CN108144119A - 一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法 - Google Patents
一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法 Download PDFInfo
- Publication number
- CN108144119A CN108144119A CN201810030404.3A CN201810030404A CN108144119A CN 108144119 A CN108144119 A CN 108144119A CN 201810030404 A CN201810030404 A CN 201810030404A CN 108144119 A CN108144119 A CN 108144119A
- Authority
- CN
- China
- Prior art keywords
- chitosan
- magnesium alloy
- solution
- sodium hyaluronate
- bilayer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/047—Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
- A61L27/32—Phosphorus-containing materials, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/23—Carbohydrates
- A61L2300/236—Glycosaminoglycans, e.g. heparin, hyaluronic acid, chondroitin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
- A61L2300/608—Coatings having two or more layers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/08—Coatings comprising two or more layers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Materials For Medical Uses (AREA)
Abstract
一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法,属于纯镁和镁合金生物医用材料的制备技术领域,包括如下步骤:(1)对表面覆盖有磷灰石涂层的镁或镁合金干燥;(2)将氨基硅烷溶液pH调至4.5~5.0,搅拌0.5~1h,浸入步骤(1)的镁或镁合金,在60℃~70℃搅拌12~24小时;(3)用无水乙醇和去离子水交替对步骤(2)得到的产品进行冲洗干净,干燥;(4)将步骤(3)得到的产品依次交替浸入透明质酸钠溶液和壳聚糖溶液中,进行自组装反应,从一种溶液转到另一种溶液中时,洗掉多余胶体或者离心掉多余胶体,直至得到需要的双分子层数。
Description
技术领域
本发明属于纯镁和镁合金生物医用材料的制备领域,具体涉及一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法。
背景技术
利用可降解生物材料作为骨植入体已经成为临床需求及相关产品发展的必然趋势。镁及其合金与人骨力学性能相匹配、具有良好的生物相容性并在人体环境内可降解的特性使其具备作为新型骨植入材料的潜力。但可降解镁合金会在生物体内较快腐蚀,在组织愈合前失去承载能力,限制其临床应用。因此,对镁及其合金进行表面改性是增强其耐腐蚀性和生物相容性的有效途径之一。
磷灰石,具有很好的生物相容性和生物活性,被广泛用作骨植入方面的涂层材料。人工关节及内植物术后感染率较高,也是骨科处理较为困难的问题之一。然而,具有良好生物活性的磷灰石涂层亦为细菌附着提供了便利场所,细菌能在植入人体的内植物材料表面及相邻的组织中形成生物被膜,从而对局部组织产生破坏。因此,制备抗菌抑菌涂层是控制骨植入术后感染的有效手段之一。
范存义等人采用真空等离子喷涂载Ag羟基磷灰石增强其抗菌性,该涂层抗菌性能有所增强,但离子喷涂较难形成均匀的涂层,且Ag如若释放较快时会引起细胞毒性。
Wiyong Kangwansupamonkon 等人《Antibacterial effect of apatite-coatedtitanium dioxide for textiles applications》讲到在磷灰石表面制备TiO2涂层,以增强其抗菌性能,但TiO2的降解性能较差,不适合作为可降解植入体的抗菌涂层。
Agata Przekora等人《In vitro evaluation of the risk of inflammatoryresponse after chitosan/HA and chitosan/β-1,3-glucan/HA bone scaffoldimplantation》讲到在HA表面制备CS涂层,通过对促炎细胞因子、巨噬细胞及成骨细胞的测量与评估表明,该涂层降低了生物体产生炎症反应的风险。
发明内容
本发明的目的在于提供一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法,该方法增强镁合金表面磷灰石的耐蚀性的同时亦增强其抗菌性能。
基于上述目的,本发明采取如下技术方案:
一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法,包括如下步骤:(1)对表面覆盖有磷灰石涂层的镁或镁合金干燥;
(2)将氨基硅烷的乙醇溶液pH调至4.5~5.0,搅拌0.5 h ~1h,浸入步骤(1)的镁或镁合金,在60 ℃~70 ℃搅拌12小时~24小时;
(3)用乙醇和去离子水交替对步骤(2)得到的产品进行冲洗干净,干燥;
