CN108144620A - 泡沫镍负载复合纳米金属氧化物电极材料制备方法 - Google Patents

泡沫镍负载复合纳米金属氧化物电极材料制备方法 Download PDF

Info

Publication number
CN108144620A
CN108144620A CN201711263328.2A CN201711263328A CN108144620A CN 108144620 A CN108144620 A CN 108144620A CN 201711263328 A CN201711263328 A CN 201711263328A CN 108144620 A CN108144620 A CN 108144620A
Authority
CN
China
Prior art keywords
zno
nickel
solution
nico
zifs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711263328.2A
Other languages
English (en)
Other versions
CN108144620B (zh
Inventor
李克智
薛贝
顾生越
徐东东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201711263328.2A priority Critical patent/CN108144620B/zh
Publication of CN108144620A publication Critical patent/CN108144620A/zh
Application granted granted Critical
Publication of CN108144620B publication Critical patent/CN108144620B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种泡沫镍负载复合纳米金属氧化物电极材料制备方法,用于解决现有电极材料制备方法实用性差的技术问题。技术方案是以泡沫镍为基底,负载ZnO纳米线、ZIFs衍生Co3O4/NiCo2O4双壳纳米笼结构纳米颗粒材料,结合ZnO大的比表面积、快速的电子传输性能和ZIFs衍生Co3O4/NiCo2O4双壳纳米笼高孔隙率、优异的催化性能制备ZnO/Co3O4/NiCo2O4/泡沫镍,对H2O2具有良好的电催化活性,具有高灵敏度,低检测限、宽检测范围和良好的稳定性等优点,并且避免了粉末修饰电极容易引起团聚的技术问题。

