CN108164262A - 一种热膨胀系数连续可调的nzp族陶瓷的制备方法 - Google Patents

一种热膨胀系数连续可调的nzp族陶瓷的制备方法 Download PDF

Info

Publication number
CN108164262A
CN108164262A CN201611115085.3A CN201611115085A CN108164262A CN 108164262 A CN108164262 A CN 108164262A CN 201611115085 A CN201611115085 A CN 201611115085A CN 108164262 A CN108164262 A CN 108164262A
Authority
CN
China
Prior art keywords
coefficient
nzp
thermal expansion
races
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201611115085.3A
Other languages
English (en)
Inventor
胡金玲
杨殿来
岳鑫
许壮志
刘磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIAONING FAKU COUNTY CERAMIC ENGINEERING TECHNOLOGY RESEARCH CENTER
Original Assignee
LIAONING FAKU COUNTY CERAMIC ENGINEERING TECHNOLOGY RESEARCH CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIAONING FAKU COUNTY CERAMIC ENGINEERING TECHNOLOGY RESEARCH CENTER filed Critical LIAONING FAKU COUNTY CERAMIC ENGINEERING TECHNOLOGY RESEARCH CENTER
Priority to CN201611115085.3A priority Critical patent/CN108164262A/zh
Publication of CN108164262A publication Critical patent/CN108164262A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/006Compounds containing, besides hafnium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及具有热膨胀系数连续可调的NZP族陶瓷材料制备方法,属精细陶瓷材料技术领域。本发明以MMⅡ3Zr2(PO4)3为基体,采用一定量的Ca2+和Sr2+离子分别取代MI、M位置,用Hf4+离子取代少量的Zr4+离子位置,制备出CaxSr1‑x(HfyZr1‑y)4P6O24(0≤x≤1,0≤y≤1)陶瓷材料。本发明的陶瓷粉体制备工艺采用化学共沉淀法,即把含Ca2+、Sr2+、Zr4+、Hf4+阳离子离子的盐溶液滴加到(NH4)2HPO4的沉淀剂溶液中,在反应过程中控制溶液浓度及PH值,经沉淀、清洗、烘干、煅烧、研磨后可以得到粒度分布均匀、烧结活性好的NZP族陶瓷粉体。粉体经添加适量ZnO、MgO、SiO2、Ta2O5或Nb2O5为烧结助剂,经高温烧结后可以获得热膨胀系数连续可调的陶瓷体材料。本发明的陶瓷产品具有热膨胀系数连续可调、抗压强度高、耐热冲击性好、可加工性强等优点。

Description

一种热膨胀系数连续可调的NZP族陶瓷的制备方法
技术领域
本发明涉及一种共沉淀工艺制备NZP族陶瓷的方法,属于精细陶瓷技术领域。
背景技术
NZP族磷酸盐陶瓷材料是指与NaZr2P3O12具有相同晶体结构、但化学组分可调的的一类陶瓷材料,因其具有典型的负膨胀至零的膨胀性能而受到广泛关注。NZP的一般分子式可以表示为MMⅡ3Zr2(PO4)3,其中M、M、Zr、P等位置均可被其他多种阳离子所取代,所衍生出的一系列化合物统称为NZP族化合物,由这些化合物制成的陶瓷材料称为NZP族陶瓷。
NZP族陶瓷化学性质非常稳定,不被强酸强碱腐蚀,极难氧化,即使在高温条件下也难与其他物质发生反应。并且,NZP族陶瓷通过M、M、Zr、P等位置不同离子取代及化学组分不同,可获得热膨胀系数从负值到正值连续可调的多元NZP陶瓷材料。
目前报导的NZP粉体制备普遍采用溶胶-凝胶法,另有少部分是固相反应法和水热合成法。固相反应法虽简单易行,但合成粉料的温度高,时间长,往往难以得到单一相的粉体,且制成的粉体粒径粗,烧结活性小,不易致密化。水热法和溶胶-凝胶法虽可在较低温度下合成单相NZP粉体,粉体的粒度分布均匀,烧结活性高,但设备要求高,合成周期长,产率低,不利于批量生产,限制了这两种方法的应用。
发明内容
针对上述技术现状,本发明采用一定量的Ca2+和Sr2+离子分别取代MI、M位置,用Hf4+离子取代少量的Zr4+离子位置,制备出CaxSr1-x(HfyZr1-y)4P6O24(0≤x≤1,0≤y≤1)陶瓷材料,该体系材料科在降低材料的整体热膨胀系数的同时,提升其抗热震性能。
本发明采用共沉淀工艺制备热膨胀系数可控的NZP族陶瓷材料。本发明制备NZP族陶瓷材料为CaxSr1-x(HfyZr1-y)4P6O24(0≤x≤1,0≤y≤1)的方法,包括NZP族陶瓷粉体的制备、NZP陶瓷坯体成型及烧结。
具体步骤如下:
(1)按上述化学式CaxSr1-x(HfyZr1-y)4P6O24(0≤x≤1,0≤y≤1)中摩尔配比进行配料,即CaCO3、SrCO3、HfOCl2·8H2O、ZrOCl2·8H2O、(NH4)2HPO4的摩尔份数比为x:(1-x):4y:4(1-y):6,原料选用分析纯CaCO3、SrCO3、HfOCl2·8H2O、ZrOCl2·8H2O、(NH4)2HPO4的化学试剂。将含有Ca2+、Sr2+、Zr4+、Hf4+阳离子离子的盐溶液滴加到过量的(NH4)2HPO4的沉淀剂溶液中,在此过程中控制溶液的PH在7-9之间。(2)将共沉淀工艺制备的悬浮液离心后获得沉淀物,加入大量蒸馏水后分散处理,再次离心处理,多次清洗后,将获得的沉淀物在80℃条件下烘干,过筛后进行900-1200℃煅烧,研磨后即可得到0.5-5μm的CaxSr1-x(HfyZr1-y)4P6O24粉体。(3)在上述方法所制备的粉体中参入适量ZnO、MgO、SiO2、Ta2O5或Nb2O5为烧结助剂,压制成型后,在1100-1300℃烧结后即可得到抗压强度高、热膨胀系数可调的CaxSr1-x(HfyZr1-y)4P6O24陶瓷。
本发明具有如下优点:
1、本发明的粉体制备工艺采用共沉淀法,该方法简单易行,具有制备的产品纯度高、粉体烧结活性好等优点。
2、沉淀物的干燥采取先用大量蒸馏水清洗、再低温烘干的方式,可以洗去沉淀物中的可溶性盐及Cl-离子,可以有效的克服干燥过程中粉体颗粒团聚问题。这种沉淀物经过煅烧后可以到质地疏松的、粒度分布均匀的、烧结活性好的NZP粉体。
3、本发明制备的NZP陶瓷材料,具有抗压强度高、热膨胀系数可调的优点。
具体实施方式
实施例1
(1)取x=0.5,y=0.5按照化学式中Ca0.5Sr0.5(Hf0.5Zr0.5)4P6O24进行配料取样,将4.6g的CaCO3、6.8g的SrCO3、37.8g的HfOCl2·8H2O溶解在276mL的浓度为0.5mol/L的ZrOCl2·8H2O溶液中,将上述混合盐溶液缓慢滴加至607mL浓度为1Mol/L的(NH4)2HPO4中,控制溶液pH=8。
(2)将悬浮液陈腐24h后离心后获得沉淀物,将沉淀物加入蒸馏水分散处理,再次离心,循环5次后,将获得的沉淀物于80℃下烘干,过200目筛。
(3)将沉淀物进行1100℃高温煅烧1h,即获得质量约为100g的Ca0.5Sr0.5(Hf0.5Zr0.5)4P6O24粉体。
(4)将粉体中加入占粉体总质量1%的氧化镁作为烧结助剂,氧化镁的纯度为3%,干压成型后进行1300℃高温煅烧,即获得Ca0.5Sr0.5(Hf0.5Zr0.5)4P6O24陶瓷体材料,经检测,所获得的陶瓷抗压强度124MPa、热膨胀系数5.2×10-7
实施例2
(1)取x=0.8,y=0.8按照化学式中Ca0.8Sr0.2(Hf0.8Zr0.2)4P6O24进行配料取样,将7.76g的CaCO3、2.86g的SrCO3、19.86g的HfOCl2·8H2O溶解在340ml的浓度为0.5mol/L的ZrOCl2·8H2O溶液中,将上述溶液缓慢滴加至640ml浓度为1Mol/L的(NH4)2HPO4中,控制溶液PH=8。
(2)将悬浮液陈腐24h后离心后获得沉淀物,将沉淀物加入大量蒸馏水分散处理,再次离心,循环5次后,将获得的沉淀物于80℃下烘干,过200目筛。
(3)将沉淀物进行1000℃高温煅烧1h,即获得质量约为100g的Ca0.8Sr0.2(Hf0.8Zr0.2)4P6O24粉体。
(4)将粉体中加入占粉体总质量3%的氧化镁作为烧结助剂,氧化镁的纯度为3%,,干压成型后进行1100℃高温煅烧,即获得Ca0.8Sr0.2(Hf0.8Zr0.2)4P6O24陶瓷体材料,经检测,所获得的陶瓷抗压强度105MPa、热膨胀系数7.8×10-7
实施例3
(1)当x=0,y=0时,按照化学式SrZr4P6O24中的化学配比,进行配料取样;将14.5gSrCO3溶解在783mL的浓度为0.5mol/L的ZrOCl2·8H2O溶液中,得到混合盐溶液,将所述混合盐溶液滴加到646ml浓度为1Mol/L(NH4)2HPO4的溶液中,在滴加过程中控制溶液pH=7,得到共沉淀工艺制备的悬浮液;
(2)将上述共沉淀工艺制备的悬浮液陈腐12h后离心,获得沉淀物,向沉淀物中加入蒸馏水分散处理,再次离心处理、清洗5次后,将获得的沉淀物在80℃条件下烘干,过200目筛。
(3)过筛后的粉体进行900℃煅烧2小时,研磨后即可得到0.5-5μm的SrZr4P6O24粉体;
(4)将粉体中加入占粉体总质量5%的氧化镁作为烧结助剂,氧化镁的纯度为3%,,干压成型后进行1100℃高温煅烧2小时,即获得SrZr4P6O24陶瓷体材料,经检测,所获得的陶瓷抗压强度87MPa、热膨胀系数9.6×10-7
实施例4
(1)取x=1,y=1按照化学式中CaHf4P6O24进行配料取样,将8.3g的CaCO3、139g的HfOCl2·8H2O溶解在664ml蒸馏水溶液中,将上述溶液缓慢滴加至548ml浓度为1Mol/L的(NH4)2HPO4中,控制溶液PH=8。
(2)将悬浮液陈腐24h后离心后获得沉淀物,将沉淀物加入大量蒸馏水分散处理,再次离心,循环5次后,将获得的沉淀物于80℃下烘干,过200目筛。
(3)将沉淀物进行1200℃高温煅烧1h,即获得质量约为100g的CaHf4P6O24粉体。
(4)将粉体中加入占粉体总质量2%的氧化镁作为烧结助剂,氧化镁的纯度为3%,,干压成型后进行1300℃高温煅烧,即获得CaHf4P6O24陶瓷体材料,经检测,所获得的陶瓷抗压强度152MPa、热膨胀系数8.4×10-7

Claims (2)

1.一种热膨胀系数连续可调的NZP族陶瓷的制备方法,其特征在于,包括以下步骤:
(1)原料选用CaCO3、SrCO3、HfOCl2·8H2O、ZrOCl2·8H2O以及(NH4)2HPO4,按照化学式CaxSr1-x(HfyZr1-y)4P6O24(0≤x≤1,0≤y≤1)中的化学配比,进行配料;
(2)将上述原料CaCO3、SrCO3、HfOCl2·8H2O溶解在ZrOCl2·8H2O溶液中,得到含有Ca2+、Sr2+、Zr4+、Hf4+阳离子的混合盐溶液,将所述混合盐溶液滴加到(NH4)2HPO4的溶液中,在滴加过程中控制溶液pH在7-9之间,得到共沉淀工艺制备的悬浮液;
(3)将上述共沉淀工艺制备的悬浮液陈腐12-24h后离心,获得沉淀物,向沉淀物中加入蒸馏水分散处理,再次离心处理、清洗3到5次后,将获得的沉淀物在80℃条件下烘干,过筛后进行900-1200℃煅烧,研磨后即可得到0.5-5μm的CaxSr1-x(HfyZr1-y)4P6O24粉体;
(4)在上述制备的粉体中参入占粉体总质量1%~5%的烧结助剂,压制成型后,在1100-1300℃烧结后即可得CaxSr1-x(HfyZr1-y)4P6O24陶瓷。
2.根据权利要求1所述的一种热膨胀系数连续可调的NZP族陶瓷的制备方法,其特征在于,所述步骤(4)中的烧结助剂为ZnO、MgO、SiO2、Ta2O5、Nb2O5中的一种或几种。
CN201611115085.3A 2016-12-07 2016-12-07 一种热膨胀系数连续可调的nzp族陶瓷的制备方法 Withdrawn CN108164262A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611115085.3A CN108164262A (zh) 2016-12-07 2016-12-07 一种热膨胀系数连续可调的nzp族陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611115085.3A CN108164262A (zh) 2016-12-07 2016-12-07 一种热膨胀系数连续可调的nzp族陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN108164262A true CN108164262A (zh) 2018-06-15

Family

ID=62526589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611115085.3A Withdrawn CN108164262A (zh) 2016-12-07 2016-12-07 一种热膨胀系数连续可调的nzp族陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN108164262A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372132A (zh) * 2021-06-15 2021-09-10 昆明理工大学 一种氯磷灰石多孔材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594207A (zh) * 2004-07-01 2005-03-16 上海交通大学 负热膨胀系数可调的叠层陶瓷基复合材料及其制备方法
CN1597611A (zh) * 2004-07-21 2005-03-23 昆明理工大学 具有零膨胀特性的磷酸盐陶瓷材料Ca1-xBaxZr4P6O24及其制备方法
CN101928137A (zh) * 2010-09-10 2010-12-29 中国地质大学(北京) 一种Ca4(1+x)/5Mg(1+x)/5Zr4Si2xP(6-2x)O24磷酸盐负膨胀陶瓷材料及其制备方法
CN102433454A (zh) * 2011-09-22 2012-05-02 郑州大学 一种热膨胀系数可控的金属基陶瓷材料Al-Zr2P2WO12的烧结合成方法
CN102531566A (zh) * 2012-03-05 2012-07-04 昆明理工大学 一种提高磷酸盐陶瓷材料耐热冲击性的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594207A (zh) * 2004-07-01 2005-03-16 上海交通大学 负热膨胀系数可调的叠层陶瓷基复合材料及其制备方法
CN1597611A (zh) * 2004-07-21 2005-03-23 昆明理工大学 具有零膨胀特性的磷酸盐陶瓷材料Ca1-xBaxZr4P6O24及其制备方法
CN101928137A (zh) * 2010-09-10 2010-12-29 中国地质大学(北京) 一种Ca4(1+x)/5Mg(1+x)/5Zr4Si2xP(6-2x)O24磷酸盐负膨胀陶瓷材料及其制备方法
CN102433454A (zh) * 2011-09-22 2012-05-02 郑州大学 一种热膨胀系数可控的金属基陶瓷材料Al-Zr2P2WO12的烧结合成方法
CN102531566A (zh) * 2012-03-05 2012-07-04 昆明理工大学 一种提高磷酸盐陶瓷材料耐热冲击性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANTOSH Y. LIMAYE ET AL.: "Synthesis, sintering and thermal expansion of Ca1-xSrxZr4P6O24-an ultra-low thermal expansion ceramic system", 《JOURNAL OF MATERIALS SCIENCE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372132A (zh) * 2021-06-15 2021-09-10 昆明理工大学 一种氯磷灰石多孔材料及其制备方法
CN113372132B (zh) * 2021-06-15 2023-03-10 昆明理工大学 一种氯磷灰石多孔材料及其制备方法

Similar Documents

Publication Publication Date Title
CN103880418A (zh) 一种用于义齿制备的陶瓷材料粉体及其制备方法
CN101269958A (zh) 一种铈稳定氧化锆结构陶瓷材料及其制备方法
CN109721357A (zh) 一种单分散粒度可控的纳米钇稳定的氧化锆粉末及其制备方法和应用
CN103880410B (zh) 熔盐法合成ZnO-Cr2O3-Fe2O3系湿敏陶瓷烧结粉体方法
CN102583469A (zh) 超细高纯α-氧化铝的工业生产方法
CN106745174B (zh) 一种稀土氧化物比表面积控制的制备工艺
CN110204331A (zh) 一种热喷涂用钇稳定氧化铪球形粉体的制备方法
CN108164262A (zh) 一种热膨胀系数连续可调的nzp族陶瓷的制备方法
CN103466624B (zh) 一种超细β碳化硅及其制备方法
CA3091321A1 (en) Flaky titanate acid and method for production thereof, and use thereof
CN104016368B (zh) X荧光分析用无水硼酸锂熔剂的制备方法
CN101962209A (zh) 一种高性能锰锌软磁铁氧体用氧化铁红的后处理工艺
CN108950181A (zh) 一种氧化铍的制备工艺
JPH03126622A (ja) 二酸化ジルコニウム粉末、その製造方法、その用途並びにそれから製造された焼結体
CN106636685A (zh) 从掺铈的硅酸钇镥晶体中提取稀土元素的方法
CN110304850A (zh) 一种基于钛石膏生产α型半水石膏的方法
CN108997450A (zh) 一种结晶方式从燕窝中提取燕窝酸的方法
EP4053078A1 (en) Halloysite powder
CN101337808B (zh) 陶瓷膜支撑体用α-氧化铝粉制备工艺
US20140187411A1 (en) Preparation of silica-alumina composition
CN108358492A (zh) 一种复合改性磷石膏球及其制品
CN112358286A (zh) 人工合成四方晶系透锂长石及其制造方法
CN104310992B (zh) 熔盐法合成La2O3-MgO-TiO2系介电陶瓷烧结粉体及其烧结方法
JP2528462B2 (ja) 六チタン酸ナトリウム微細粒子粉末の製造法
CN108609651A (zh) 一种新型纳米氧化锆材料的制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20180615