(4)将步骤(3)得到的产品依次交替浸入透明质酸钠溶液和壳聚糖溶液中,进行自组装反应,从一种溶液转到另一种溶液中时,用醋酸缓冲液(将质量浓度98%冰醋酸用蒸馏水调至pH为5.0即得)洗掉多余胶体或者离心掉多余胶体,直至得到需要的双分子层数。
较好地,所述步骤(1)中磷灰石涂层为氟磷灰石、锶磷灰石或镁磷灰石。
较好地,所述步骤(2)中氨基硅烷为KH792、KH550和APTS中的至少一种。
较好地,所述所述步骤(2)中氨基硅烷的乙醇溶液由氨基硅烷溶解于80~95v%乙醇中制成,氨基硅烷的乙醇溶液浓度为2.5%-5%(g/mL)。
较好地,步骤(2)中pH用98wt%冰醋酸调节。
较好地,所述步骤(4)中透明质酸钠溶液与壳聚糖溶液的浓度均为0.8 mg/ml-1.2mg/ml;在每种溶液中进行自组装的时间为10min-15 min。
透明质酸钠及壳聚糖具有光谱抗菌作用,用自组装方法制备的双分子层之间除了静电力的作用,还有分子间范德华力的作用,故涂层结合强度良好。双分子层与磷灰石紧密结合,增强涂层抗菌、抑菌性的同时,增强其耐蚀性,而质酸钠(简称HA)及壳聚糖(简称CS)皆为生物活性材料,亦有益于增强涂层的生物相容性。
与现有技术相比,本发明有以下优点:
1. 将硅烷处理后的磷灰石涂层采用自组装方法制备HA/CS抗菌涂层,增强了磷灰石涂层的抗菌性,进一步避免了植入手术中因感染而造成的局部炎症的发生。
2. 磷灰石与HA/CS双分子层以静电作用和分子间范德华力的作用紧密结合,增强了磷灰石涂层的结合强度,有效降低了植入体服役过程中因结合强度较差造成涂层崩离及脱落现象。
3. 由于HA/CS均匀覆盖在磷灰石表面,进一步减缓了镁合金基体和磷灰石与体液的接触。电化学测试表明复合涂层的自腐蚀电位得到提高,自腐蚀电流密度得到降低;在模拟体液中的长期浸泡实验表明涂层在浸泡一周后依然保持完整均匀的表面,表明HA/CS自组装技术提高了涂层的耐腐蚀性能。
4. 自组装技术工艺简单易操作,节约了制备涂层成本。
附图说明
图1为不同涂层的SEM图谱及EDS能谱图:(a)(c)为锶磷灰石涂层;(b)(d) 锶磷灰石涂层表面自组装10层透明质酸钠及壳聚糖双分子层;
图2为不同试样的极化曲线图:(a) Mg-Zn-Ca镁合金基体;(b) 表面覆盖有锶磷灰石涂层的Mg-Zn-Ca镁合金基体;(c) 实施例1制得的Mg-Zn-Ca镁合金表面磷灰石涂层上自组装10层透明质酸钠及壳聚糖双分子层;
图3为实施例1制得的镁合金表面磷灰石涂层上自组装10层透明质酸钠及壳聚糖双分子层在模拟体液中浸泡两周后的SEM图;
图4为Mg-Zn-Ca镁合金基体、锶磷灰石涂层及实施例1制得的透明质酸钠及壳聚糖双分子层的抗菌率条形图。
具体实施方式
以下结合具体实施例对本发明的技术方案作进一步详细说明。
实施例1
一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法,包括如下步骤:
1) 在Mg-Zn-Ca合金基体表面用电沉积方法制备锶磷灰石涂层(简称Sr-HA,详细制备过程可参考《Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolutionproperties》),并放入60℃-80℃真空干燥箱干燥8-12小时;
2) 将0.5g氨基硅烷KH792(名称:N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷,相对分子质量:222.36,质量浓度为98%)溶于100 mL95v%乙醇中(必须是含少量水的乙醇,因为需要有水对硅烷进行水解作用),并缓慢搅拌均匀,使用质量浓度98%冰醋酸把溶液pH调至5.0,缓慢搅拌30分钟使氨基硅烷完全水解,再把表面有锶磷灰石涂层的Mg-Zn-Ca合金浸入氨基硅烷溶液中,65℃搅拌1个小时。
3) 反应完成后使用无水乙醇和去离子水交替将试样冲洗干净,65℃干燥24小时;
4) 将步骤3)处理后的合金试样浸入1 mg/ml透明质酸钠溶液中10分钟,之后用醋酸缓冲溶液(质量浓度98%冰醋酸用蒸馏水调至pH为5.0)清洗三次洗掉多余的透明质酸钠溶液;然后将合金试样浸入1 mg/ml壳聚糖溶液10分钟后,并同样用醋酸缓冲液(将质量浓度98%冰醋酸用蒸馏水调至pH为5.0即得)对试样进行冲洗,交替进行20次,用纯净水清洗样品,并自然风干,最终得到10层HA/CS双分子层,记为Bil(CS+HA)/Sr-HA。
图1为单纯的锶磷灰石涂层以及在锶磷灰石涂层表面自组装10层HA/CS复合双分子层的扫描及EDS能谱图。由(a)、(b)可知,当进行10次HA/CS双分子层自组装后,胶体附着形态明显。HA/CS双分子层均匀覆盖在锶磷灰石网状结构中。由(c)、(d)可知,EDS能谱中出现了N元素,存在于透明质酸钠及壳聚糖中,也进一步证实了用自组装方法在锶磷灰石表面成功制备了HA/CS双分子层。
图2为镁合金基体、锶磷灰石涂层及复合涂层在Kokubo’s模拟体液(SBF)中的极化曲线图,测试了其耐腐蚀性能。
图3为Bil(CS+HA)/Sr-HA在模拟体液中浸泡2周后的SEM扫描图,由扫描图可以看出,在模拟体液中浸泡两周后,涂层依然保证完整的状态,未检测到裂纹或点蚀坑,进一步说明双分子涂层增强了试样的耐蚀性。
图4为镁合金基体、锶磷灰石及Bil(CS+HA)/Sr-HA的抗菌率图,当涂层装载10层透明质酸钠及壳聚糖的双分子涂层时,涂层的抗菌性接近100%。
表1
表1为不同试样的电化学腐蚀参数。由表1可知,引入了透明质酸钠和壳聚糖双分子涂层后,相对于单一的锶磷灰石涂层,试样的腐蚀电位有所提高,腐蚀电流降低了1个数量级,说明耐腐蚀性能大大提高。
实施例2
一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法,包括如下步骤:
1) 在纯Mg基体表面用水热合成方法制备含氟磷灰石涂层(具体制备过程详见《Morphology-controlled synthesis of fluorapatite nano/microstructures viasurfactant-assisted hydrothermal process》),并放入真空干燥箱进行8-12小时干燥处理,真空干燥箱温度为60℃-80℃;