Description

泡沫镍负载复合纳米金属氧化物电极材料制备方法
技术领域
本发明涉及一种电极材料制备方法,特别涉及一种泡沫镍负载复合纳米金属氧化物电极材料制备方法。
背景技术
H2O2的准确测定在化学,生物学、临床监控及环境保护等方面具有重要意义。目前H2O2检测方法有电化学法、高效液相色谱法、滴定法、荧光分析法、分光光度法等,其中电化学方法由于操作简单快速、灵敏度高、专一性强、检测成本低,因而被广泛研究和应用。电化学检测H2O2传感器分为酶型及非酶型两种,酶电极对被测物的选择性较好,但是由于它成本较高且易受到温度和pH值等影响,从而影响传感器的稳定性,所以限制了它的应用。非酶传感器具备酶传感器所不具备的优点,它是目前电化学传感器发展的主要趋势。在非酶H2O2电化学传感器的研究中,纳米材料起着重要的作用,如石墨烯、碳纳米管、贵金属、过渡金属氧化物等纳米材料均对H2O2具有催化作用。Co3O4作为一种过渡金属氧化物,由于其优异的催化性能而被广泛应用在H2O2传感中,通过在电极表面修饰Co3O4,可以有效改善H2O2电化学传感器的灵敏度、线性检测范围、选择性等传感性能。
Co3O4的制备方法主要有水(溶剂)热法、微波辅助法、电化学沉积法、溶胶-凝胶法、有机配合物前驱体法等。有机配合物前驱体法是通过钴盐与多齿有机配体形成配合物,再热分解去除配合物中的有机配体制备Co3O4,得到的Co3O4具有大量活性位点和较大比表面积,能够增加对H2O2的催化性能。中国石油大学郭海玲等采用有机配合物前驱体法,将醋酸钴与2-甲基咪唑在室温下配位生成ZIF-67前驱体,通过700℃热处理得到Co3O4,将其用于H2O2检测取得了良好的效果,检测限为0.24μM,检测范围为0.4-2.2mM,敏感性为120μA/mM。但在Co3O4修饰电极过程中,需要将配制好的Co3O4溶液滴加到玻碳电极表面干燥,干燥极易引起Co3O4团聚,致使活性位点减少,从而影响催化性能。并且由于Co3O4导电性差(室温下电导率为~10-5S/m)影响了其进一步应用[郭海玲,王梅,刘晨光.一种纳米尺度空心球状金属氧化物的材料的制备方法及应用.CN 105606672 A];为了改善Co3O4导电性差的问题,复旦大学ShaoXing Liu等认为双金属氧化物NiCo2O4的导电性是Co3O4或者NiO的两倍[Liu S,HuL,Xu X,et al.Nickel Cobaltite Nanostructures for Photoelectric and CatalyticApplications[J].Small,2015,11(34):4267.],该文献中制备的NiCo2O4主要用于催化性能的研究,未对H2O2电化学传感器领域进行研究。
ZnO纳米线具有高的催化效率,良好的生物相容性,相对稳定的化学性质以及较大的比表面积,并且能够提供直接稳定的快速电子传输路径。金属-有机骨架材料(MOFs)是通过金属与有机物形成配体,具有大比表面积、高孔隙率、配位不饱和金属位点等特点,是制备无机纳米材料理想的牺牲模板。
发明内容
为了克服现有电极材料制备方法实用性差的不足,本发明提供一种泡沫镍负载复合纳米金属氧化物电极材料制备方法。该方法以泡沫镍为基底,负载ZnO纳米线、ZIFs衍生Co3O4/NiCo2O4双壳纳米笼结构纳米颗粒材料,结合ZnO大的比表面积、快速的电子传输性能和ZIFs衍生Co3O4/NiCo2O4双壳纳米笼高孔隙率、优异的催化性能制备ZnO/Co3O4/NiCo2O4/泡沫镍,对H2O2具有良好的电催化活性,具有高灵敏度,低检测限、宽检测范围和良好的稳定性等优点,并且避免了粉末修饰电极容易引起团聚的技术问题。
本发明解决其技术问题所采用的技术方案:一种泡沫镍负载复合纳米金属氧化物电极材料制备方法,其特点是包括以下步骤:
(1)制作电解池,将10×10×1.6的泡沫镍作为电解池的阴极,电解池的阳极采用10×10×0.2的铂,在电解液中通入电流,在50~95℃条件下,电沉积1~2h。取出阴极的泡沫镍,在50~80℃的条件下,烘干8~12h,得到ZnO/泡沫镍。
(2)金属无机盐与2-甲基咪唑分别溶于甲醇中,配制成溶液甲、乙,在室温条件下,将乙溶液缓慢倒入甲溶液中,混合均匀,得到溶液ZIFs。
(3)ZnO/泡沫镍悬挂静置于溶液ZIFs中12~36h,取出,用用蒸馏水及无水乙醇清洗清洗,在40~80℃条件下,干燥6~12h,得到ZnO/ZIFs/泡沫镍。
(4)将硝酸镍溶于乙醇溶液中,配制成均匀溶液,将ZnO/ZIFs/泡沫镍悬挂静置于所配制的均匀溶液中15~60min,取出,用蒸馏水及无水乙醇清洗,在40~80℃条件下,烘干6~12h,得到ZnO/Co-Ni双金属氢氧化物/泡沫镍。
(5)将ZnO/Co-Ni双金属氢氧化物/泡沫镍放置于管式电阻炉中,在空气气氛下,由室温以约1~3℃/min的速率升温至300~400℃,保温1~4h。关闭加热电源,自然降温至室温,取出,得到ZnO/Co3O4/NiCo2O4/泡沫镍电极材料。
本发明的有益效果是:该方法以泡沫镍为基底,负载ZnO纳米线、ZIFs衍生Co3O4/NiCo2O4双壳纳米笼结构纳米颗粒材料,结合ZnO大的比表面积、快速的电子传输性能和ZIFs衍生Co3O4/NiCo2O4双壳纳米笼高孔隙率、优异的催化性能制备ZnO/Co3O4/NiCo2O4/泡沫镍,对H2O2具有良好的电催化活性,具有高灵敏度,低检测限、宽检测范围和良好的稳定性等优点,并且避免了粉末修饰电极容易引起团聚的技术问题。
本发明充分利用了泡沫镍比表面积大、化学结构稳定、负载能力好、易获取等优点,结合ZnO纳米线与Co3O4/NiCo2O4双壳纳米笼的新型结构,相比一般的负载物,ZnO纳米线可以增加比表面积,增加电子传输效率;Co3O4/NiCo2O4双壳纳米笼能大幅提高负载物的导电性能,对H2O2具有良好的催化性能;避免粉末负载易团聚、分散性不好的问题。此外,本发明所采用的工艺条件简单,易得,操作方法简单方便。
采用三电极体系检测电极材料对H2O2电化学性能,银/氯化银(Ag/Agl)电极作为参比电极,铂片电极作为对电极,所制备10×10×1.6经负载的泡沫镍的电极材料为工作电极,工作电极无需处理,电解液为0.1mol/L的PBS溶液(pH=7.4)。通过循环伏安法(CV)、恒电位极化法对材料H2O2检测性能进行测试。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是本发明泡沫镍负载复合纳米金属氧化物电极材料制备方法实施例1制备的ZnO/Co3O4/NiCo2O4/泡沫镍XRD图。
图2是本发明方法实施例1制备的ZnO/Co3O4/NiCo2O4/泡沫镍形貌图,图2(a)是扫描电镜图,图2(b)是透射电镜图。
图3是本发明方法实施例1制备的ZnO/Co3O4/NiCo2O4/泡沫镍XPS图。
图4是本发明方法实施例中电化学测试图,图4(a)是不同电极修饰材料CV曲线,图4(b)是实施例1制备的ZnO/Co3O4/NiCo2O4/泡沫镍不同浓度CV曲线,图4(c)是实施例1制备的ZnO/Co3O4/NiCo2O4/泡沫镍0.2-25.8μM时间-电流曲线,图4(d)是实施例1制备的ZnO/Co3O4/NiCo2O4/泡沫镍0.05-10.3mM时间-电流曲线,图4(e)是实施例1制备的ZnO/Co3O4/NiCo2O4/泡沫镍抗干扰测试曲线,图4(f)是实施例1制备的ZnO/Co3O4/NiCo2O4/泡沫镍稳定性测试曲线。
具体实施方式
以下实施例参照图1-4。本发明泡沫镍负载复合纳米金属氧化物电极材料制备方法具体步骤如下:
将ZnO纳米线沉积于泡沫镍上时,所采用的不仅限于硝酸锌及其他锌盐,可以是其他金属氧化物,如氧化铜,氧化钴,氧化镍等。
将金属氧化物沉积于泡沫镍上,通过电化学方法,须控制电流密度、时间和温度,才能有效的形成纳米线及纳米颗粒物质。
为了防止泡沫镍表面杂质对后续工艺有影响,以致在泡沫镍表面无法生成特殊形态的纳米颗粒。须将泡沫镍置于丙酮溶液中,在超声波条件下清洗表面10min,再用无水乙醇浸泡泡沫镍,超声条件下清洗10min,获得洁净干燥的泡沫镍载体。
为了使ZnO/泡沫镍负载ZIFs均匀、稳定,ZnO/泡沫镍负载ZIFs材料时,须将泡沫镍悬挂置于溶液中,尽量靠近底部位置。
为了得到颗粒形貌特殊,均匀的ZIFs材料,将2-甲基咪唑倒入缓慢搅拌的钴盐溶液中时,倒入过程要缓慢匀速,搅拌的力度和速度均需要得到控制。
实施例1。
(1)0.29g的硝酸锌和0.4g的硝酸铵溶于1L蒸馏水中,作为电解池的电解液,加热至75℃,将表面预处理过的10×10×1.6泡沫镍作为阴极,铂作为阳极,在电流密度为-0.8mA/cm2的条件下,电沉积1.5h,取出阴极的泡沫镍,在60℃的条件下,烘干10h,得到ZnO/泡沫镍。
(2)1mmol的硝酸钴溶于25mL甲醇溶液中,配制成均匀的溶液甲,4mmol的2-甲基咪唑溶于25mL的甲醇溶液中,配制成均匀的溶液乙,将乙缓慢的倒入搅拌的甲溶液中,混合均匀。
(3)将10×10×1.6的ZnO/泡沫镍悬挂静置于上述混合溶液中24h,取出,用蒸馏水及无水乙醇清洗,在60℃条件下,干燥10h,得到ZnO/ZIFs/泡沫镍;
(4)4g的硝酸镍溶于1L的乙醇溶液中,配制成均匀溶液,ZnO/ZIFs/泡沫镍悬挂静置于硝酸镍溶液中30min,取出,用蒸馏水及无水乙醇清洗,在60℃条件下,干燥10h,得到ZnO/Co-Ni双金属氢氧化物/泡沫镍材料。
(5)ZnO/Co-Ni双金属氢氧化物/泡沫镍放置于管式电阻炉中,在空气气氛下,由室温以约1℃/min的速率升温至350℃,保温2h。关闭加热电源,自然降温至室温,取出,得到ZnO/Co3O4/NiCo2O4/泡沫镍电极材料。
此传感器线性检测范围为0.2μM-2.4mM(R2=0.996),检测灵敏度为:388μA/mM,检测限为0.163μM(S/N=3),具有良好的稳定性和抗干扰性。
从图1可以看出衍射峰2θ为44.65°,51.98°,76.59°时分别对应晶面为(111),(200),(220)的镍晶体(JCPDS No.01-070-0989)。衍射峰2θ为34.38°,47.46°,56.46°,62.76°时分别对应氧化锌晶体(JCPDS No.01-079-0207),晶面为(002),(102),(110),(103)。衍射峰2θ为31.69°,36.71°,59.12°,64.96°时分别对应尖晶石结构的Co3O4及NiCo2O4(JCPDS No.01-078-1969,JCPDS No.01-073-1702),晶面为(220),(311),(511),(440),(531)。说明成功制备了ZnO/Co3O4/NiCo2O4/泡沫镍。
从图2(a)可以看出ZnO纳米线和Co3O4/NiCo2O4颗粒均匀分散在泡沫镍的表面。由图2(b)可以看出ZnO为纳米线结构,Co3O4/NiCo2O4为多孔双壳纳米笼结构。
从图3可以看出试样中存在Ni、Co、Zn、O、C元素。Ni和Co分别存在两种价态:Ni2+和Ni3+,Co2+和Co3+;Zn存在价态Zn2+,说明成功合成了ZnO纳米线和Co3O4/NiCo2O4双壳纳米笼。
图4(a)为泡沫镍、ZnO/泡沫镍、实施例1制备的ZnO/Co3O4/NiCo2O4/泡沫镍在PBS溶液及含有10mM H2O2的PBS溶液中的循环伏安测试,ZnO/泡沫镍相比泡沫镍电流响应增强,而ZnO/Co3O4/NiCo2O4/泡沫镍与其它两种材料相比,电流响应增强更加明显。
图4(b)为实施例1制备的ZnO/Co3O4/NiCo2O4/泡沫镍在含有不同浓度H2O2的PBS溶液中的CV曲线,阳极电流峰值随着H2O2浓度的增加而增加,可以根据阳极电流峰值(电压为0.7V)与浓度得到拟合曲线,可以看出电流与浓度呈线性关系(R2=0.997)。因此ZnO/Co3O4/NiCo2O4/泡沫镍是一种理想的H2O2传感电极材料。
图4(c)和图4(d)为实施例1制备的ZnO/Co3O4/NiCo2O4/泡沫镍在PBS溶液中滴加不同浓度的时间电流曲线,可以看出线性检测范围为0.2μM-2.4mM(R2=0.996),计算得到该传感器对H2O2的检测灵敏度为:388μA/mM,检测限为0.163μM(S/N=3)。
图4(e)和图4(f)为实施例1制备的ZnO/Co3O4/NiCo2O4/泡沫镍在PBS溶液中的抗干扰测试及稳定性测试。在图4(e)中,溶液中依次加入1mM过氧化氢(H2O2),5mM葡萄糖(glucose),0.1mM多巴胺(DA),0.1mM抗坏血酸(AA),0.1mM尿酸(UA),1mM过氧化氢,1mM过氧化氢,可以看出干扰物质对H2O2检测干扰基本可以忽略不计。从图4(f)中可以看出,ZnO/Co3O4/NiCo2O4/泡沫镍具有良好的稳定性。
实施例2。
(1)0.35g的硝酸锌和0.5g的硝酸铵溶于1L蒸馏水中,作为电解池的电解液,加热至50℃,将表面预处理过的10×10×1.6泡沫镍作为阴极,铂作为阳极,在电流密度为-0.7mA/cm2的条件下,电解2h,取出阴极的泡沫镍,在50℃的条件下,烘干8h,得到ZnO/泡沫镍。
(2)2mmol氯化钴溶于50mL甲醇溶液中,配制成溶液甲,5mmol的2-甲基咪唑溶于50mL甲醇溶液中,配制成溶液乙,将乙溶液缓慢的倒入搅拌的甲溶液中,混合均匀;将10×10×1.6的ZnO/泡沫镍悬挂静置于上述混合溶液中12h,取出,用蒸馏水及无水乙醇清洗,在40℃条件下,干燥6h,得到ZnO/ZIFs/泡沫镍;硝酸镍溶于一定量的乙醇溶液中,配制成一定浓度的溶液,ZnO/ZIFs/泡沫镍悬挂静置于硝酸镍溶液中15min,取出,用蒸馏水及无水乙醇清洗,在40℃条件下,干燥6h,得到ZnO/Co-Ni双金属氢氧化物/泡沫镍材料。
(3)将上述ZnO/Co-Ni双金属氢氧化物/泡沫镍放置于管式电阻炉中,在空气气氛下,由室温以约2℃/min的速率升温至300℃,保温4h。关闭加热电源,自然降温至室温,取出,得到ZnO/Co3O4/NiCo2O4/泡沫镍的电极材料。
此传感器线性检测范围为0.22μM-2.2mM(R2=0.996),检测灵敏度为:360μA/mM,检测限为0.17(S/N=3),具有良好的稳定性和抗干扰性。
实施例3。
(1)0.20g的硝酸锌和0.6g的硝酸铵溶于1L蒸馏水中,作为电解池的电解液,加热至95℃,将表面预处理过的10×10×1.6泡沫镍作为阴极,铂作为阳极,在电流密度为-0.9mA/cm2的条件下,电解1h,取出阴极的泡沫镍,在80℃的条件下,烘干12h,得到ZnO/泡沫镍。
(2)3mmol醋酸钴溶于50mL甲醇溶液中,配制成溶液甲,6mmol的2-甲基咪唑溶于50mL甲醇溶液中,配制成溶液乙,将乙溶液缓慢的倒入搅拌的甲溶液中,混合均匀;10×10×1.6mm的ZnO/泡沫镍悬挂静置于上述混合溶液中36h,取出,用蒸馏水及无水乙醇清洗,在80℃条件下,干燥12h,得到ZnO/ZIFs/泡沫镍;硝酸镍溶于一定量的乙醇溶液中,配制成一定浓度的溶液,ZnO/ZIFs/泡沫镍悬挂静置于硝酸镍溶液中60min,取出,用蒸馏水及无水乙醇清洗,在80℃条件下,干燥12h,得到ZnO/Co-Ni双金属氢氧化物/泡沫镍材料。
(3)将上述ZnO/Co-Ni双金属氢氧化物/泡沫镍放置于管式电阻炉中,在空气气氛下,由室温以约3℃/min的速率升温至400℃,保温1h。关闭加热电源,自然降温至室温,取出,得到ZnO/Co3O4/NiCo2O4/泡沫镍的电极材料。
此传感器线性检测范围为0.25μM-2.1mM(R2=0.996),检测灵敏度为:300μA/mM,检测限为0.2μM(S/N=3),具有良好的稳定性和抗干扰性。

Claims (1)

1.一种泡沫镍负载复合纳米金属氧化物电极材料制备方法,其特征在于包括以下步骤:
(1)制作电解池,将10×10×1.6的泡沫镍作为电解池的阴极,电解池的阳极采用10×10×0.2的铂,在电解液中通入电流,在50~95℃条件下,电沉积1~2h;取出阴极的泡沫镍,在50~80℃的条件下,烘干8~12h,得到ZnO/泡沫镍;
(2)金属无机盐与2-甲基咪唑分别溶于甲醇中,配制成溶液甲、乙,在室温条件下,将乙溶液缓慢倒入甲溶液中,混合均匀,得到溶液ZIFs;
(3)ZnO/泡沫镍悬挂静置于溶液ZIFs中12~36h,取出,用用蒸馏水及无水乙醇清洗清洗,在40~80℃条件下,干燥6~12h,得到ZnO/ZIFs/泡沫镍;
(4)将硝酸镍溶于乙醇溶液中,配制成均匀溶液,将ZnO/ZIFs/泡沫镍悬挂静置于所配制的均匀溶液中15~60min,取出,用蒸馏水及无水乙醇清洗,在40~80℃条件下,烘干6~12h,得到ZnO/Co-Ni双金属氢氧化物/泡沫镍;
(5)将ZnO/Co-Ni双金属氢氧化物/泡沫镍放置于管式电阻炉中,在空气气氛下,由室温以约1~3℃/min的速率升温至300~400℃,保温1~4h;关闭加热电源,自然降温至室温,取出,得到ZnO/Co3O4/NiCo2O4/泡沫镍电极材料。
CN201711263328.2A 2017-12-05 2017-12-05 泡沫镍负载复合纳米金属氧化物电极材料制备方法 Active CN108144620B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711263328.2A CN108144620B (zh) 2017-12-05 2017-12-05 泡沫镍负载复合纳米金属氧化物电极材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711263328.2A CN108144620B (zh) 2017-12-05 2017-12-05 泡沫镍负载复合纳米金属氧化物电极材料制备方法

Publications (2)

Publication Number Publication Date
CN108144620A true CN108144620A (zh) 2018-06-12
CN108144620B CN108144620B (zh) 2020-11-06

Family

ID=62466522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711263328.2A Active CN108144620B (zh) 2017-12-05 2017-12-05 泡沫镍负载复合纳米金属氧化物电极材料制备方法

Country Status (1)

Country Link
CN (1) CN108144620B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360741A (zh) * 2018-09-19 2019-02-19 天津大学 一种具有多孔二维片层堆叠而成的纳米墙结构的CoO电极材料及制备方法
CN109675636A (zh) * 2019-01-31 2019-04-26 上海师范大学 负载于钴片的ZnO纳米针与ZIF-67复合的光催化材料及其制备与应用
CN109806879A (zh) * 2019-02-28 2019-05-28 北京化工大学 一种CeO2-NiCo2O4/NF复合电催化材料及其制备方法和应用
CN110828808A (zh) * 2019-11-19 2020-02-21 肇庆市华师大光电产业研究院 一种锂硫电池正极材料的制备方法及应用
CN110921716A (zh) * 2019-12-13 2020-03-27 哈尔滨理工大学 一种氧化锌/四氧化三钴/碳锂电负极材料的制备方法
WO2020232731A1 (zh) * 2019-05-20 2020-11-26 上海海事大学 一种基于阳极氧化法的负载纳米金属氧化物的方法
CN112185714A (zh) * 2020-10-12 2021-01-05 广西大学 一种纤维素纳米纤丝/碳纳米管/四氧化三钴/钴-镍双氢氧化物柔性电极及其制备方法
CN112897570A (zh) * 2021-02-04 2021-06-04 西安理工大学 磁性NiCo2O4包覆ZnO晶须吸波材料的制备方法
CN114624299A (zh) * 2022-01-29 2022-06-14 清华大学 二维介孔纳米电极及其制备方法
CN116212950A (zh) * 2021-12-02 2023-06-06 惠生工程(中国)有限公司 一种金属多孔导热催化剂体系以及低温低压制备乙交酯的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104361998A (zh) * 2014-11-08 2015-02-18 安徽师范大学 一种多孔镍钴双金属氢氧化物纳米片、其制备方法及应用
CN105776439A (zh) * 2016-03-09 2016-07-20 黑龙江大学 泡沫镍基纳米石墨电极及其制备方法和应用
CN106391024A (zh) * 2016-09-21 2017-02-15 郑州峰泰纳米材料有限公司 碳纳米管‑泡沫镍负载纳米TiO2的光催化材料及其制备方法
CN106967986A (zh) * 2017-04-10 2017-07-21 燕山大学 一种具有分级结构的氢氧化镍/镍/石墨烯复合析氢电极的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104361998A (zh) * 2014-11-08 2015-02-18 安徽师范大学 一种多孔镍钴双金属氢氧化物纳米片、其制备方法及应用
CN105776439A (zh) * 2016-03-09 2016-07-20 黑龙江大学 泡沫镍基纳米石墨电极及其制备方法和应用
CN106391024A (zh) * 2016-09-21 2017-02-15 郑州峰泰纳米材料有限公司 碳纳米管‑泡沫镍负载纳米TiO2的光催化材料及其制备方法
CN106967986A (zh) * 2017-04-10 2017-07-21 燕山大学 一种具有分级结构的氢氧化镍/镍/石墨烯复合析氢电极的制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360741A (zh) * 2018-09-19 2019-02-19 天津大学 一种具有多孔二维片层堆叠而成的纳米墙结构的CoO电极材料及制备方法
CN109675636A (zh) * 2019-01-31 2019-04-26 上海师范大学 负载于钴片的ZnO纳米针与ZIF-67复合的光催化材料及其制备与应用
CN109675636B (zh) * 2019-01-31 2021-08-20 上海师范大学 负载于钴片的ZnO纳米针与ZIF-67复合的光催化材料及其制备与应用
CN109806879A (zh) * 2019-02-28 2019-05-28 北京化工大学 一种CeO2-NiCo2O4/NF复合电催化材料及其制备方法和应用
WO2020232731A1 (zh) * 2019-05-20 2020-11-26 上海海事大学 一种基于阳极氧化法的负载纳米金属氧化物的方法
US11358124B2 (en) 2019-05-20 2022-06-14 Shanghai Maritime University Preparation method of a nanometer metal oxide supported carrier based on anodic oxidation
CN110828808B (zh) * 2019-11-19 2022-04-26 肇庆市华师大光电产业研究院 一种锂硫电池正极材料的制备方法及应用
CN110828808A (zh) * 2019-11-19 2020-02-21 肇庆市华师大光电产业研究院 一种锂硫电池正极材料的制备方法及应用
CN110921716A (zh) * 2019-12-13 2020-03-27 哈尔滨理工大学 一种氧化锌/四氧化三钴/碳锂电负极材料的制备方法
CN112185714A (zh) * 2020-10-12 2021-01-05 广西大学 一种纤维素纳米纤丝/碳纳米管/四氧化三钴/钴-镍双氢氧化物柔性电极及其制备方法
CN112185714B (zh) * 2020-10-12 2022-01-04 广西大学 一种纤维素纳米纤丝/碳纳米管/四氧化三钴/钴-镍双氢氧化物柔性电极及其制备方法
CN112897570A (zh) * 2021-02-04 2021-06-04 西安理工大学 磁性NiCo2O4包覆ZnO晶须吸波材料的制备方法
CN116212950A (zh) * 2021-12-02 2023-06-06 惠生工程(中国)有限公司 一种金属多孔导热催化剂体系以及低温低压制备乙交酯的方法
CN114624299A (zh) * 2022-01-29 2022-06-14 清华大学 二维介孔纳米电极及其制备方法

Also Published As

Publication number Publication date
CN108144620B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN108144620A (zh) 泡沫镍负载复合纳米金属氧化物电极材料制备方法
Zhang et al. A CuNi/C nanosheet array based on a metal–organic framework derivate as a supersensitive non-enzymatic glucose sensor
Li et al. Novel hierarchical sea urchin-like Prussian blue@ palladium core–shell heterostructures supported on nitrogen-doped reduced graphene oxide: Facile synthesis and excellent guanine sensing performance
Ma et al. Preparation of spinel nickel-cobalt oxide nanowrinkles/reduced graphene oxide hybrid for nonenzymatic glucose detection at physiological level
Momeni et al. CuO/Cu2O nanoparticles: A simple and green synthesis, characterization and their electrocatalytic performance toward formaldehyde oxidation
Wu et al. A novel nonenzymatic electrochemical sensor based on 3D flower-like Ni7S6 for hydrogen peroxide and glucose
Zhong et al. Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth
Zhang et al. Fabrication of NiCo2O4 nanobelt by a chemical co-precipitation method for non-enzymatic glucose electrochemical sensor application
Shu et al. Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose
Yuan et al. 3D CuO nanosheet wrapped nanofilm grown on Cu foil for high-performance non-enzymatic glucose biosensor electrode
Chen et al. Electrochemical sensing of glucose by carbon cloth-supported Co3O4/PbO2 core-shell nanorod arrays
An et al. Co-Ni layered double hydroxides wrapped on leaf-shaped copper oxide hybrids for non-enzymatic detection of glucose
Guo et al. A facile and sensitive electrochemical sensor for non-enzymatic glucose detection based on three-dimensional flexible polyurethane sponge decorated with nickel hydroxide
Wang et al. Nickel-cobalt nanostructures coated reduced graphene oxide nanocomposite electrode for nonenzymatic glucose biosensing
Ekram et al. Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode–towards a novel non-enzymatic glucose sensor
Ni et al. In-situ growth of Co 3 O 4 nanoparticles on mesoporous carbon nanofibers: a new nanocomposite for nonenzymatic amperometric sensing of H 2 O 2
Liu et al. Hierarchical α-Fe2O3 microcubes supported on Ni foam as non-enzymatic glucose sensor
Ni et al. Facile fabrication of CuO nanowire modified Cu electrode for non-enzymatic glucose detection with enhanced sensitivity
Hu et al. Cu-based conductive MOF grown in situ on Cu foam as a highly selective and stable non-enzymatic glucose sensor
Daemi et al. An efficient platform for the electrooxidation of formaldehyde based on amorphous NiWO4 nanoparticles modified electrode for fuel cells
Yuan et al. Coral-like Cu-Co-mixed oxide for stable electro-properties of glucose determination
Liu et al. Research on nonenzymatic electrochemical sensor using HO-BiONO3 nanocomposites for glucose detection
Zhang et al. Bimetal-organic frameworks MnCo-MOF-74 derived Co/MnO@ HC for the construction of a novel enzyme-free glucose sensor
CN106290498A (zh) 基于PEDOT‑rGO‑Ni(OH)2复合纳米材料的无酶葡萄糖传感器电极的制备方法
Zhao et al. Flexible nickel–cobalt double hydroxides micro-nano arrays for cellular secreted hydrogen peroxide in-situ electrochemical detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant