CN108190934B - 一种碳酸钙棒状纳米颗粒的制备方法 - Google Patents
一种碳酸钙棒状纳米颗粒的制备方法 Download PDFInfo
- Publication number
- CN108190934B CN108190934B CN201810115559.7A CN201810115559A CN108190934B CN 108190934 B CN108190934 B CN 108190934B CN 201810115559 A CN201810115559 A CN 201810115559A CN 108190934 B CN108190934 B CN 108190934B
- Authority
- CN
- China
- Prior art keywords
- feed liquid
- deionized water
- calcium oxide
- carbon dioxide
- inlet end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
- C01F11/181—Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Geology (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Glanulating (AREA)
Abstract
一种碳酸钙棒状纳米颗粒的制备方法,包括如下步骤:氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀,料液在微波下处理,料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾,离心分离,取清液,高速离心,去离子水洗涤2‑3次,干燥,得碳酸钙棒状纳米颗粒。
Description
技术领域
本发明属于碳酸钙材料制备领域,具体涉及一种制备碳酸钙棒状纳米颗粒的方法。
背景技术
碳酸钙被广泛用于橡胶、塑料、涂料、造纸、油墨、胶黠剂、密封胶等行业,还可应用于牙膏、食品、医药、词料、建材、化纤等行业。碳酸钙的晶型包括方解石、文石、球霰石三种类型,其中方解石结构最稳定,文石和球霰石均属于非稳态。
碳酸钙作为一种重要的塑料填料,其粒径、颗粒均一性、比表面积和表面状态都将影响其与基体高分子的亲和性以及填充改性材料的力学性能的性质,如何得到易分散、粒度均一、表面活性高的纳米碳酸钙仍然是行业内追求的目标。
发明内容
本发明的技术方案是为了克服已有技术的不足之处,提出一种制备碳酸钙棒状纳米颗粒的方法。
本发明提出了一种碳酸钙棒状纳米颗粒的制备方法,包括如下步骤:
1)将粒径为1-1.5μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;
2)将步骤1)得到的料液在微波下处理40-50min;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥,得碳酸钙棒状纳米颗粒。
其中,所述复合表面活性剂由十二烷基二甲基苄基氯化铵和十二烷基聚氧乙烯基氨基乙酸组成。
其中,微波的功率为500-600W。
其中,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3-0.5∶0.2-0.5。
其中,步骤1)中,氧化钙与去离子水的质量比为1∶250-400。
其中,步骤3)中,料液与二氧化碳的进料比为1g∶200-400mL。
其中,步骤4)中,控制离心转数为3000-5000rpm。
其中,步骤3)中,超声功率为150-200W。
其中,步骤4)中,高速离心转数为6000-8000rpm。
本发明采用微波条件控制氧化钙颗粒的水化,使氧化钙表层不断形成氢氧化钙并溶解到水溶液中,复合表面活性剂与钙离子发生作用,并诱导其在碳化反应中形成棒状的纳米颗粒。通过调控微波功率和时间,可以调节溶液中氧化钙颗粒水化的速度,进而调节溶液中钙离子的浓度。溶液中的氢氧化钙在超声喷雾的条件下与二氧化碳反应,料液在湍流条件下被大量二氧化碳气体冲击、裹挟,在超声作用下被二氧化碳分散为极小的液滴,超声促进了气液相物料在接触的瞬间发生反应,并有利于在反应过程中避免颗粒的团聚。采用复合表面活性剂结合于颗粒表面,在稳定颗粒、避免团聚的同时,诱导碳酸钙形成棒状。
本发明的有益效果:本方法采用二氧化碳作为料液雾化的气体,相比于雾化后再与二氧化碳气体接触,得到的产物颗粒尺寸更加均一。微波法活化结合超声喷雾下的瞬时反应,使得颗粒表面活性点多,反应快,导致颗粒表面凸凹不平,较相同尺寸、形貌的颗粒比表面积明显增大。得到长度约为300-600nm的棒状碳酸钙。
具体实施方式
下面结合实施例,进一步说明本发明。
实施例1
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3∶0.2;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥,得碳酸钙棒状纳米颗粒,其长度约为510nm,颗粒较为均一。
实施例2
1)将粒径为1.5μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶400,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.5∶0.5;
2)将步骤1)得到的料液在微波下处理50min,微波功率为600W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶400mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥,得碳酸钙棒状纳米颗粒,其长度约为450nm,颗粒较为均一。
实施例3
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3∶0.2;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥,得氧化钙/碳酸钙核壳纳米颗粒。
实施例4
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶150,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3∶0.2;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例5
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶500,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3∶0.2;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例6
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3∶0.2;
2)将步骤1)得到的料液在微波下处理40min,微波功率为400W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例7
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3∶0.2;
2)将步骤1)得到的料液在微波下处理40min,微波功率为700W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例8
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3∶0.2;
2)将步骤1)得到的料液在微波下处理30min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例9
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3∶0.2;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶100mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例10
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3∶0.2;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶500mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例11
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.1∶0.2;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g;200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例12
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.7∶0.2;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例13
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3∶0.1;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例14
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与去离子水的质量比为1∶250,氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3∶0.7;
2)将步骤1)得到的料液在微波下处理40min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;料液与二氧化碳的进料比为1g∶200mL;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥。
实施例1-14得到的产物的形貌见表1。
表1
实施例15
采用实施例1的工艺、参数,仅将实施例1中超声雾化的载气替换为氮气,使雾化后的液体与二氧化碳气体逆流接触。得到产物为尺寸不均一的颗粒。
Claims (5)
1.一种碳酸钙棒状纳米颗粒的制备方法,其特征在于,包括如下步骤:
1)将粒径为1-1.5μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;
2)将步骤1)得到的料液在微波下处理40-50min;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,取清液,高速离心,去离子水洗涤2-3次,干燥,得碳酸钙棒状纳米颗粒;
所述复合表面活性剂由十二烷基二甲基苄基氯化铵和十二烷基聚氧乙烯基氨基乙酸组成;
微波的功率为500-600W;
氧化钙与十二烷基二甲基苄基氯化铵、十二烷基聚氧乙烯基氨基乙酸的摩尔比为1∶0.3-0.5∶0.2-0.5;
步骤3)中,料液与二氧化碳的进料比为1g∶200-400mL。
2.根据权利要求1所述的方法,其特征在于:步骤1)中,氧化钙与去离子水的质量比为1∶250-400。
3.根据权利要求1所述的方法,其特征在于:步骤4)中,控制离心转数为3000-5000rpm。
4.根据权利要求1所述的方法,其特征在于:步骤3)中,超声功率为150-200W。
5.根据权利要求1所述的方法,其特征在于:步骤4)中,高速离心转数为6000-8000rpm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810115559.7A CN108190934B (zh) | 2018-01-28 | 2018-01-28 | 一种碳酸钙棒状纳米颗粒的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810115559.7A CN108190934B (zh) | 2018-01-28 | 2018-01-28 | 一种碳酸钙棒状纳米颗粒的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108190934A CN108190934A (zh) | 2018-06-22 |
CN108190934B true CN108190934B (zh) | 2020-04-21 |
Family
ID=62592471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810115559.7A Active CN108190934B (zh) | 2018-01-28 | 2018-01-28 | 一种碳酸钙棒状纳米颗粒的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108190934B (zh) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002359958A1 (en) * | 2001-12-31 | 2003-07-15 | Beijing University Of Chemical Technology | Calcium carbonate of different shapes and the preparing process thereof |
-
2018
- 2018-01-28 CN CN201810115559.7A patent/CN108190934B/zh active Active
Non-Patent Citations (2)
Title |
---|
"纳米碳酸钙的生产工艺及改性技术进展";聂颖等;《化工文摘》;20071231;第57-60页 * |
"表面活性剂对纳米碳酸钙结晶过程的影响";蒋惠亮等;《日用化学工业》;20050430;第69-71页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108190934A (zh) | 2018-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108299811B (zh) | 一种碳酸钙棒状纳米颗粒复合材料的制备方法 | |
CN101774623B (zh) | 一种米粒状超细活性碳酸钙的工业化制备方法 | |
CN107056954B (zh) | 一种纤维素纳米晶制备方法 | |
CN108821322B (zh) | 一种层状结构微球沉淀碳酸钙的制备方法 | |
CN106883463A (zh) | 一种形貌和粒径可控型淀粉纳米颗粒的制备方法 | |
CN108002418A (zh) | 立方形纳米碳酸钙的制备方法 | |
CN108190934B (zh) | 一种碳酸钙棒状纳米颗粒的制备方法 | |
CN108101094B (zh) | 一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法 | |
CN108249466B (zh) | 一种氧化钙-碳酸钙核壳纳米颗粒的制备方法 | |
CN108328639B (zh) | 一种碳酸钙骨棒状纳米颗粒的制备方法 | |
CN108314072B (zh) | 一种具有碳酸钙壳层的核壳纳米颗粒的制备方法 | |
CN108101092B (zh) | 一种碳酸钙棒状纳米颗粒组装结构的制备方法 | |
CN108190935B (zh) | 一种条片状碳酸钙超细颗粒的制备方法 | |
TW201328981A (zh) | 氧化鋯奈米顆粒及其水溶膠與製備氧化鋯奈米顆粒之組合物及方法 | |
CN108455646B (zh) | 一种碳酸钙骨棒状纳米颗粒复合材料的制备方法 | |
CN108358227B (zh) | 一种碳酸钙骨棒状纳米颗粒组装结构的制备方法 | |
CN108264077B (zh) | 一种具有碳酸钙壳层的核壳纳米颗粒组装结构的制备方法 | |
CN108358228B (zh) | 一种氧化钙-碳酸钙核壳纳米颗粒复合材料的制备方法 | |
CN108455645B (zh) | 一种碳酸钙花生状纳米颗粒复合材料的制备方法 | |
CN108390031B (zh) | 一种具有碳酸钙壳层的核壳纳米颗粒复合材料的制备方法 | |
CN111017973A (zh) | 一种利用超声气溶胶制备中空纳米碳酸钙的方法 | |
CN107117639B (zh) | 一种超声辅助制备球霰石型碳酸钙纳米组装结构的方法 | |
CN108455644B (zh) | 一种碳酸钙花生状纳米颗粒的制备方法 | |
CN108101093B (zh) | 一种碳酸钙哑铃状纳米颗粒的制备方法 | |
CN107188998A (zh) | 一种碳酸钙/聚合物核壳结构的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200323 Address after: 048311 Zhanghe village, attached town, Lingchuan County, Jincheng, Shanxi Applicant after: Jincheng Yangming nano New Material Co., Ltd Address before: 315400 room 1, 315, international business center, China Plastics City, Ningbo, Zhejiang, Yuyao Applicant before: NINGBO PLASTIC METAL PRODUCT Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |