氨酸,在醋酸钯催化下反应温度为55℃ ,反应时间为48~58小时,然后后处理,柱色谱纯化可以得到炔基化的联芳基醛;
所述的联芳基醛的结构式如下:
Figure DEST_PATH_IMAGE009
所述的炔基化的联芳基醛的结构式如下:
Figure 860816DEST_PATH_IMAGE010
(2) Knoevenagel缩合引入侧链:使用丙二酸二甲酯,在脯氨酸催化下发生Knoevenagel缩合反应;
(3) 烯烃的还原:Ni(Rany)还原得到烯烃还原后的产物;
(4) 硅基的脱除与溴代:TBAF条件下脱除硅基,后处理后的粗产物在AgNO3/NBS条件下得到溴代产物;
所述的溴代产物的结构式如下:
Figure DEST_PATH_IMAGE011
(5) 炔烃的水合:Hg(OTf)2/AgSbF6条件下,以二氯甲烷、水、甲醇作为溶剂得到水合后的产物;
所述水合后的产物的结构式如下:
Figure 214437DEST_PATH_IMAGE012
(6) 关环得到(+)-Steganone的中间体;
所述的(+)-Steganone的中间体的结构式如下:
Figure DEST_PATH_IMAGE013
(7) 中间体转化为目标分子(+)-Steganone;
所述的目标分子(+)-Steganone的结构式如下:
Figure 12629DEST_PATH_IMAGE014
CN201810052151.XA 2018-01-19 2018-01-19 一种联芳木脂素类化合物及其中间体的合成方法 Expired - Fee Related CN108250206B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810052151.XA CN108250206B (zh) 2018-01-19 2018-01-19 一种联芳木脂素类化合物及其中间体的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810052151.XA CN108250206B (zh) 2018-01-19 2018-01-19 一种联芳木脂素类化合物及其中间体的合成方法

Publications (2)

Publication Number Publication Date
CN108250206A CN108250206A (zh) 2018-07-06
CN108250206B true CN108250206B (zh) 2020-08-25

Family

ID=62726753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810052151.XA Expired - Fee Related CN108250206B (zh) 2018-01-19 2018-01-19 一种联芳木脂素类化合物及其中间体的合成方法

Country Status (1)

Country Link
CN (1) CN108250206B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112110933B (zh) * 2020-09-11 2022-06-14 上海交通大学 一种木脂素类天然产物及其中间体、制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105820185A (zh) * 2016-04-15 2016-08-03 浙江大学 一种β-硅基取代的氨基酸衍生物的合成方法
US20170035829A1 (en) * 2015-07-15 2017-02-09 Unigen, Inc. Compositions, Methods, and Medical Compositions for Treatment of and Maintaining the Health of the Liver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170035829A1 (en) * 2015-07-15 2017-02-09 Unigen, Inc. Compositions, Methods, and Medical Compositions for Treatment of and Maintaining the Health of the Liver
CN105820185A (zh) * 2016-04-15 2016-08-03 浙江大学 一种β-硅基取代的氨基酸衍生物的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Atroposelective Synthesis of Axially Chiral Biaryls by Palladium-Catalyzed Asymmetric C-H Olefination Enabled by a Transient Chiral Auxiliary;Qi-JunYao等;《Angew.Chem》;20170504;第129卷;20170504 *
Highly regioselective meta arylation of oxalyl amide-protected β-arylethylamine via the Catellani reaction;Jian Han等;《ChemComm》;20160427;第52卷(第42期);第6905页scheme2 *

Also Published As

Publication number Publication date
CN108250206A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
Nie et al. Chiral bifunctional thiourea-catalyzed enantioselective aldol reaction of trifluoroacetaldehyde hemiacetal with aromatic ketones
CN111909016A (zh) 2`-羟基-α,β-不饱和酮与双烯体环加成反应合成光学活性环己烯类化合物的方法
CN113549062B (zh) 一种金鸡纳碱衍生的大位阻手性季铵盐相转移催化剂及其合成方法
Proessdorf et al. Concise Total Synthesis of (+)-Atlanticone C
CN111718372B (zh) 一种轴手性膦-烯配体及其制备方法与应用
CN108250206B (zh) 一种联芳木脂素类化合物及其中间体的合成方法
Suginome et al. Stereoselective accesses to enantioenriched allyl-, allenyl-, and propargyl-silanes via Si Si bond activation by palladium–isocyanide catalysts
CN113735894A (zh) 一类同时含有轴手性和中心手性的2,3-联烯醇类化合物及其制备方法和应用
CN111285759B (zh) 一种查尔酮类衍生物的合成方法
Xi et al. Copper-Catalyzed Enantioselective Radical Esterification of Propargylic C–H Bonds
CN112707899B (zh) 一种奎宁醇的制备方法
CN112694430B (zh) 一种1,5-二氢-2h-吡咯-2-酮化合物的制备方法
CN107522645B (zh) 一种制备多取代吡咯类化合物的方法
CN114644663A (zh) 一种手性三齿氮氮膦配体及其在酮的不对称氢化反应中的应用
CN110256478B (zh) 一种烯烃1,2-双官能化反应方法
CN113912637A (zh) 有机染料作为光催化剂催化合成烷基硅化合物的方法
JP2001526111A (ja) モリブデン、タングステンまたはクロムを有するキラル配位子をベースとする触媒組成物およびアリル性基質の不斉アルキル化の方法
Bochatay et al. 4-Amino-1-allenylsilanes from 4-Aminopropargylic Acetates through a Silylzincation/Elimination Sequence
CN110734354A (zh) 一种由醇类化合物制备联芳烃类化合物的方法
CN115894335B (zh) 一种利用炔卤和苯胺类化合物合成2-苯基吲哚化合物的方法
CN115028505B (zh) 一种β,β-二(杂)芳基-α,α-二氟酮类化合物的制备方法
CN111362795A (zh) 一类取代丁酸酯类衍生物的制备方法
Gotov et al. Novel Chiral 1-(ferrocenylalkyl)-(S)-prolinols and their application in enantioselective synthesis
CN114988976B (zh) 一种有机催化Nazarov环化合成手性环戊烯酮类化合物的方法
CN115477575B (zh) 一种二芳基酮的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200825

Termination date: 20220119