CN108178658A - 一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的方法 - Google Patents

一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的方法 Download PDF

Info

Publication number
CN108178658A
CN108178658A CN201810046169.9A CN201810046169A CN108178658A CN 108178658 A CN108178658 A CN 108178658A CN 201810046169 A CN201810046169 A CN 201810046169A CN 108178658 A CN108178658 A CN 108178658A
Authority
CN
China
Prior art keywords
flyash
porous ceramic
composite porous
aluminum titanate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810046169.9A
Other languages
English (en)
Other versions
CN108178658B (zh
Inventor
徐国纲
陈之伟
崔洪芝
展晓元
丁建旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201810046169.9A priority Critical patent/CN108178658B/zh
Publication of CN108178658A publication Critical patent/CN108178658A/zh
Application granted granted Critical
Publication of CN108178658B publication Critical patent/CN108178658B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种以工业废渣粉煤灰为主要原料,合成了一种新的材料——钛酸铝莫来石复合多孔陶瓷材料,以满足粉煤灰多方面合理利用的要求。它是以粉煤灰、拟薄水铝石、二氧化钛为主要原料,并充分利用粉煤灰中的氧化铁作为防止钛酸铝分解的改性剂,粉体原料直接湿法球磨混合后干燥,采用淀粉固化法成型素坯,烧结制备钛酸铝莫来石复合多孔陶瓷材料。本发明制得的钛酸铝莫来石复合多孔陶瓷孔径分布均匀,在10μm左右,易于控制,气孔率约为41~61%,抗折强度约为11MPa~44Mpa,热稳定性和化学稳定性好,可用于陶瓷滤膜支撑体、工业高温烟气过滤及机动车尾气净化处理用的载体材料。

Description

一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的方法
技术领域
本发明涉及多孔陶瓷材料领域,尤其涉及工业废渣粉煤灰合成钛酸铝莫来石复合多孔陶瓷材料及其制备方法。
背景技术
随着国民经济的发展、工业化进程加快,环境污染问题凸显。粉煤灰是目前世界上排放量较大的工业废渣之一,主要表现在占用土地、污染水源、污染大气、放射性污染。目前,我国的电力生产是以煤炭为主要燃料,伴随着电力工业的快速发展,粉煤灰的排放量也急速增长,2000年粉煤灰排放量达1.5亿吨,2010年约为3亿吨,到2020年估计排放量将达到4亿吨。中国目前对粉煤灰的利用率只有30%,而粉煤灰是含有多种元素的重要资源,其中,SiO2占49-55%左右,Al2O3占15-27%左右,其它成分:Fe203约占5-10%,CaO约占4-13%,TiO2约占1.23%,K2O约占0.88%等,因此,加强对粉煤灰的综合利用已势在必行。
钛酸铝(Al2TiO5)是目前已知低膨胀材料中耐高温性能最好的陶瓷材料之一,它的熔点高(1860±10℃)、热膨胀系数小(<1.5×l0-6/℃),具有较强的抗热震能力、良好的耐蚀性、抗渣性、耐碱性和对多种金属及玻璃不浸润的性质。基于Al2TiO5的优良低膨胀性和高温性能,其多孔陶瓷材料制品将是工业高温烟气以及机动车尾气、固体颗粒过滤净化用载体材料的理想选择。但是由于钛酸铝存在烧结强度低,且在750~1300℃温度内易分解,导致膨胀系数增大失去优良抗热震性两大致命缺陷,严重影响其实际应用。在钛酸铝多孔陶瓷材料的应用方法中,近年来人们也做了一些工作,周传雄等通过引入氧化铁和莫来石复合的方法对钛酸铝-莫来石复合材料的热稳定性进行了研究。以氧化铁为添加剂,改变了钛酸铝的晶格常数,降低了钛酸铝晶体的畸变程度,从而促进烧结,提高了热稳定性,对钛酸铝的热分解起到了较好的抑制作用,采用莫来石复合的方法提高了其热稳定性及强度(周传雄,尹洪峰,任耘等.钛酸铝-莫来石复合材料热稳定性的研究.耐火材料.2004(38):97~99)。
国内在粉煤灰为原料制备多孔陶瓷方面开展了一定的研究工作,中国专利公开号CN105198394公开了以粉煤灰为主原料,制备了高红外发射率的堇青石-尖晶石陶瓷材料,本发明的陶瓷材料主晶相为堇青石相和尖晶石相,具有辐射率高、热膨胀系数小、抗热震性能好等优点。中国专利公开号CN102765944公开了一种以粉煤灰为原料制备莫来石粉的方法,该方法以粉煤灰为主要原料,再添加适量的Al2O3,煅烧后得到莫来石粉体。中国专利公开号CN105924211公开了用粉煤灰和磷酸二氢铝制备轻质多孔陶瓷的方法。钛酸铝复合莫来石材料具有较低的热膨胀系数,同时具有较高的机械强度(陈达谦,陈虹,李文善,王长文.莫来石一钦酸铝复相陶瓷研究.现代技术陶瓷.1995(3):3~10)。Xu G,Chen Z,ZhangX,et al.Preparation of porous Al2TiO5-Mullite ceramic by starch consolidationcasting and its corrosion resistance characterization[J].CeramicsInternational,2016,42(12):14107-14112.文献中提到一种不是以粉煤灰为原料的钛酸铝莫来石复合多孔陶瓷材料的制备方法。但迄今为止,尚未有利用工业废渣粉煤灰制备稳定钛酸铝莫来石复合多孔陶瓷材料的报道。
发明内容
针对上述现有技术中存在的问题,本发明的目的是提供一种稳定钛酸铝莫来石复合多孔陶瓷材料,以满足多方面合理利用的要求。
本发明的多孔陶瓷材料是在粉煤灰现有成分的基础之上,加入一定的拟薄水铝石和氧化钛,充分利用粉煤灰中的氧化铝、氧化铁和氧化硅等原料制备稳定钛酸铝-莫来石复合多孔陶瓷材料。
为了解决以上技术问题,本发明的技术方案为:
一种稳定钛酸铝莫来石复合多孔陶瓷材料,各组分分别为:粉煤灰44~47份,拟薄水铝石44~46份,二氧化钛7~12份。
优选的,所述煤粉灰的组成为SiO2 49~55%,Al2O3 15~27%,Fe2O3 5~10%,TiO2 1.23%,CaO 4~13%,MgO 0.95%,K2O 0.88%,Na2O 0.47%,SO3 1.51%,烧失量4.36%
优选的,所述拟薄水铝石重量百分比含量≥99%。
优选的,所述二氧化钛重量百分比含量≥98%。
优选的,制备的钛酸铝莫来石复合多孔陶瓷材料中的莫来石在体系中的质量百分比为76~85%。
优选的,粉煤灰,拟薄水铝石和氧化钛的加入质量比为23:23:4。
粉煤灰中的氧化铁在陶瓷中作为添加剂,具有烧结助剂和改性剂的作用。在钛酸铝陶瓷中能够改变钛酸铝的晶格常数,降低钛酸铝晶体的畸变程度,从而促进烧结,提高其热稳定性,在反应的过程中氧化铁的存在与其它原料合成稳定的(Al,Fe)2TiO5,(Al,Fe)2TiO5对钛酸铝的热分解起到较好的抑制作用。
优选的,氧化铁的最佳掺杂比例为20%,即铁原子占合成钛酸铝中氧化铝的铝原子总量的20%。
在本发明中的多孔陶瓷材料是以由粉煤灰中的氧化铝或拟薄水铝石与二氧化钛和粉煤灰中的氧化铁通过一步合成法直接反应合成钛酸铝,以粉煤灰中的氧化铝或拟薄水铝石与粉煤灰中的氧化硅反应合成的莫来石作为复合相。
粉煤灰中的氧化钙、氧化镁对制备的钛酸铝莫来石复合多孔陶瓷的作用为:提高抗压强度,降低烧结温度,进而提高孔隙率。
钛酸铝莫来石复合多孔陶瓷材料中,由于莫来石粒子抑制钦酸铝晶粒的长大,使钛酸铝的晶粒变小,导致复相陶瓷细晶化,具有提高钛酸铝材料的抗压强度的作用。
组成中氧化铁具有提高钛酸铝热稳定性的效果,莫来石对陶瓷材料具有增强抗压强度的影响,进而使得到的陶瓷稳定性和抗压强度最好。
一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的制备方法为:
1)将粉煤灰、拟薄水铝石、二氧化钛组成的混合料及去离子水按照配比要求加入到行星球磨机中混合;
2)将步骤1)中球磨好的混合浆料进行干燥得到原料粉体;
3)将淀粉、步骤2)中得到原料粉体、淀粉、PVA与去离子水在一定温度下搅拌,得到均匀的悬浮液,然后将悬浮液浇入模具,放入烘箱在一定的温度下固化后,脱模后样品在一定温度下烘干。
4)步骤3)中烘干后的样品在一定温度下进行烧成,保温一定时间后可获得钛酸铝莫来石复合多孔陶瓷材料。
优选的,步骤1)中的混合料、球、去离子水的重量百分比为1:(1.5~2.5):(0.6~0.9);混合时间为3~6个小时。
优选的,步骤1)中去离子水也可以为无水乙醇。
优选的,步骤3)中搅拌温度为60℃。
优选的,步骤3)中搅拌时间为30~60分钟。
优选的,步骤3)中烘箱的温度为80~90℃。
优选的,步骤3)中在烘箱中的固化时间为2~3个小时。
优选的,步骤3)中脱模后样品的烘干温度为40℃。
优选的,步骤3)得到的悬浮液中的原料含量为50%-65%。
所述悬浮液中的原料含量为粉煤灰、拟薄水铝石、二氧化钛组成的混合料的含量。
优选的,步骤3)得到的悬浮液中的淀粉的含量为5%-25%。
优选的,步骤3)得到的悬浮液中的PVA含量为0.5%~1%。
优选的,步骤4)中烧成温度为1200-1400℃,保温时间为2-3小时。
本发明中任一上述的钛酸铝莫来石复合多孔陶瓷材料可以用于陶瓷滤膜支撑体、工业高温烟气过滤及机动车尾气净化处理用的载体材料方面的应用。
本发明的有益效果:
1)本发明采用固体废渣粉煤灰作为主要原料,充分利用粉煤灰中的氧化铝、氧化硅、氧化钛和氧化铁成分,并利用氧化铁作为钛酸铝的改性剂,来制备稳定钛酸铝莫来石复合多孔陶瓷材料。本发明对粉煤灰的利用无论是对我国的经济发展、社会发展,还是生态环境的保护都具有重要的意义。
2)本发明所制得的钛酸铝莫来石复合多孔陶瓷材料热膨胀系数小,强度高,气孔率为41~61%、气孔孔径分布均匀,热稳定性和化学稳定性好。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1合成的多孔陶瓷材料的X-射线粉末衍射图谱
图2制备的多孔陶瓷材料的扫描电镜照片
图3制备的多孔陶瓷材料在不同烧结温度下的气孔率与抗折强度
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
下面结合实施例对本发明进一步说明。
实施例1
以莫来石含量占总质量的质量百分比为76%进行配料。
首先按下述重量称取原料:粉煤灰44%,拟薄水铝石44%,二氧化钛12%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、去离子水的重量百分比为1:2:0.8,混合时间为4个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为55%,淀粉含量为20%,PVA含量为0.5%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌30分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在80℃条件下固化2个小时后,脱模后样品在40℃烘干;烘干后的样品在1200℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为61.8%,抗压强度为18Mpa。
实施例2
以莫来石含量占总质量的质量百分比为85%进行配料。
首先按下述比例称取原料:粉煤灰47%,拟薄水铝石46%,二氧化钛7%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、无水乙醇的重量百分比为1:1.5:0.9,混合时间为5个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为58%,淀粉含量为20%,PVA含量为1%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌60分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在90℃条件下固化2个小时后,脱模后样品在40℃烘干;烘干后的样品在1300℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为54%,抗压强度为21Mpa。
实施例3
以莫来石含量占总质量的质量百分比为80%进行配料,烘干后的样品在1400℃温度下进行烧成
首先按下述重量称取原料:粉煤灰46%,拟薄水铝石46%,二氧化钛8%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、去离子水的重量百分比为1:2.5:0.9,混合时间为5个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为55%,淀粉含量为20%,PVA含量为0.7%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌50分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在80℃条件下固化2个小时后,脱模后样品在40℃烘干;烘干后的样品在1400℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为45%,抗压强度为34Mpa。
实施例4
以莫来石含量占总质量的质量百分比为80%进行配料,烘干后的样品在1300℃温度下进行烧成
首先按下述重量称取原料:粉煤灰46%,拟薄水铝石46%,二氧化钛8%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、去离子水的重量百分比为1:2:0.8,混合时间为4个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为60%,淀粉含量为15%,PVA含量为0.7%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌30分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在80℃条件下固化3个小时后,脱模后样品在40℃烘干;烘干后的样品在1300℃温度下进行烧成,保温时间为3小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为49%,抗压强度为37Mpa。
实施例5
以莫来石含量占总质量的质量百分比为85%进行配料。
首先按下述比例称取原料:粉煤灰47%,拟薄水铝石46%,二氧化钛7%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、无水乙醇的重量百分比为1:1.5:0.8,混合时间为4个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为50%,淀粉含量为20%,PVA含量为0.8%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌40分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在80℃条件下固化3个小时后,脱模后样品在40℃烘干;烘干后的样品在1300℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为52.8%,抗压强度为29.6Mpa。
对比例1
以莫来石含量占总质量的质量百分比为85%进行配料。
首先按下述比例称取原料:粉煤灰47%,拟薄水铝石46%,二氧化钛7%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、无水乙醇的重量百分比为1:1.5:0.8,混合时间为4个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为50%,淀粉含量为10%,PVA含量为0.8%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌40分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在90℃条件下固化3个小时后,脱模后样品在40℃烘干;烘干后的样品在1300℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为48.1%,抗压强度为35MPa。对比例1与实施例5的区别为淀粉含量为10%,淀粉的含量不同。
对比例2
以莫来石含量占总质量的质量百分比为76%进行配料
首先按下述重量称取原料:粉煤灰44%,拟薄水铝石44%,二氧化钛12%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、无水乙醇的重量百分比为1:1.5:0.8,混合时间为4个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为50%,淀粉含量为20%,PVA含量为0.8%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌40分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在90℃条件下固化3个小时后,脱模后样品在40℃烘干;烘干后的样品在1300℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为53.3%,抗压强度为26MPa。对比例2和实施例5的区别为莫来石的质量百分比不同,其它操作条件相同。
对比例3
以莫来石含量占总质量的质量百分比为85%进行配料。
首先按下述比例称取原料:粉煤灰47%,拟薄水铝石46%,二氧化钛7%,将原料粉体粉煤灰、拟薄水铝石和氧化钛加入到行星球磨机中混合,混合料、球、无水乙醇的重量百分比为1:1.5:0.8,混合时间为4个小时。将球磨好的浆料进行干燥,得到原料粉体。将原料粉体进行淀粉固化成型,固含量为50%,淀粉含量为20%,PVA含量为0.8%,将淀粉、混合粉体、PVA与去离子水在60℃下搅拌40分钟,得到均匀的悬浮液。然后将悬浮液浇入模具,放入烘箱在90℃条件下固化3个小时后,脱模后样品在40℃烘干;烘干后的样品在1400℃温度下进行烧成,保温时间为2小时后可获得钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为42.48%,抗压强度为42.23MPa。对比例3与实施例5的区别为烧成温度不同,其它操作条件相同。
对比例4
利用氧化硅、氧化铁、氧化铝、拟薄水铝石、二氧化钛为原料制备钛酸铝莫来石复合多孔陶瓷材料,与实施例5的区别为将粉煤灰换成原来所需的等重量的氧化硅、氧化铁、氧化铝,拟薄水铝石和二氧化钛的含量不变,制备方法与实施例5相同,得到的钛酸铝莫来石复合多孔陶瓷材料,材料的孔隙率为48%,抗压强度为23MPa。本对比例与实施例5的区别为没有粉煤灰中除氧化硅、氧化铁、氧化铝和氧化钛的参与,粉煤灰的其它组分对制备的陶瓷材料的影响。
本发明中抗压强度的检测依据国标GB/T 1964-1996《多孔陶瓷性能试验方法》,孔隙率的检测依据国标GB/T 1966-1996《多孔陶瓷显气孔率、容重试验方法》。
如图1、图2和图3所示,
由图1X-射线粉末衍射分析可知材料的主晶相为钛酸铝、莫来石和刚玉相,从图2中可以看出,钛酸铝莫来石复合多孔陶瓷材料中,样品具有典型的多孔陶瓷结构,具有三维网络骨架及相互连通、呈不规则形状的孔道,主要为宏孔,孔分布均匀,孔径为10μm左右。由于孔壁比较致密,因此制备的多孔陶瓷在具有较高显气孔率的同时仍保持较高的抗折强度。从图3中可以看出,钛酸铝莫来石复合多孔陶瓷具有较高的气孔率与抗折强度,随着烧结温度的升高,气孔率降低,抗折强度升高。
总结:对比例2和实施例5对比,莫来石的质量比不同,当莫来石的含量为85%时得到的莫来石的抗压强度最好;对比例1和实施例5的对比,固化使用的淀粉的含量不同,淀粉含量对孔隙率的影响为:在一定含量的范围内,淀粉含量越高,孔隙率越高;对抗压强度的影响为:在一定含量的范围内,淀粉含量越高,孔隙率越高,抗压强度越低;对比例3和实施例5的对比,烧成温度不同,烧成温度对孔隙率的影响为:烧成温度越高,孔隙率越低;烧成温度对抗压强度的影响为:烧成温度越高,抗压强度越高,对比例4和实施例5的对比,粉煤灰中除氧化硅、氧化铁、氧化铝和氧化钛以外的其它组分,对陶瓷的抗压强度有很大的影响,它们可以提高陶瓷的抗压强度。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种稳定钛酸铝莫来石复合多孔陶瓷材料,各组分的组成为:粉煤灰44~47份,拟薄水铝石44~46份,二氧化钛7~12份;
优选的,粉煤灰、拟薄水铝石和氧化钛的加入质量比为23:23:4。
2.根据权利要求1所述的钛酸铝莫来石复合多孔陶瓷材料,其特征在于:所述煤粉灰的组成为SiO2 49~55%,Al2O3 15~27%,Fe2O3 5~10%,TiO2 1.23%,CaO 4~13%,MgO0.95%,K2O 0.88%,Na2O 0.47%,SO3 1.51%,烧失量4.36%。
3.根据权利要求1所述的钛酸铝莫来石复合多孔陶瓷材料,其特征在于:所述拟薄水铝石原料中拟薄水铝石重量百分比含量≥99%;所述二氧化钛原料中二氧化钛的重量百分比含量≥98%。
4.根据权利要求1所述的钛酸铝莫来石复合多孔陶瓷材料,其特征在于:钛酸铝莫来石复合多孔陶瓷材料中的莫来石在体系中的质量百分比为76~85%。
5.一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的制备方法为:其特征在于:具体步骤为:
1)将粉煤灰、拟薄水铝石、二氧化钛组成的混合料及去离子水按照配比要求加入到行星球磨机中混合;
2)将步骤1)中球磨好的混合浆料进行干燥得到原料粉体;
3)将淀粉、步骤2)中得到原料粉体、淀粉、PVA与去离子水在一定温度下搅拌,得到均匀的悬浮液,然后将悬浮液浇入模具,放入烘箱在一定的温度下固化后,脱模后样品在一定温度下烘干;
4)步骤3)中烘干后的样品在一定温度下进行烧成,保温一定时间后可获得钛酸铝莫来石复合多孔陶瓷材料。
6.根据权利要求5所述的一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的制备方法,其特征在于:步骤1)中的混合料、球、去离子水的重量百分比为1:(1.5~2.5):(0.6~0.9);混合时间为3~6个小时;步骤1)中的去离子水可以为无水乙醇。
7.根据权利要求5所述的一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的制备方法,其特征在于:所述的步骤3)中搅拌温度为60℃;步骤3)中搅拌时间为30~60分钟;烘箱的温度为80~90℃;烘箱中的固化时间为2~3个小时;脱模后样品的烘干温度为40℃。
8.根据权利要求5所述的一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的制备方法,其特征在于:所述步骤3)中的固化成型后的原料含量为50%-65%;固化成型后的淀粉的含量为5%-25%;固化成型后的PVA含量为0.5%~1%。
9.根据权利要求5所述的一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的制备方法,其特征在于:步骤4)中的烧成温度为1200-1400℃;保温时间为2-3小时。
10.根据权利要求1-4所述的一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷材料在陶瓷滤膜支撑体、工业高温烟气过滤及机动车尾气净化处理用的载体材料方面的应用。
CN201810046169.9A 2018-01-17 2018-01-17 一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的方法 Expired - Fee Related CN108178658B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810046169.9A CN108178658B (zh) 2018-01-17 2018-01-17 一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810046169.9A CN108178658B (zh) 2018-01-17 2018-01-17 一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的方法

Publications (2)

Publication Number Publication Date
CN108178658A true CN108178658A (zh) 2018-06-19
CN108178658B CN108178658B (zh) 2020-10-27

Family

ID=62550768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810046169.9A Expired - Fee Related CN108178658B (zh) 2018-01-17 2018-01-17 一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的方法

Country Status (1)

Country Link
CN (1) CN108178658B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863351A (zh) * 2018-09-28 2018-11-23 北京科技大学 一种钛酸铝复合多孔陶瓷的制备方法
CN109336589A (zh) * 2018-11-02 2019-02-15 山东科技大学 一种微生物发泡制备多级孔结构钛酸铝莫来石陶瓷的方法
CN112723903A (zh) * 2020-12-31 2021-04-30 松山湖材料实验室 钛酸铝-莫来石复合陶瓷及其制备方法、多孔介质燃烧器及陶瓷过滤器
CN112851390A (zh) * 2021-01-22 2021-05-28 山东硅元新型材料股份有限公司 铸钢用三维网络多孔陶瓷及其制备方法
CN114380607A (zh) * 2022-01-26 2022-04-22 郑州金河源耐火材料有限公司 刚玉莫来石凝胶复合耐磨浇注料及其制备方法
CN114920525A (zh) * 2022-06-24 2022-08-19 杭州汉特建材有限公司 一种高强植生混凝土及其制备方法
CN117510229A (zh) * 2023-11-09 2024-02-06 宜兴市蜀都文化创意发展有限公司 一种多孔紫砂陶瓷及其制备方法、应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100267A (en) * 1979-01-23 1980-07-31 Itsurou Hira Production of high temperature resistant low expanding ceramics
CN102765944A (zh) * 2012-07-23 2012-11-07 徐州工业职业技术学院 一种以粉煤灰为原料制备莫来石粉的方法
CN102976397A (zh) * 2012-12-10 2013-03-20 青岛海诺水务科技股份有限公司 钛酸铝材料的制备工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100267A (en) * 1979-01-23 1980-07-31 Itsurou Hira Production of high temperature resistant low expanding ceramics
CN102765944A (zh) * 2012-07-23 2012-11-07 徐州工业职业技术学院 一种以粉煤灰为原料制备莫来石粉的方法
CN102976397A (zh) * 2012-12-10 2013-03-20 青岛海诺水务科技股份有限公司 钛酸铝材料的制备工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUOGANG XU: "Preparation of porous Al2TiO5 ceramics reinforced by in situ formation of mullite whiskers", 《MATERIALS AND DESIGN》 *
梁杰: "《粉煤灰资源化研究与实用技术》", 31 August 2017, 贵州大学出版社 *
陈虹等: "莫来石-钛酸铝复相陶瓷的强度与热膨胀性", 《陶瓷》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863351A (zh) * 2018-09-28 2018-11-23 北京科技大学 一种钛酸铝复合多孔陶瓷的制备方法
CN109336589A (zh) * 2018-11-02 2019-02-15 山东科技大学 一种微生物发泡制备多级孔结构钛酸铝莫来石陶瓷的方法
CN109336589B (zh) * 2018-11-02 2021-08-31 山东科技大学 一种微生物发泡制备多级孔结构钛酸铝莫来石陶瓷的方法
CN112723903A (zh) * 2020-12-31 2021-04-30 松山湖材料实验室 钛酸铝-莫来石复合陶瓷及其制备方法、多孔介质燃烧器及陶瓷过滤器
CN112851390A (zh) * 2021-01-22 2021-05-28 山东硅元新型材料股份有限公司 铸钢用三维网络多孔陶瓷及其制备方法
CN114380607A (zh) * 2022-01-26 2022-04-22 郑州金河源耐火材料有限公司 刚玉莫来石凝胶复合耐磨浇注料及其制备方法
CN114920525A (zh) * 2022-06-24 2022-08-19 杭州汉特建材有限公司 一种高强植生混凝土及其制备方法
CN114920525B (zh) * 2022-06-24 2022-11-29 杭州汉特建材有限公司 一种高强植生混凝土及其制备方法
CN117510229A (zh) * 2023-11-09 2024-02-06 宜兴市蜀都文化创意发展有限公司 一种多孔紫砂陶瓷及其制备方法、应用

Also Published As

Publication number Publication date
CN108178658B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN108178658A (zh) 一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的方法
Bahurudeen et al. Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash
JP5039554B2 (ja) チタン酸アルミニウムに基づく、ガラス相を含むセラミック体
CN108585810A (zh) 微孔陶瓷及其制备方法和雾化芯
US8869993B2 (en) Filter used for filtering molten metal and preparation method thereof
Cuo et al. Spherical Al2O3-coated mullite fibrous ceramic membrane and its applications to high-efficiency gas filtration
CN101591165A (zh) 铬锆质红外辐射材料、其制备方法及其应用
CN113603497B (zh) 一种多孔陶瓷、快速烧成的轻质高强陶瓷板及其制备方法
CN111333430A (zh) 一种除味釉料及使用其的釉面砖的制备方法
CN106866118A (zh) 一种不烧高纯镁钙砖及其制备方法
US20180065882A1 (en) Method of making porous mono cordiertie glass ceramic material and its use
CN102351566A (zh) 泡沫陶瓷过滤器的制备方法
Rzepa et al. Structure and microstructure of sintered ceramic obtained by crystallization of fly ash mixtures and glass cullet
CN110790574A (zh) 一种具有多级孔结构的Si3N4-SiCN陶瓷及其制备方法
AU2014365267A1 (en) Siliceous composition and method for obtaining same
US4053320A (en) Production of refractory articles
CN110105060A (zh) 一种低膨胀系数瓷质板材的制备方法
KR20030078422A (ko) 화력발전소 비산재를 이용한 저융점 유리 조성물, 결정화유리 조성물 및 그의 제조방법
CN108530093A (zh) 一种高强度耐火材料及其制备方法
JPH0930857A (ja) 石炭灰からなる焼結体とその製造方法
Chandrasekaran et al. The effect of temperature on ceramic bricks with replacing waste glass in low volume ratio
CN112279655A (zh) 一种结合剂和镁质捣打料及其制备方法
US3544666A (en) Method for producing a heat insulating refractory using calcined geyserite having a high tridymite content
US2865772A (en) Lightweight insulating firebrick and method of manufacture
KR101200849B1 (ko) 플라이 애시를 이용한 연료 절감형 고령토 벽돌 제조방법 및 그 고령토 벽돌

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201027