2) 将0.3g氨基硅烷APTS(中文名称:3-氨丙基三乙氧基硅烷,相对分子质量221.37,质量浓度为98%)溶解于100 ml 90v%乙醇中(必须是含少量水的乙醇,因为需要有水对硅烷进行水解作用)得到硅烷的乙醇溶液,并用磁力搅拌器缓慢搅拌均匀,之后用质量浓度98%冰醋酸把溶液pH调至4.8,缓慢搅拌一个小时使硅烷水解;将表面有含氟磷灰石的试样浸入氨基硅烷的乙醇溶液中,60℃搅拌18小时;
3) 反应完成后使用无水乙醇和去离子水交替将试样冲洗干净;65℃干燥24小时;
4) 将步骤3)得到的试样浸入0.8 mg/ml透明质酸钠溶液15分钟,之后用离心机洗掉多余的胶体(即透明质酸钠溶液)。然后将试样浸入0.8 mg/ml壳聚糖溶液15分钟,并同样使用离心机清洁涂层表面,交替进行10次,用纯净水清洗样品,并自然风干,最终得到5层双HA/CS分子层。
实施例2得到的涂层其表征分析及性能测试结果与实施例1基本相同。
Claims (7)
1.一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法,其特征在于,包括如下步骤:
(1)对表面覆盖有磷灰石涂层的镁或镁合金干燥;
(2)将氨基硅烷的乙醇溶液pH调至4.5~5.0,搅拌0.5 h ~1h,浸入步骤(1)的镁或镁合金,在60 ℃~70 ℃搅拌12小时~24小时;
(3)用乙醇和去离子水交替对步骤(2)得到的产品进行冲洗干净,干燥;
(4)将步骤(3)得到的产品依次交替浸入透明质酸钠溶液和壳聚糖溶液中,进行自组装反应,从一种溶液转到另一种溶液中时,洗掉多余胶体或者离心掉多余胶体,直至得到需要的双分子层数。
2.根据权利要求1所述在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法,其特征在于,所述步骤(1)中磷灰石涂层为氟磷灰石、锶磷灰石或镁磷灰石。
3.根据权利要求1所述在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法,其特征在于,所述步骤(2)中氨基硅烷为KH792、KH550和APTS中的至少一种。
4.根据权利要求1所述在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法,其特征在于,所述所述步骤(2)中氨基硅烷的乙醇溶液由氨基硅烷溶解于80~95v%乙醇中制成,氨基硅烷的乙醇溶液浓度为0.25%-5%(g/mL)。
5.根据权利要求1所述在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法,其特征在于,步骤(2)中pH用冰醋酸调节。
6.根据权利要求1所述在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法,所述步骤(4)中透明质酸钠溶液与壳聚糖溶液的浓度均为0.8 mg/ml~1.2mg/ml;在每种溶液中进行自组装的时间为10 min~15 min。
7.权利要求1至6任一所述的制备方法制得的生物镁合金表面磷灰石涂层上的抗菌透明质酸钠及壳聚糖双分子层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810030404.3A CN108144119B (zh) | 2018-01-12 | 2018-01-12 | 一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810030404.3A CN108144119B (zh) | 2018-01-12 | 2018-01-12 | 一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108144119A true CN108144119A (zh) | 2018-06-12 |
CN108144119B CN108144119B (zh) | 2021-02-23 |
Family
ID=62461463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810030404.3A Active CN108144119B (zh) | 2018-01-12 | 2018-01-12 | 一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108144119B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109825835A (zh) * | 2019-04-11 | 2019-05-31 | 重庆大学 | 表面具有硅烷/透明质酸钠复合涂层的镁及镁合金的制备方法 |
CN114306740A (zh) * | 2021-12-21 | 2022-04-12 | 上海交通大学 | 医用材料表面壳聚糖/氧化石墨烯涂层及其制备方法 |
CN115212354A (zh) * | 2022-01-13 | 2022-10-21 | 南京航空航天大学 | 一种具有梯度涂层的骨修复支架及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1448189A (zh) * | 2003-04-28 | 2003-10-15 | 浙江大学 | 采用静电自组装制备抗凝血生物材料的方法 |
WO2007015761A2 (en) * | 2005-07-21 | 2007-02-08 | Fmc Biopolymer As | Medical devices coated with a fast dissolving biocompatible coating |
CN101302638A (zh) * | 2008-01-07 | 2008-11-12 | 郑州大学 | 一种纳米hap涂层/镁合金复合生物材料的制备方法 |
WO2009050389A2 (fr) * | 2007-09-28 | 2009-04-23 | Universite Claude Bernard Lyon I | Filament a base d'acide hyaluronique sous forme acide libre et son procede d'obtention |
CN103463681A (zh) * | 2013-09-16 | 2013-12-25 | 同济大学 | 一种生物可降解镁合金表面改性氟化羟基磷灰石涂层的制备方法 |
CN106512091A (zh) * | 2016-12-23 | 2017-03-22 | 大连三生科技发展有限公司 | 一种用于牙科种植体的抗菌肽配方的制备方法 |
CN106853265A (zh) * | 2017-01-06 | 2017-06-16 | 温州医科大学 | 一种酶响应智能抗细菌粘附和杀菌的层层自组装多层膜涂层及其制备方法 |
CN107185055A (zh) * | 2017-04-28 | 2017-09-22 | 淮阴工学院 | 一种医用镁合金的表面改性方法 |
-
2018
- 2018-01-12 CN CN201810030404.3A patent/CN108144119B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1448189A (zh) * | 2003-04-28 | 2003-10-15 | 浙江大学 | 采用静电自组装制备抗凝血生物材料的方法 |
WO2007015761A2 (en) * | 2005-07-21 | 2007-02-08 | Fmc Biopolymer As | Medical devices coated with a fast dissolving biocompatible coating |
WO2009050389A2 (fr) * | 2007-09-28 | 2009-04-23 | Universite Claude Bernard Lyon I | Filament a base d'acide hyaluronique sous forme acide libre et son procede d'obtention |
CN101302638A (zh) * | 2008-01-07 | 2008-11-12 | 郑州大学 | 一种纳米hap涂层/镁合金复合生物材料的制备方法 |
CN103463681A (zh) * | 2013-09-16 | 2013-12-25 | 同济大学 | 一种生物可降解镁合金表面改性氟化羟基磷灰石涂层的制备方法 |
CN106512091A (zh) * | 2016-12-23 | 2017-03-22 | 大连三生科技发展有限公司 | 一种用于牙科种植体的抗菌肽配方的制备方法 |
CN106853265A (zh) * | 2017-01-06 | 2017-06-16 | 温州医科大学 | 一种酶响应智能抗细菌粘附和杀菌的层层自组装多层膜涂层及其制备方法 |
CN107185055A (zh) * | 2017-04-28 | 2017-09-22 | 淮阴工学院 | 一种医用镁合金的表面改性方法 |
Non-Patent Citations (3)
Title |
---|
KUIFENG BAI 等: "Fabrication of chitosan/magnesium phosphate composite coating and the in vitro degradation properties of coated magnesium alloy", 《MATERIALS LETTERS》 * |
YASHAN FENG 等: "Characterization and cytocompatibility of polydopamine on MAO‐HA coating supported on Mg‐Zn‐Ca alloy", 《SURFACE AND INTERFACE ANALYSIS》 * |
李颖: "金属表面生物活性改性及血液相容性研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109825835A (zh) * | 2019-04-11 | 2019-05-31 | 重庆大学 | 表面具有硅烷/透明质酸钠复合涂层的镁及镁合金的制备方法 |
CN114306740A (zh) * | 2021-12-21 | 2022-04-12 | 上海交通大学 | 医用材料表面壳聚糖/氧化石墨烯涂层及其制备方法 |
CN115212354A (zh) * | 2022-01-13 | 2022-10-21 | 南京航空航天大学 | 一种具有梯度涂层的骨修复支架及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108144119B (zh) | 2021-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Karimi et al. | Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics | |
Chopra et al. | Advancing dental implants: Bioactive and therapeutic modifications of zirconia | |
Guo et al. | Enhanced corrosion resistance and biocompatibility of polydopamine/dicalcium phosphate dihydrate/collagen composite coating on magnesium alloy for orthopedic applications | |
Kunjukunju et al. | A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys | |
He et al. | Peptide LL-37 coating on micro-structured titanium implants to facilitate bone formation in vivo via mesenchymal stem cell recruitment | |
US11898055B2 (en) | PEM layer-by-layer systems for coating substrates to improve bioactivity and biomolecule delivery | |
Hanawa | A comprehensive review of techniques for biofunctionalization of titanium | |
Ahmed et al. | A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti–6Al–4V alloy for orthopedic implants | |
US7229545B2 (en) | Process for the coating for metallic implant materials | |
CN102000360B (zh) | 一种生物活性表面修饰的金属植入体及其制备方法 | |
Huang et al. | Nitrogen plasma immersion ion implantation treatment to enhance corrosion resistance, bone cell growth, and antibacterial adhesion of Ti-6Al-4V alloy in dental applications | |
Jamesh et al. | Evaluation of corrosion resistance and cytocompatibility of graded metal carbon film on Ti and NiTi prepared by hybrid cathodic arc/glow discharge plasma-assisted chemical vapor deposition | |
Karimi et al. | Bioperformance of chitosan/fluoride-doped diopside nanocomposite coatings deposited on medical stainless steel | |
Zheng et al. | Enhanced in vitro biocompatibility of ultrafine-grained biomedical NiTi alloy with microporous surface | |
CN108144119A (zh) | 一种在生物镁合金表面磷灰石涂层上制备抗菌透明质酸钠及壳聚糖双分子层的方法 | |
Kim et al. | Functions achieved by the hyaluronic acid derivatives coating and hydroxide film on bio-absorbed Mg | |
Abdal-hay et al. | Magnesium-particle/polyurethane composite layer coating on titanium surfaces for orthopedic applications | |
Ghafarzadeh et al. | Bilayer micro-arc oxidation-poly (glycerol sebacate) coating on AZ91 for improved corrosion resistance and biological activity | |
Oliveira et al. | Titanium dioxide nanotubes functionalized with Cratylia mollis seed lectin, Cramoll, enhanced osteoblast-like cells adhesion and proliferation | |
Sadeghian et al. | Dentin extracellular matrix loaded bioactive glass/GelMA support rapid bone mineralization for potential pulp regeneration | |
Rao et al. | Physicochemical and in-vitro biological analysis of bio-functionalized titanium samples in a protein-rich medium | |
Hamdaoui et al. | An efficient and inexpensive method for functionalizing metallic biomaterials used in orthopedic applications | |
Chopra et al. | Random, aligned and grassy: Bioactivity and biofilm analysis of Zirconia nanostructures as dental implant modification | |
Qiu et al. | Dual-functional polyetheretherketone surface with an enhanced osteogenic capability and an antibacterial adhesion property in vitro by chitosan modification | |
Mallik et al. | Coating of chitosan onto bone implants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |