CN108191424B - 一种板条状磷酸八钙纤维的制备方法 - Google Patents

一种板条状磷酸八钙纤维的制备方法 Download PDF

Info

Publication number
CN108191424B
CN108191424B CN201810098563.7A CN201810098563A CN108191424B CN 108191424 B CN108191424 B CN 108191424B CN 201810098563 A CN201810098563 A CN 201810098563A CN 108191424 B CN108191424 B CN 108191424B
Authority
CN
China
Prior art keywords
solution
calcium
lath
acetamide
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810098563.7A
Other languages
English (en)
Other versions
CN108191424A (zh
Inventor
张宏泉
文进
祁玲玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201810098563.7A priority Critical patent/CN108191424B/zh
Publication of CN108191424A publication Critical patent/CN108191424A/zh
Application granted granted Critical
Publication of CN108191424B publication Critical patent/CN108191424B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material

Abstract

本发明提供一种板条状磷酸八钙纤维的制备方法,所用主要原料为四水硝酸钙和磷酸二氢铵,选取硝酸和氨水用来调节钙磷溶液的初始pH值、尿素和乙酰胺作为添加剂用来调节合成溶液的pH值。合成溶液的起始Ca/P比、添加剂的浓度、合成体系的温度和时间对合成样品的物相组成、样品中OCP纤维的长度和长径比有直接的影响。通过控制合成条件可制备出长度为20~50μm、长径比为4~20的板条状OCP单晶体纤维,且合成产物具有单一物相组成、形貌均匀、无团聚。本发明原料来源广泛,制备工艺、设备简单,且操作方便,生产效率高,产物物相均一。

Description

一种板条状磷酸八钙纤维的制备方法
技术领域
本发明属于生物陶瓷材料制备技术领域,具体涉及一种板条状磷酸八钙纤维的制备方法。
背景技术
生物活性陶瓷材料具有良好的生物相容性和生物活性,能与骨组织形成牢固的结合,但其脆性特征严重制约了这类材料在生物硬组织修复或替换中的应用。近年来,尽管生物活性玻璃纤维和羟基磷灰石纤维增强生物陶瓷和高分子复合材料的研究得到关注,但这些材料仍缺乏相应的生物骨诱导以及降解性能。
磷酸八钙(Ca8(HPO4)2(PO4)4·5H2O,简称OCP),具有与脊椎动物的硬组织,如骨骼、牙齿等相类似的矿物成分和结构,与羟基磷灰石(Ca10(PO4)6(OH)2,简称HA)具有相似的晶体结构和晶胞参数接近,常被看做羟基磷灰石的前驱体,具有良好的生物降解性、骨传导性和骨诱导性以及生物活性。因此,生物活性OCP纤维的制备及其增强生物医用无机材料和高分子复合材料,有望不仅可以有效提高材料的力学性能,而且可改善材料的生物相容性、生物学降解性以及类骨磷灰石的形成能力,有效促进新骨组织的形成和骨组织的愈合。此外,该材料可广泛应用于蛋白吸附和分离、及其相关的生物学检测。而板条状OCP纤维不仅可以增强生物材料的力学性能、而且可以改善生物材料的生物降解性、骨传导性和骨诱导性,同时可以广泛用各种生物学检测。
磷酸钙纤维的合成研究始于20世纪90年代,主要集中在偏磷酸钙和羟基磷灰石纤维的研究。但是,由于OCP材料的溶解度高、极易水解形成高稳定的生物活性羟基磷灰石,常作为羟基磷灰石纤维的模板材料或前躯体材料。现有技术中OCP纤维常利用二水磷酸氢钙(DCPD)和α-磷酸三钙(α-TCP)水解反应制备,但很难得到单一物相的OCP;通过均相沉淀法控制合成温度、初始pH值,来研究OCP的合成,也难以控制产物的相组成和形貌,而且需利用OCP和磷酸氢钙在溶液中分层现象,分别提取得到较纯的纤维状OCP。因此,目前合成具有单一相组成的OCP颗粒或纤维还存在不少问题,更难于获得板条状OCP纤维。
发明内容
针对现有技术存在的问题,本发明为解决现有技术中存在的问题采用的技术方案如下:
一种板条状磷酸八钙纤维的制备方法,其特征在于,包括如下步骤:
步骤1、配制浓度为1mol/L硝酸溶液和体积比为1:1的氨水;
步骤2、称取适量的可溶性钙盐和可溶性磷酸盐,分别配制含钙0.5mol/L的含钙溶液和含磷0.3mol/L的含磷溶液;
步骤3、用上述溶液配制Ca/P为1.67—2的混合溶液,其中钙离子的浓度为0.1-0.3mol/L;
步骤4、利用所配制的稀硝酸溶液和氨水在磁力搅拌条件下调节钙磷溶液的初始pH=3.0;
步骤5、在上述配制好的溶液中加入含0.75-1.25mol/L的尿素和乙酰胺,均匀搅拌至尿素和乙酰胺完全溶解;
步骤6、将配置好的钙磷混合溶液倒入合成容器、并置于水温为65-70℃的恒温水浴装置中保温60-180min进行材料的合成;
步骤7、反应所得样品经抽滤、水洗和烘干后得到OCP板条状纤维。
所述步骤2中可溶性钙盐为四水硝酸钙(Ca(NO2)3·4H2O),可溶性磷酸盐为磷酸二氢铵(NH4H2PO4)。
所述步骤5中合成溶液的pH值利用尿素和乙酰胺的水解来调节,其浓度为0.75-1.25mol/L,其中尿素和乙酰胺的当量浓度比为1-2:1。
所述板条状磷酸八钙纤维的制备采用低温水热均匀共沉淀法,在恒温水浴条件下实施,温度控制在65-70℃、恒温时间90-180min。
所利用的四水硝酸钙、磷酸二氢铵、尿素、乙酰胺、硝酸和氨水为分析纯的化学试剂。
本发明具有如下优点:
1、原料来源广泛,制备工艺、设备简单、合成产率高;
2、采用低温水热法和均匀共沉淀法合成,易于控制晶体的生长;
3、产物的相组成易于控制,无需二次提取分离即可得到较纯的OCP纤维;
4、通过控制合成条件,可制备出物相单一、形貌均匀、无团聚的OCP纤维。
附图说明
图1为本发明实施例1制备的磷酸八钙的X-射线衍射图谱;
图2为本发明实施例3制备的磷酸八钙的X-射线衍射图谱;
图3为本发明实施例1制备的磷酸八钙的红外吸收图谱;
图4为本发明实施例1制备的磷酸八钙的扫描电镜照片;
图5为本发明实施例2制备的磷酸八钙的扫描电镜照片。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明:
实施例1:
(1)称取适量的四水硝酸钙和磷酸二氢铵,分别配制含0.5mol/L的含钙溶液和0.3mol/L的含磷溶液;
(2)用上述溶液配制Ca/P为1.67混合溶液,其中钙离子的浓度为0.1mol/L;
(3)在所配置的钙磷溶液中,滴加1mol/L硝酸溶液和体积比为1:1的氨水,在磁力搅拌条件下调节钙磷溶液的初始pH=3.0;
(4)在上述配制好的溶液中加入含1mol/L的尿素和乙酰胺(当量浓度1:1),均匀搅拌至尿素和乙酰胺完全溶解;
(5)将配置好的钙磷混合溶液倒入合成容器、并置于水温为70℃的恒温水浴装置中保温90min进行材料的合成;
(6)反应所得样品经抽滤、水洗和烘干后得到OCP板条状纤维。得到的板条状OCP纤维样品产出高、分散性好,大小均匀,而且纯度较高。
实施例1制备的磷酸八钙的X-射线衍射图谱如图1所示:该样品的衍射峰的衍射角度与合成OCP的标准图谱(JCPDF26-1056)相吻合。
实施例1制备的磷酸八钙的红外吸收图谱如图3所示:OCP的特征基团HPO4和PO4的吸收峰清晰可见,但在波数为3700cm-1~3000cm-1和1633cm-1出现了OCP中结晶水的强吸收峰;在2356cm-1处出现了测试过程中空气中的CO2的吸收峰;此外,在1408cm-1处出现了CO3 2-的弱吸收峰,是由于样品在制备过程中,空气中的CO2进入到混合溶液中,并参与了OCP的合成反应。
实施例1制备的磷酸八钙的扫描电镜照片如图4所示:该条件下获得的OCP纤维的扫描电镜照片,其长度在20~50μm之间,宽度在2~8μm之间,长径比在4~20之间,制备的样品分散性好,大小均匀,而且纯度较高。
实施例2:
(1)称取适量的四水硝酸钙和磷酸二氢铵,分别配制含0.5mol/L的含钙溶液和0.3mol/L的含磷溶液;
(2)用上述溶液配制Ca/P为1.67混合溶液,其中钙离子的浓度为0.1mol/L;
(3)在所配置的钙磷溶液中,滴加1mol/L硝酸溶液和体积比为1:1的氨水,在磁力搅拌条件下调节钙磷溶液的初始pH=3.0;
(4)在上述配制好的溶液中加入含1mol/L的尿素和乙酰胺(当量浓度1:1),均匀搅拌至尿素和乙酰胺完全溶解;
(5)将配置好的钙磷混合溶液倒入合成容器、并置于水温为70℃的恒温水浴装置中保温150min进行材料的合成;
(6)反应所得样品经抽滤、水洗和烘干后得到OCP板条状纤维,但含有少量磷酸氢钙、长径比降低、分散性变差。
实施例2制备的磷酸八钙的扫描电镜照片如图5所示:由图5可以看出该条件下合成的OCP纤维多为聚集体,且含有少量的无水磷酸氢钙和二水磷酸氢钙、长径比降低、分散性变差。
实施例3:
(1)称取适量的四水硝酸钙和磷酸二氢铵,分别配制含0.5mol/L的含钙溶液和0.3mol/L的含磷溶液;
(2)用上述溶液配制Ca/P为2混合溶液,其中钙离子的浓度为0.3mol/L;
(3)在所配置的钙磷溶液中,滴加1mol/L硝酸溶液和体积比为1:1的氨水,在磁力搅拌条件下调节钙磷溶液的初始pH=3.0;
(4)在上述配制好的溶液中加入含1mol/L的尿素和乙酰胺(当量浓度1:1),均匀搅拌至尿素和乙酰胺完全溶解;
(5)将配置好的钙磷混合溶液倒入合成容器、并置于水温为70℃的恒温水浴装置中保温90min进行材料的合成;
(6)反应所得样品经抽滤、水洗和烘干后得到OCP板条状纤维。样品产出比实例1稍微减少、分散性好,大小均匀,而且纯度较高。
实施例3制备的磷酸八钙的X-射线衍射图谱如图2所示:该样品的衍射峰的角度与合成OCP的标准图谱(JCPDF26-1056)相吻合。
实施例4:
(1)称取适量的四水硝酸钙和磷酸二氢铵,分别配制含0.5mol/L的含钙溶液和0.3mol/L的含磷溶液;
(2)用上述溶液配制Ca/P为1.67混合溶液,其中钙离子的浓度为0.1mol/L;
(3)在所配置的钙磷溶液中,滴加1mol/L硝酸溶液和体积比为1:1的氨水,在磁力搅拌条件下调节钙磷溶液的初始pH=3.0;
(4)在上述配制好的溶液中加入含1mol/L的尿素和乙酰胺(当量浓度1:1),均匀搅拌至尿素和乙酰胺完全溶解;
(5)将配置好的钙磷混合溶液倒入合成容器、并置于水温为65℃的恒温水浴装置中保温180min进行材料的合成;
(6)反应所得样品经抽滤、水洗和烘干后得到OCP板条状纤维,得到的试样中含有少量不规则小片状颗粒,且有聚集现象,反应产物中含有磷酸氢钙。
实施例5:
(1)称取适量的四水硝酸钙和磷酸二氢铵,分别配制含0.5mol/L的含钙溶液和0.3mol/L的含磷溶液;
(2)用上述溶液配制Ca/P为1.67混合溶液,其中钙离子的浓度为0.1mol/L;
(3)在所配置的钙磷溶液中,滴加1mol/L硝酸溶液和体积比为1:1的氨水,在磁力搅拌条件下调节钙磷溶液的初始pH=3.0;
(4)在上述配制好的溶液中加入含1.25mol/L的尿素和乙酰胺(当量浓度2:1),均匀搅拌至尿素和乙酰胺完全溶解;
(5)将配置好的钙磷混合溶液倒入合成容器、并置于水温为70℃的恒温水浴装置中保温90min进行材料的合成;
(6)反应所得样品经抽滤、水洗和烘干后得到OCP板条状纤维,但样品多为聚集体,而且含有少量的无水磷酸氢钙和二水磷酸氢钙。
实施例6:
(1)称取适量的四水硝酸钙和磷酸二氢铵,分别配制含0.5mol/L的含钙溶液和0.3mol/L的含磷溶液;;
(2)用上述溶液配制Ca/P为1.67混合溶液,其中钙离子的浓度为0.1mol/L;
(3)在所配置的钙磷溶液中,滴加1mol/L硝酸溶液和体积比为1:1的氨水,在磁力搅拌条件下调节钙磷溶液的初始pH=3.0;
(4)在上述配制好的溶液中加入含0.75mol/L的尿素和乙酰胺(当量浓度2:1),均匀搅拌至尿素和乙酰胺完全溶解;
(5)将配置好的钙磷混合溶液倒入合成容器、并置于水温为70℃的恒温水浴装置中保温90min进行材料的合成;
(6)反应所得样品经抽滤、水洗和烘干后得到分散均匀的OCP板条状纤维,但样品中含有少量的无水磷酸氢钙和二水磷酸氢钙。
实施例7:
(1)称取适量的四水硝酸钙和磷酸二氢铵,分别配制含0.5mol/L的含钙溶液和0.3mol/L的含磷溶液;
(2)用上述溶液配制Ca/P为1.5混合溶液,其中钙离子的浓度为0.1mol/L;
(3)在所配置的钙磷溶液中,滴加1mol/L硝酸溶液和体积比为1:1的氨水,在磁力搅拌条件下调节钙磷溶液的初始pH=3.0;
(4)在上述配制好的溶液中加入1mol/L的尿素和乙酰胺(当量浓度1:1),均匀搅拌至尿素和乙酰胺完全溶解;
(5)将配置好的钙磷混合溶液倒入合成容器、并置于水温为70℃的恒温水浴装置中保温105min进行材料的合成;
(6)反应所得样品经抽滤、水洗和烘干后得到OCP板条状纤维,但含有少量的无水磷酸氢钙和二水磷酸氢钙。
综上,采用低温水热法和均匀共沉淀法,通过控制合成溶液的温度、酸碱度和离子浓度,易于控制晶体的生长,获得物相单一、形貌均匀、无团聚的OCP纤维,无需进行二次提取分离即可得到较纯的OCP纤维。
本发明的保护范围并不限于上述的实施例,显然,本领域的技术人员可以对本发明进行各种改动和变形而不脱离本发明的范围和精神。倘若这些改动和变形属于本发明权利要求及其等同技术的范围内,则本发明的意图也包含这些改动和变形在内。

Claims (4)

1.一种板条状磷酸八钙纤维的制备方法,其特征在于,包括如下步骤:
步骤1、配制浓度为1mol/L硝酸溶液和体积比为1:1的氨水;
步骤2、称取适量的可溶性钙盐和可溶性磷酸盐,分别配制含钙0.5mol/L的含钙溶液和含磷0.3mol/L的含磷溶液;
步骤3、用上述溶液配制Ca/P为1.67—2的混合溶液,其中钙离子的浓度为0.1-0.3mol/L;
步骤4、利用所配制的稀硝酸溶液和氨水在磁力搅拌条件下调节钙磷溶液的初始pH=3.0;
步骤5、合成溶液的pH值利用尿素和乙酰胺的水解来调节,在上述配制好的溶液中加入含0.75-1.25mol/L的尿素和乙酰胺,均匀搅拌至尿素和乙酰胺完全溶解,其中尿素和乙酰胺的当量浓度比为1-2:1;
步骤6、将配置好的钙磷混合溶液倒入合成容器、并置于水温为65-70℃的恒温水浴装置中保温60-180min进行材料的合成;
步骤7、反应所得样品经抽滤、水洗和烘干后得到OCP板条状纤维。
2.如权利要求1所述的一种板条状磷酸八钙纤维的制备方法,其特征在于:所述步骤2中可溶性钙盐为四水硝酸钙(Ca(NO2)3·4H2O),可溶性磷酸盐为磷酸二氢铵(NH4H2PO4)。
3.如权利要求1所述的一种板条状磷酸八钙纤维的制备方法,其特征在于:所述板条状磷酸八钙纤维的制备采用低温水热均匀共沉淀法,在恒温水浴条件下实施,温度控制在65-70℃、恒温时间90-180min。
4.如权利要求1所述的一种板条状磷酸八钙纤维的制备方法,其特征在于:所利用的四水硝酸钙、磷酸二氢铵、尿素、乙酰胺、硝酸和氨水为分析纯的化学试剂。
CN201810098563.7A 2018-01-31 2018-01-31 一种板条状磷酸八钙纤维的制备方法 Expired - Fee Related CN108191424B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810098563.7A CN108191424B (zh) 2018-01-31 2018-01-31 一种板条状磷酸八钙纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810098563.7A CN108191424B (zh) 2018-01-31 2018-01-31 一种板条状磷酸八钙纤维的制备方法

Publications (2)

Publication Number Publication Date
CN108191424A CN108191424A (zh) 2018-06-22
CN108191424B true CN108191424B (zh) 2021-02-19

Family

ID=62592170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810098563.7A Expired - Fee Related CN108191424B (zh) 2018-01-31 2018-01-31 一种板条状磷酸八钙纤维的制备方法

Country Status (1)

Country Link
CN (1) CN108191424B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154181A (ja) * 2003-11-25 2005-06-16 Nippon Chem Ind Co Ltd 繊維状ヒドロキシアパタイトの製造方法
CN103030125A (zh) * 2011-09-29 2013-04-10 深圳兰度生物材料有限公司 一种医用增强纤维及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154181A (ja) * 2003-11-25 2005-06-16 Nippon Chem Ind Co Ltd 繊維状ヒドロキシアパタイトの製造方法
CN103030125A (zh) * 2011-09-29 2013-04-10 深圳兰度生物材料有限公司 一种医用增强纤维及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Octacalcium Phosphate Fiber Synthesized by Homogeneous Precipitation Method", WANG Xiaojun et al.,《Journal of Wuhan University of Technology-Mater (Materials Science Edition)》,第25卷,第5期,第747-752页;WANG Xiaojun et al;《Journal of Wuhan University of Technology-Mater (Materials Science Edition)》;20101231;第25卷(第5期);第747-752页 *
"纤维状磷酸八钙单晶体的合成方法及形成机理";王英波;《功能材料与器件学报》;20071031;第13卷(第5期);第409-413页 *

Also Published As

Publication number Publication date
CN108191424A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
Wei et al. Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability
Ma Three common preparation methods of hydroxyapatite
Boudemagh et al. Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status
CN100584750C (zh) 一种磷酸钙复合粉末的制备方法
Rajkumar et al. Preparation of size controlled, stoichiometric and bioresorbable hydroxyapatite nanorod by varying initial pH, Ca/P ratio and sintering temperature
Kannan et al. Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics
Kumar et al. Utilization of snail shells to synthesise hydroxyapatite nanorods for orthopedic applications
Hao et al. Controlled growth of hydroxyapatite fibers precipitated by propionamide through hydrothermal synthesis
CN101623514A (zh) 一种金属离子掺杂纳米羟基磷灰石的制备方法
Qiu et al. Fine structure analysis and sintering properties of Si-doped hydroxyapatite
CN101716370B (zh) 一种纳米掺杂羟基磷灰石粉体的制备方法
Liao et al. Synthesis and mechanism of tetracalcium phosphate from nanocrystalline precursor
Deepa et al. Preparation and antimicrobial observations of zinc doped nanohydroxyapatite
Wang et al. Influences of strontium on the phase composition and lattice structure of biphasic calcium phosphate
Afonina et al. Synthesis of whitlockite nanopowders with different magnesium content
Zhang et al. Synthesis of nanorod and needle-like hydroxyapatite crystal and role of pH adjustment
Joshi et al. Structural, morphological & optical studies of Hydroxyapatite microplates synthesized using hydrothermal technique
Luo et al. Temperature effect on hydroxyapatite preparation by co-precipitation method under carbamide influence
Shen et al. An effective route to the synthesis of carbonated apatite crystals with controllable morphologies and their growth mechanism
CN108191424B (zh) 一种板条状磷酸八钙纤维的制备方法
CN105948012A (zh) 低温条件下制备β相磷酸三钙晶体材料的方法
Guo et al. Synthesis of hydroxyapatite containing some trace amounts elements in simulated body fluids
Kim et al. Progress and perspectives of metal-ion-substituted hydroxyapatite for bone tissue engineering: comparison with hydroxyapatite
Kapoor et al. Structural, thermal and in-vitro analysis of sol-gel derived zinc and fluorine co-substituted nanodimensional hydroxyapatite for biomedical applications
Sakamoto et al. Shape-controlled synthesis of hydroxyapatite from α-tricalcium bis (orthophosphate) in organic-aqueous binary systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210219

CF01 Termination of patent right due to non-payment of annual fee