CN108122978A - 半导体装置 - Google Patents

半导体装置 Download PDF

Info

Publication number
CN108122978A
CN108122978A CN201710352130.5A CN201710352130A CN108122978A CN 108122978 A CN108122978 A CN 108122978A CN 201710352130 A CN201710352130 A CN 201710352130A CN 108122978 A CN108122978 A CN 108122978A
Authority
CN
China
Prior art keywords
source
layer
drain
recess
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710352130.5A
Other languages
English (en)
Inventor
马志宇
李承翰
潘正扬
张世杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN108122978A publication Critical patent/CN108122978A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

提供一种可增加半导体装置如晶体管其源极/漏极区中的掺质。半导体装置可包含第一材料的掺杂外延,其具有多个促进层埋置其中。促进层可为第二材料,且第一材料与第二材料不同。另一装置可包含晶体管的源极/漏极结构。源极/漏极结构包含掺杂的源极/漏极材料与一或多个分开的埋置促进层。方法包含成长促进层于基板的凹陷中,其中促进层实质上不含掺质。方法亦包含成长掺杂的外延层于凹陷中的促进层上。

Description

半导体装置
技术领域
本发明实施例关于半导体装置,更特别关于外延的源极/漏极结构中的促进层。
背景技术
半导体集成电路产业已经历快速成长。在集成电路的演进中,功能密度(如单位芯片面积的内连线装置数目)通常随着几何尺寸(如最小构件或线路)缩小而增加。制程尺寸缩小通常有利于增加产能并降低相关成本。上述制程尺寸缩小亦会增加集成电路的制程复杂性,集成电路制程亦需类似发展已实现上述进展。
举例来说,当半导体装置如金氧半场效晶体管的尺寸缩小至多种技术节点时,可实施应力的源极/漏极结构(如应力区)以增加载子移动率并改善装置效能。虽然形成应力区以用于集成电路装置的现有方法可符合其发展目的,但其无法完全适用于所有方面。
发明内容
本发明一实施例提供的半导体装置,包括:基板,具有凹陷形成其中;掺杂的外延形成于凹陷中,且掺杂的外延包括:多个第一材料层;以及一或多个促进层,包括第二材料,且每一促进层位于两个第一材料层之间,其中掺杂的外延中的掺质浓度自一层状物至另一层状物逐渐改变。
附图说明
图1本发明多种实施例中,形成半导体装置的方法其流程图。
图2至6一或多个实施例中,依据图1的方法制作的半导体装置于多种制作阶段中的剖视图。
图7一些实施例中,自硅磷形成的源极/漏极区中的磷浓度对深度的图表。
图8至10其他实施例中,半导体装置的剖视图。
【符号说明】
d1 深度
h1 高度差
w1 宽度
100 方法
105、110、115、120、125、130 步骤
200 半导体装置
202 基板
204 隔离结构
206 栅极介电层
208 栅极层
210 硬掩模层
212 侧壁间隔物
228 凹陷
230 源极/漏极材料
232 促进层
234 源极/漏极结构
236 盖层
238、288 被覆盖的源极/漏极结构
250、251 栅极堆叠
710 图表
720、722 线段
724 波峰值
726 波谷值
具体实施方式
下述揭露内容提供许多不同实施例或实例以实施本发明的不同结构。下述特定构件与排列的实施例用以简化本发明而非局限本发明。举例来说,形成第一构件于第二构件上的叙述包含两者直接接触,或两者的间隔有其他额外构件而非直接接触。此外,本发明的多个实例可采用重复附图标记及/或符号使说明简化及明确,但这些重复不代表多种实施例中相同附图标记的元件之间具有相同的对应关系。
此外,空间性的相对用语如「下方」、「其下」、「较下方」、「上方」、「较上方」、或类似用语可用于简化说明某一元件与另一元件在附图中的相对关系。空间性的相对用语可延伸至以其他方向使用的元件,而非局限于附图方向。元件亦可转动90°或其他角度,因此方向性用语仅用以说明附图中的方向。
当形成掺杂的源极/漏极区时(比如掺杂磷的硅的源极/漏极区),掺质可能未适当地键结至源极/漏极材料,且未键结的掺质将造成点缺陷。点缺陷可包含结晶结构中的空穴或间隙。点缺陷累积造成延伸缺陷。理想状况下,所有的掺质将键结至硅并穿插于整个结晶晶格中。但实际上,掺质可能因未与源极/漏极材料键结,而形成团簇于晶格结构中。当掺质形成团簇,后续的回火步骤将无法活化掺质,且源极/漏极区中的掺质团簇将维持未活化的状态。
在下述实施例中,未掺杂的源极/漏极材料的层状成长,可能提供许多悬空键或空穴于结晶结构中。未掺杂的源极/漏极材料可称作促进层。在层状成长未掺杂的源极/漏极材料后,接着可成长掺杂的源极/漏极材料。促进层中的悬空键可提供空穴,使掺质明显地键结至促进层。当掺质键结至促进层,可发现源极/漏极中的掺质增加。如此一来,促进层的层状成长可抑制掺质团簇并增加悬空键,以改善源极/漏极区的效能,进而增加促进层中的掺质键结。在一些实施例中,未掺杂的源极/漏极材料的源极/漏极材料,可与掺杂的源极/漏极材料的源极/漏极材料不同。
本发明实施例可增加半导体装置如场效晶体管的掺杂的源极/漏极区其掺质浓度。在一些实施例中,n型的半导体装置如场效晶体管,其掺杂磷的源极/漏极区的磷浓度可增加。在一些实施例中,p型的半导体装置如场效晶体管,其掺杂硼的源极/漏极区的硼浓度可增加。在一些实施例中,可采用其他掺质。举例来说,这些装置可包含n型场效晶体管、p型场效晶体管、或互补式金氧半装置。掺杂的外延层可成长于半导体基板中的凹陷内,比如用以形成晶体管的源极/漏极区的凹陷。为了降低或避免掺质团簇,本发明实施例增加可得的键结位点(如悬空),以提供用于掺质的键结机会,进而增加掺质的键结。这有助于降低并避免结晶中的延伸缺陷,并可增加区域中的活化掺质量。
下述将以n型或p型的场效晶体管为例,说明本发明的多种实施例。然而应理解的是,本发明不限于特定种类的装置,除非申请专利范围特别限制。当下述说明提及特定的掺质、源极/漏极材料、或促进层材料,应理解在不需过度实验的情况下可采用或置换为其他掺质、源极/漏极材料、或促进层材料。
方法100与半导体装置200将搭配图1与2至8说明如下。半导体装置200指的是集成电路或其部份,其可包含有源装置如金氧半场效晶体管、互补式金氧半晶体管、高压晶体管、及/或高频晶体管;其他合适的构件;及/或上述的组合。半导体装置200可额外包含被动构件如电阻、电容、电感、及/或熔丝。应理解的是,半导体装置200的形成方法可为互补式金氧半技术制程,因此一些制程并未详述如下。在方法100之前、之中、或之后可进行额外步骤,且额外实施例可置换或省略方法100的一些下述步骤。应理解的是,可添加额外结构于半导体装置200中,且额外实施例可置换或省略半导体装置200的一些下述结构。
在一些实施例中,图1所示的流程图可用以制作半导体装置。下述内容先简述流程图,再搭配后续图式详述流程图。
在步骤105中,形成栅极堆叠于基板上。在n型装置中,基板可为p型硅为主的基板。在一些实施例中,基板可为硅为主的基板,其具有掺杂p型杂质的阱区。在p型装置中,基板可为n型硅为主的基板。在一些实施例中,基板可为硅为主的基板,其具有掺杂n型杂质的阱区。在步骤110中,形成凹陷于与栅极堆叠的边缘相邻的基板中。凹陷可形成于基板中,或形成于基板内的掺杂阱区中。凹陷的形成方法可为蚀刻,比如非等向干蚀刻制程、湿蚀刻制程、或上述的组合。
在步骤115中,形成装置的源极/漏极结构于凹陷中。源极/漏极结构的形成方法可为外延成长制程。可用的外延成长制程包含选择性外延成长、循环沉积与蚀刻、化学气相沉积技术于气相外延及/或超高真空化学气相沉积、分子束外延、其他合适的外延制程、或上述的组合。在一些实施例中,源极/漏极的晶格常数不同于基板202的晶格常数,以将应力导入半导体装置200的通道区上,进而增加装置的载子移动率以提升装置效能。可用于外延源极/漏极结构的材料包含硅、锗、硅锗、碳、碳化硅、与类似物。
掺质可存在于步骤115的外延成长制程,以成长掺杂的源极/漏极外延。举例来说,磷可用以成长硅磷的组成。其他可用的掺质可包含砷、锑、锂、硼、铝、氮、镓、铟、锗、或类似物,端视装置为n型或p型。掺质为主的蒸气与源极/漏极材料为主的蒸气可导入成长腔室中,其可提供掺杂的源极/漏极外延成长所用的材料。
在步骤120中,可在循环间隔成长促进层于源极/漏极凹陷中,因此促进层穿插于整个掺杂的源极/漏极外延中。用以成长促进层的外延成长制程,可与用以成长掺杂的源极/漏极外延的外延成长制程相同或不同。在一些实施例中,可自腔室扣除掺质为主的蒸气,因此只有未掺杂的源极/漏极材料保留于成长腔室中。在这些实施例中,促进层包含未掺杂的源极/漏极材料,且实质上不含掺质。在一些实施例中,可自成长腔室一起扣除掺质为主的蒸气与源极/漏极为主的蒸气,并导入一或多个不同的促进层蒸气如碳为主的蒸气。在这些实施例中,促进层包含的材料不同于源极/漏极材料或掺质。此外,促进层的晶格常数可不同于掺杂的源极/漏极材料的晶格常数。步骤115至125的制程将详述如下。
在步骤125中,若未填满凹陷,流程将回到步骤115与120直到填满凹陷。一旦填满凹陷,将进行步骤130。
在步骤130中,可形成盖层外延于层状的源极/漏极结构上。在一些实施例中,盖层外延的组成可为掺杂或未掺杂的源极/漏极材料。盖层外延可形成以成长超出源极/漏极区的凹陷。盖层外延的形成方法可与外延成长源极/漏极材料的外延成长方法相同或不同。这将详述如下。
在步骤135中,可进行额外制程如栅极置换,或新增层间介电物、再布线层、接点、硅化物、金属结构、与类似物。举例来说,方法100可形成主要间隔物。亦可形成接点结构如硅化物区。接点结构可包含硅化物材料如镍硅化物、镍铂硅化物、镍铂锗硅化物、镍锗硅化物、镱硅化物、铂硅化物、铱硅化物、铒硅化物、钴硅化物、其他合适的导电材料、及/或上述的组合。接点结构的形成制程可包括沉积金属层、回火金属层使其可与硅反应形成硅化物、以及接着移除未反应的金属层。接着可进一步形成层间介电物于基板上,并进一步施加化学机械研磨制程至基板以平坦化基板。此外,在形成层间介电层之前,可形成接点蚀刻停止层于栅极结构的顶部上。
在一些实施例中,进行栅极置换制程(或栅极后制制程),以将多晶硅的栅极堆叠250置换为金属栅极。举例来说,金属栅极可置换栅极堆叠250的栅极堆叠(如多晶硅的栅极堆叠)。金属栅极包含衬垫层、功函数层、导电层、金属栅极层、填充层、其他合适的层状物、及/或上述的组合。多种层状物可包含任何合适材料,比如铝、铜、钨、钛、钽、钽铝、氮化钽铝、氮化钛、氮化钽、镍硅化物、钴硅化物、银、碳化钽、氮化钽硅、氮化钽碳、钛铝、氮化钛铝、氮化钨、金属合金、其他合适材料、及/或上述的组合。在一些实施例中,可采用栅极优先制程,且不需栅极置换制程。
后续制程可进一步形成多种接点/通孔/线路与多层的内连线结构(如金属层与层间介电物)于基板上,其设置以连接半导体装置的多种结构。额外结构可提供额外的电性内连线至装置。举例来说,多层内连线包含垂直内连线如现有的通孔或接点,以及水平内连线如金属线路。多种内连线结构可采用多种导电材料,包含铜、钨、及/或硅化物。在一例中,镶嵌制程及/或双镶嵌制程用以形成铜相关的多层内连线结构。
步骤135的额外制程亦可包含回火以活化源极/漏极区的掺质。
图2至6一或多个实施例中,依据图1的方法100制作的半导体装置200于多种制作阶段中的剖视图。如图1与2所示,方法100的步骤105形成栅极堆叠250于基板202上,且栅极堆叠250定义其下的基板202的通道区。在一些实施例中,基板为半导体基板,其包含硅。在一些实施例中,基板202包含半导体元素,其包含结晶的硅及/或锗;半导体化合物,其包含碳化硅、砷化镓、磷化镓、磷化铟、砷化铟、及/或锑化铟;半导体合金,其包含SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP、及/或GaInAsP;或上述的组合。在另一实施例中,半导体基板可为绝缘层上半导体。
基板202包含多种掺杂区(如p型阱或n型阱),端视本技术领域已知的设计需求。掺杂区可掺有p型掺质如硼或BF2,及/或n型掺质如磷或砷。掺杂区可直接形成于基板202上、形成于p型阱结构中、形成于n型阱结构中、形成于双型阱结构中、或采用隆起结构。
基板202可包含隔离结构204,以定义并隔离基板202的多种有源区。隔离结构204可采用隔离技术如浅沟槽隔离或局部氧化硅,以定义并电性隔离多种区域。隔离结构204可包含氧化硅、氮化硅、氮氧化硅、其他合适材料、或上述的组合。
同样如图2所示的一些实施例中,栅极堆叠250的形成方法可为依序沉积并图案化栅极介电层206、栅极层208、与硬掩模层210于基板202上。在一例中,栅极介电层206为薄膜,其可包含氧化硅、氮化硅、氮氧化硅、高介电常数的介电物、其他合适的介电材料、或上述的组合。高介电常数的介电物可包含金属氧化物。用于高介电常数的介电物的金属氧化物包含锂、铍、镁、钙、锶、钪、钇、锆、铪、铝、镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镏、或上述的组合的氧化物。在一实施例中,栅极介电层206为高介电常数的介电层。栅极介电层206的形成方法可采用合适制程,比如原子层沉积、化学气相沉积、物理气相沉积、热氧化、紫外线-臭氧氧化、或上述的组合。栅极介电层206亦可包含界面层(未附图)于栅极介电层206与基板202之间。界面层可包含氧化硅。
栅极层208形成于栅极介电层206上。在一些实施例中,栅极层208包含单层。在一些实施例中,栅极层208为多层。栅极层208的组成可为多晶硅。此外,栅极层208可为掺杂的多晶硅,其具有相同或不同的掺杂种类。栅极层208的形成制程可为低压化学气相沉积、等离子体增强化学气相沉积、其他合适的制程、或上述的组合。硬掩模层210接着形成于栅极层208上,且图案化的光敏层(未附图)形成于硬掩模层210上。光敏层的图案转移至硬掩模层210,且接着转移至栅极层208与栅极介电层206,以形成栅极堆叠250。在一些实施例中,硬掩模层210包含氧化硅。在其他实施例中,硬掩模层210包含氮化硅、氮氧化硅、及/或其他合适介电材料,且其形成方法可为化学气相沉积或物理气相沉积。硬掩模层210可形成为分开的两层,一层为氮化硅垫层,且另一层为位于氮化硅垫层的顶部上的氧化硅层。之后可进行干式及/或湿式的剥除制程以移除光敏层。
一般而言,光微影技术沉积、曝光、与显影光阻材料,以移除部份的光阻材料。保留的光阻材料可保护其下方的材料(如此例的基板202)免于后续制程步骤(如蚀刻)影响。在此例中,可图案化光阻材料以定义硬掩模层210之后被蚀刻的区域,以及硬掩模层210(及栅极层208与栅极介电层206)应被保护以免于蚀刻品影响的其他区域。
如图2所示,侧壁间隔物212(或栅极间隔物)形成于栅极堆叠250的相反两侧上。在一些实施例中,侧壁间隔物212包含单层或多层结构。在一些实施例中,毯覆性地形成间隔物材料于栅极堆叠250及基板202上,且上述方法可为沉积制程如化学气相沉积、物理气相沉积、原子层沉积、或其他合适技术。在一些实施例中,间隔物材料包含氧化硅、氮化硅、氮氧化硅、其他合适材料、或上述的组合。接着可在间隔物材料上进行非等向蚀刻制程,以形成侧壁间隔物212。侧壁间隔物212可保护栅极堆叠250的侧壁。侧壁间隔物212亦可用以使后续形成的掺杂区如重掺杂的源极/漏极区偏离。
如图1与3所示,方法100的步骤110形成凹陷228于基板202中。在一些实施例中,凹陷228为用于栅极堆叠250的源极/漏极凹陷。形成凹陷228的制程可包含蚀刻制程,比如等向干蚀刻制程、非等向湿蚀刻制程、非等向干蚀刻制程、或上述的组合。在一些实施例中,可提供保护材(未附图)于基板202的其他构件(未附图)上,以避免蚀刻制程移除或损伤基板202与其他构件。举例来说,保护材可为光阻图案或其他合适掩模。
进行蚀刻制程以移除基板202的材料,以形成与栅极堆叠250的边缘相邻的初始凹陷(未附图)。在一些实施例中,蚀刻制程的组合可包含等向干蚀刻制程与湿蚀刻制程。举例来说,干蚀刻制程可用以形成初始凹陷,而湿蚀刻制程可用以扩大初始凹陷以形成凹陷228。在一些实施例中,湿蚀刻制程可采用的化学品包括氢氧化四甲基铵或类似物。
依据蚀刻技术与基板的结晶方向,凹陷228可具有多种形状。举例来说,一些结晶方向可让蚀刻的凹陷具有反刻面的侧壁,其尖端凸起至虚置栅极堆叠或栅极间隔物下方的通道区中。在一些实施例中,凹陷228为楔形,其尖端延伸至基板202中并朝向栅极堆叠250下的通道区(未附图)。在一些实施例中,凹陷228为碗形。在一些实施例中,凹陷为锥状的楔形,其朝实质上平坦的下表面的侧壁为锥形,如图8所示。在一些实施例中,凹陷具有实质上垂直的侧壁(未附图)。
本发明实施例形成源极/漏极区的制程,独立于凹陷228的形状之外。下述装置与制程并不取决于凹陷的形状。凹陷228具有深度d1,自基板的顶部表面至凹陷228的底部之间的距离。凹陷228可具有宽度w1,于基板202的顶部表面量测的开口宽度。位于栅极堆叠250两侧上的源极/漏极区的凹陷228,可具有相同或不同的深度d1与宽度w1。在一些实施例中,深度d1可介于约30nm至约150nm之间(比如约100nm)。在一些实施例中,宽度w1可介于约10nm至约70nm之间(比如约30nm)。在一些实施例中,深度d1可小于约30nm或大于约150nm,端视技术与装置设计而定。在一些实施例中,宽度w1可小于约10nm或大于约70nm,端视技术与装置设计而定。
如图1与4所示,方法100的步骤115、120、与125形成源极/漏极结构234于基板202的凹陷228中。
源极/漏极结构234包含交错的源极/漏极材料230与促进层232成长于凹陷228中。
在形成源极/漏极结构234之前,一些实施例可进行预清洁制程,其采用化学品如氢氟酸或其他合适溶液以清洁凹陷228。
在视情况进行的预清洁步骤后,可提供气态及/或液态的前驱物以与基板202的组成产生作用力,进而开始形成填入凹陷的应力材料(如硅磷)。在一些实施例中,形成源极/漏极材料步骤可采用合适的反应气体,温度可于约600℃至750℃之间,且压力可介于约10Torr至约600Torr之间。
源极/漏极结构234的形成制程可包含选择性外延成长、循环沉积与蚀刻、化学气相沉积技术(如气相外延及/或超高真空化学气相沉积)、分子束外延、其他合适的外延制程、或上述的组合。在一些实施例中,源极/漏极材料230的晶格常数与基板202的晶格常数不同,以引发应力于半导体装置200的通道区上。可用于外延源极/漏极结构的材料包含硅、锗、硅锗、碳、碳化硅、或类似物。
在一些实施例中,可在掺质存在下成长源极/漏极材料230,以形成掺杂的源极/漏极外延。可行的掺质可包含磷、砷、锑、锂、硼、铝、氮、镓、铟、锗、或类似物,端视装置属于n型或p型的装置。
掺杂的源极/漏极材料230其成长速率,取决于多种因子如温度和压力。此外,采用掺质可大幅改变成长速率。举例来说,未掺杂的硅在特定环境中的成长速率介于1nm/秒至10nm/秒之间,但硅磷在相同环境中的成长速率介于0.1nm/秒至1nm/秒之间(几乎比只成长硅的速率慢约十倍)。
源极/漏极材料230可形成为厚度介于约2nm至约10nm的层状物。此外亦可采用其他厚度,比如小于约2nm或大于约10nm。举例来说,源极/漏极材料230的层状物厚度,可取决于凹陷228的尺寸。用以成长源极/漏极材料230其每一层或其部份所需的时间,必需取决于其所需的厚度以及掺杂的源极/漏极材料230的成长速率。
如图1与4所示,在成长源极/漏极材料230的层状物后,步骤120提供促进层232中的促进材料的层状成长。在一些实施例中,促进层的成长环境可与源极/漏极材料230的层状物的成长环境相同,比如相同压力与温度。促进层的成长方法可为改变存在于成长腔室中的蒸气组成,而非使腔室抽真空。举例来说,若源极/漏极材料230为硅磷且促进层为硅,则在形成硅磷层后自成长腔室扣除磷,即可成长薄层的硅于硅磷层上。同样地,若源极/漏极材料为硅锗硼且驵进层为硅锗,则在形成硅锗硼层后自成长腔室扣除硼,即可成长薄层的硅锗于硅锗硼层上。促进层实质上不含掺质以保留空穴。将掺质再导入成长腔室时,上述空穴可用于掺质键结。
在一些实施例中,当源极/漏极材料为掺杂的硅、硅锗、或锗时,促进层232可包含其他材料(比如包含碳或碳化硅)。任何合适材料均可作为促进层232,只要能提供掺杂的源极/漏极材料230的掺质键结所用的空穴。在这些实施例中,促进层在其他环境条件下成长于相同或不同的成长腔室中,以形成合适的促进层组成。举例来说,对碳的促进层而言,可自腔室扣除用于源极/漏极材料的蒸气与用于掺质的蒸气,并将蒸气态的碳导入腔室中以形成外延于源极/漏极材料230上。
在一些实施例中,促进层232与源极/漏极材料230可具有晶格不匹配。举例来说,当促进层232为碳为主的材料,且源极/漏极材料230为硅为主的材料时,两者的结晶结构可彼此不同。
在一些实施例中,促进层232的厚度可介于约1nm至约5nm之间。此外亦可采用其他厚度如小于约1nm或大于约5nm。用以成长每一促进层232的时间,必需取决于成长速率与促进层所需的厚度。举例来说,厚度介于约1nm与5nm之间的硅的促进层,其成长时间可介于约0.1秒至约5秒之间,端视成长腔室的压力与温度而定。
在一些实施例中,比如图4中左侧的凹陷228,每次形成的促进层232均可形成于整个源极/漏极结构上,接着可形成源极/漏极材料230的层状物于所有的促进层232上。在其他实施例中,比如图4中右侧的凹陷228,可抑制促进层232成长于已形成的源极/漏极材料230的顶部上。举例来说,存在于成长腔室中的蚀刻气体可造成上述抑制现象。在成长促进层232后,自已形成的源极/漏极材料230的顶部上蚀刻移除大部份或所有的促进层232,并保留促进层232于凹陷228中,亦可造成上述抑制现象。
如图1与4所示,若源极/漏极结构234未填满凹陷228,则方法的步骤125持续交错成长源极/漏极材料230与促进层232,直到完全形成源极/漏极结构234。图4显示源极/漏极结构234其部份形成于制程中。在一些实施例中,促进层232可持续地周期性成长于源极/漏极结构234的整个形成制程中。在一些实施例中,促进层232仅周期性地成长于源极/漏极结构234的部份形成制程中。举例来说,一定数目的促进层可用以部份地形成源极/漏极结构234,且部份地填入凹陷228中。接着,其余的源极/漏极结构234可为掺杂的源极/漏极材料230,其填满剩余的凹陷229。在另一例中,一开始可外延成长掺杂的源极/漏极材料230以部份地形成源极/漏极结构234,其部份地填入凹陷238。接着可在源极/漏极结构234的形成制程末端,周期性地形成一定数目的促进层232,且含有促进层232的源极/漏极结构234填入剩余的凹陷228。上述实施例可成长一定数目的促进层232,比如约1至20层或更多的促进层232。
如图5所示的制程,填满凹陷228时即形成源极/漏极结构234。应注意的是,源极/漏极结构234的上表面可自凹陷凸起,如图5所示。在前述内容中,在进行外延成长时,腔室中的蚀刻气体可抑制或控制源极/漏极材料230及/或促进层232的成长。源极/漏极材料230与促进层232的形状与轮廓,取决于蚀刻气体对源极/漏极材料230与促进层232的影响。举例来说,左侧的源极/漏极结构234显示在已形成的源极/漏极材料230上的促进层232其成长受到较少抑制,而右侧的源极/漏极结构显示在已形成的源极/漏极材料230上的促进层232其成长受到较多抑制。
如图6所示的一些实施例中,盖层236可形成于源极/漏极结构234上,以形成被覆盖的源极/漏极结构238。盖层236可作为保护层,以避免后续制程过蚀刻其下方的源极/漏极结构234。在一些实施例中,盖层236的厚度介于约1nm至约20nm之间。盖层236可自与源极/漏极材料230相同的材料形成,以成长超出源极/漏极结构234的凹陷228。盖层236的形成方法可与源极/漏极材料230或促进层232的外延成长相同或不同。其他合适的外延成长方法如前述,在此不重复。被覆盖的源极/漏极结构238的上表面可高于基板202的上表面。在一些实施例中,被覆盖的源极/漏极结构238的上表面比基板202的表面高,且高度差h1介于约0nm至约20nm之间。在一些实施例中,盖层236可延伸至隔离结构204上。在一些实施例中,盖层可造成凹陷228上的刻面形状。
在一些实施例中,盖层236可沿着每一源极/漏极材料230的层状物递增地形成。举例来说,可形成具有被覆盖部份的源极/漏极材料230的层状物,接着形成促进层232,接着形成另一具有被覆盖部份的源极/漏极材料230的层状物等等,比如图5中左侧的源极/漏极结构234。由于促进层232相对较薄,在活化时可扩散其余未键结的磷。如此一来,活化后的促进层232具有整合至源极/漏极材料230中的部份,以及仍与源极/漏极材料230分开的其他部份。活化后的部份促进层232其结晶结构,不同于活化后的源极/漏极材料其结晶结构。促进层232的其他部份在活化时可再结晶,因此这些其他部份在活化后可整合至源极/漏极材料230中。
如图7所示,图表710显示键结的磷浓度(每一立方公分中的原子数目)对应源极/漏极区中的深度的线段。线段720指的是现有方法形成的源极/漏极区,其未采用促进层232。如图表710所示,线段720的键结的磷浓度相对稳定,但深度增加后的键结的磷浓度停止增加。线段722指的是上述实施例形成的源极/漏极区中,键结的磷浓度(每一立方公分中的原子数目)对应源极/漏极区中的深度的线段。在此例中,源极/漏极材料选用掺杂磷的硅,而促进层为硅。波峰值724显示在促进层232处,源极/漏极区中键结的磷浓度增加。由于此例中的促进层提供用于磷的许多键结机会,促进层中键结的磷浓度提升。如波谷值726所示,随着掺杂的源极/漏极材料230的深度增加,键结的磷浓度将降低,直到另一促进层。波谷值726与线段720于一定深度后的浓度相同。如此一来,在形成源极/漏极区时采用促进层,可整体地提升键结的掺质浓度。
掺质浓度其交错的波峰值724与波谷值726,指的是掺质浓度随着源极/漏极区的深度增加而逐渐改变。
图8至10其他实施例中,采用成层方法以形成符合这些实施例的结构。
如图8所示,半导体装置200具有凹陷228,其形状不同于前述图式中的形状。这表示源极/漏极结构234可形成于任何形状的凹陷中。
同样如图8所示,可采用不同于前述的方法,交错地成长源极/漏极材料230与促进层232。上述外延的材料自凹陷228的底部向上成长,而不依照凹陷的轮廓成长。在一些实施例中,在成长源极/漏极结构234时,蚀刻品气体如氩气可存在于成长腔室中,以清除成长于凹陷228的侧壁上的源极/漏极结构。举例来说,若蚀刻气体的浓度较高,则或抑制或移除较多成长的源极/漏极结构。在一些实施例中,可增加或降低蚀刻气体的浓度,即控制源极/漏极结构234的成长以达所需结构。
如图9所示,半导体装置200具有三个被覆盖的源极/漏极结构238,以及两个栅极堆叠250/251。每一被覆盖的源极/漏极结构238的形成方法,可采用任何上述技术,比如在在掺杂的源极/漏极材料230中形成促进层232。本技术领域中具有通常知识者应理解,可依据任何设计需求采用这些技术以新增额外的栅极结构与源极/漏极结构。
如图10所示,半导体装置200具有四个源极/漏极区,比如两个n型的被覆盖的源极/漏极结构238与两个p型的被覆盖的源极/漏极结构288。栅极堆叠250/251可形成如上述。被覆盖的源极/漏极结构238与288的形成方法可采用任何上述技术,比如在源极/漏极材料230的外延中形成促进层232。举例来说,在被覆盖的源极/漏极结构238中,促进层可包含硅,而源极/漏极材料可包含掺杂磷或另一n型掺质的硅。举例来说,在被覆盖的源极/漏极结构288中,促进层可包含硅锗,而源极/漏极材料可包含掺杂硼或另一p型掺质的硅锗。其他材料亦可用于上述层状物,如前所述。在一些实施例中,栅极堆叠251可与p型晶体管如p型金氧半装置相关,而栅极堆叠250可与n型晶体管如n型金氧半装置相关。半导体装置200可用于互补式金氧半装置。在这些实施例中,在形成被覆盖的源极/漏极结构238的外延成长与成层步骤中,掩模层(未附图)可形成于被覆盖的源极/漏极区288上以提供保护,并避免不需要的材料成长或形成其中。同样地,在形成被覆盖的源极/漏极结构288的外延成长与成层步骤中,掩模层(未附图)可形成于被覆盖的源极/漏极区238上以提供保护,并避免不需要的材料成长或形成其中。
上述实施例可提供结构或装置如n型或p型晶体管的源极/漏极区中的掺质增加。上述装置可用于多种应用如数字电路、图像传感装置、异质半导体装置、动态随机存取存储器、单电子晶体管、及/或其他微电子装置(此处统称为微电子装置)。当然,本发明实施例亦可用于及/或明显适于其他种类的晶体管,比如单栅晶体管、双栅晶体管、或其他多栅晶体管,且可用于多种不同应用如太阳能电池、存储单元、逻辑单元、或其他应用。
在一实施例中,半导体装置包括基板,其具有凹陷形成其中。掺杂的外延形成于凹陷中。掺杂的外延包括:多个第一材料层;以及一或多个促进层,包括第二材料,且每一促进层位于两个第一材料层之间。掺杂的外延中的掺质浓度自一层状物至另一层状物逐渐改变。
在一些实施例中,上述装置的第一材料为n型掺质与硅,且第二材料为硅、硅碳、或碳。
在一些实施例中,上述装置的第一材料为p型掺质与硅锗,且第二材料为硅锗、硅锗碳、或碳。
在一些实施例中,上述装置还包括栅极堆叠形成于晶体管的通道区上;以及源极/漏极结构位于栅极堆叠的两侧上,其中源极/漏极结构包括掺杂的外延。
在一些实施例中,上述装置还包括盖层形成于掺杂的外延上,且盖层包括第一材料。
在一些实施例中,上述装置的盖层的上表面比基板的上表面高出约0nm至约20nm之间。
在一些实施例中,上述装置中的每一第一材料层具有第一结晶结构,其中部份的促进层具有第二结晶结构,且第一结晶结构与第二结晶结构不同。
在一些实施例中,上述装置的促进层的厚度介于约1nm至约5nm之间,且促进层之间的第一材料的厚度介于约2nm至约10nm之间。
另一实施例的方法包括形成凹陷于基板中,且凹陷对应源极/漏极结构。成长第一掺杂的外延层于凹陷中,且第一掺杂的外延层包括第一材料。成长促进层于第一掺杂的外延层上。促进层包含第二材料,且第一材料与第二材料不同。成长第二掺杂的外延层于促进层上,且第二掺杂的外延层包括第一材料。
在一些实施例中,上述方法的第一掺杂的外延层具有第一结晶结构,促进层具有第二结晶结构,且第一结晶结构与第二结晶结构不同。
在一些实施例中,上述方法的凹陷为第一凹陷,且上述方法还包括形成第二凹陷于基板中;以及形成栅极堆叠于第一凹陷与第二凹陷之间。
在一些实施例中,上述方法的第二掺杂的外延层自凹陷凸起约0nm至约20nm之间。
在一些实施例中,上述方法的促进层包括硅、硅锗、碳、或上述的组合的外延。
在一些实施例中,上述方法成长的层状物至另一层状物具有逐渐改变的掺杂浓度。
另一实施例的方法包括蚀刻凹陷于半导体基板中。成长促进层于凹陷中,其中促进层实质上不含掺质。成长掺杂的源极/漏极材料的层状物于凹陷中的促进层上,且掺杂的源极/漏极材料包括掺质。在成长掺杂的源极/漏极材料的层状物时,掺质与促进层键结。
在一些实施例中,上述方法还包括重复成长促进层与成长掺杂的源极/漏极材料的步骤,直到填满凹陷。
在一些实施例中,上述方法还包括成长盖层外延于掺杂的源极/漏极材料上。
在一些实施例中,上述方法的盖层外延成长的高度比基板高约0nm至约20nm之间。
在一些实施例中,上述方法的促进层包括硅、硅锗、碳、或上述的组合。
在一些实施例中,上述方法的掺杂的源极/漏极材料的层状物具有第一结晶结构,促进层具有第二结晶结构,且第一结晶结构与第二结晶结构不同。
本发明已以多个实施例揭露如上,以利本技术领域中具有通常知识者理解本发明。本技术领域中具有通常知识者可采用本发明为基础,设计或调整其他制程与结构,用以实施实施例的相同目的,及/或达到实施例的相同优点。本技术领域中具有通常知识者应理解上述等效置换并未偏离本发明的精神与范畴,并可在未偏离本发明的精神与范畴下进行这些不同的改变、置换、与调整。

Claims (1)

1.一种半导体装置,包括:
一基板,具有一凹陷形成其中;
一掺杂的外延形成于该凹陷中,且该掺杂的外延包括:多个第一材料层;以及一或多个促进层,包括一第二材料,且每一该或该些促进层位于两个该些第一材料层之间,
其中该掺杂的外延中的掺质浓度自一层状物至另一层状物逐渐改变。
CN201710352130.5A 2016-11-29 2017-05-18 半导体装置 Pending CN108122978A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662427752P 2016-11-29 2016-11-29
US62/427,752 2016-11-29
US15/418,023 US10490661B2 (en) 2016-11-29 2017-01-27 Dopant concentration boost in epitaxially formed material
US15/418,023 2017-01-27

Publications (1)

Publication Number Publication Date
CN108122978A true CN108122978A (zh) 2018-06-05

Family

ID=62190990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710352130.5A Pending CN108122978A (zh) 2016-11-29 2017-05-18 半导体装置

Country Status (3)

Country Link
US (3) US10490661B2 (zh)
CN (1) CN108122978A (zh)
TW (1) TW201820631A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698130A (zh) * 2018-12-24 2019-04-30 上海华力集成电路制造有限公司 锗硅源漏极的制备方法
CN113130323A (zh) * 2021-03-29 2021-07-16 上海华力集成电路制造有限公司 嵌入式SiP外延层的制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10490661B2 (en) 2016-11-29 2019-11-26 Taiwan Semiconductor Manufacturing Company, Ltd. Dopant concentration boost in epitaxially formed material
KR102385567B1 (ko) * 2017-08-29 2022-04-12 삼성전자주식회사 반도체 장치 및 반도체 장치의 제조 방법
CN112447593B (zh) * 2019-08-30 2024-03-01 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
KR20210026825A (ko) 2019-09-02 2021-03-10 삼성전자주식회사 안티몬 도핑층을 가진 소스/드레인 영역을 포함하는 반도체 소자
US11309387B2 (en) * 2019-11-05 2022-04-19 Nanya Technology Corporation Semiconductor device and method for fabricating the same
CN113611736B (zh) * 2020-05-29 2022-11-22 联芯集成电路制造(厦门)有限公司 半导体元件及其制作方法
US11508621B2 (en) 2020-08-21 2022-11-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device
KR20220030374A (ko) 2020-08-28 2022-03-11 삼성전자주식회사 반도체 장치
US11688804B2 (en) * 2020-08-28 2023-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with ring-shaped doped region and manufacturing method thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017487B2 (en) * 2006-04-05 2011-09-13 Globalfoundries Singapore Pte. Ltd. Method to control source/drain stressor profiles for stress engineering
US7667271B2 (en) 2007-04-27 2010-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Fin field-effect transistors
US8497528B2 (en) 2010-05-06 2013-07-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a strained structure
US8440517B2 (en) 2010-10-13 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET and method of fabricating the same
US9245805B2 (en) 2009-09-24 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Germanium FinFETs with metal gates and stressors
US8362575B2 (en) 2009-09-29 2013-01-29 Taiwan Semiconductor Manufacturing Company, Ltd. Controlling the shape of source/drain regions in FinFETs
US8610240B2 (en) 2009-10-16 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit with multi recessed shallow trench isolation
US8729627B2 (en) 2010-05-14 2014-05-20 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel integrated circuit devices
US8796759B2 (en) 2010-07-15 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-like field effect transistor (FinFET) device and method of manufacturing same
US8367498B2 (en) 2010-10-18 2013-02-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-like field effect transistor (FinFET) device and method of manufacturing same
US8962400B2 (en) 2011-07-07 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. In-situ doping of arsenic for source and drain epitaxy
US20130010914A1 (en) * 2011-07-08 2013-01-10 Battelle Energy Alliance, Llc Composite materials, bodies and nuclear fuels including metal oxide and silicon carbide and methods of forming same
US8841701B2 (en) 2011-08-30 2014-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device having a channel defined in a diamond-like shape semiconductor structure
US9064892B2 (en) * 2011-08-30 2015-06-23 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices utilizing partially doped stressor film portions and methods for forming the same
US8723272B2 (en) 2011-10-04 2014-05-13 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of manufacturing same
US8723236B2 (en) 2011-10-13 2014-05-13 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of manufacturing same
KR20130045716A (ko) * 2011-10-26 2013-05-06 삼성전자주식회사 반도체 소자 및 그 제조 방법
US8847293B2 (en) 2012-03-02 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Gate structure for semiconductor device
US8836016B2 (en) 2012-03-08 2014-09-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structures and methods with high mobility and high energy bandgap materials
US8785285B2 (en) 2012-03-08 2014-07-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
US8680576B2 (en) 2012-05-16 2014-03-25 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS device and method of forming the same
US8729634B2 (en) 2012-06-15 2014-05-20 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with high mobility and strain channel
US8809139B2 (en) 2012-11-29 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-last FinFET and methods of forming same
US8853025B2 (en) 2013-02-08 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET/tri-gate channel doping for multiple threshold voltage tuning
US9093514B2 (en) 2013-03-06 2015-07-28 Taiwan Semiconductor Manufacturing Co., Ltd. Strained and uniform doping technique for FINFETs
US9276113B2 (en) * 2014-03-10 2016-03-01 International Business Corporation Structure and method to make strained FinFET with improved junction capacitance and low leakage
KR102216511B1 (ko) * 2014-07-22 2021-02-18 삼성전자주식회사 반도체 소자
US10490661B2 (en) 2016-11-29 2019-11-26 Taiwan Semiconductor Manufacturing Company, Ltd. Dopant concentration boost in epitaxially formed material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698130A (zh) * 2018-12-24 2019-04-30 上海华力集成电路制造有限公司 锗硅源漏极的制备方法
CN113130323A (zh) * 2021-03-29 2021-07-16 上海华力集成电路制造有限公司 嵌入式SiP外延层的制造方法
CN113130323B (zh) * 2021-03-29 2024-01-19 上海华力集成电路制造有限公司 嵌入式SiP外延层的制造方法

Also Published As

Publication number Publication date
US20240014321A1 (en) 2024-01-11
US10490661B2 (en) 2019-11-26
TW201820631A (zh) 2018-06-01
US20200091343A1 (en) 2020-03-19
US11721760B2 (en) 2023-08-08
US20180151730A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
CN108122978A (zh) 半导体装置
CN102549755B (zh) 具有氧扩散阻挡层的半导体器件及其制造方法
US9954109B2 (en) Vertical transistor including controlled gate length and a self-aligned junction
CN108231588A (zh) 晶体管及其形成方法
KR102593322B1 (ko) 에피택셜 강유전성 메모리 요소들을 포함하는 3차원 메모리 디바이스 및 그 형성 방법
CN103050407B (zh) 嵌入式晶体管
US11217679B2 (en) Semiconductor device and method
US20210343867A1 (en) Fin field-effect transistor device and method of forming the same
US11682711B2 (en) Semiconductor device having multi-layered gate spacers
US11991936B2 (en) Method of forming a FinFET device
US10867860B2 (en) Methods of forming FinFET device
US20210057545A1 (en) FinFET Device and Method
US12015031B2 (en) Semiconductor device and method
US20230369325A1 (en) Transistor source/drain contacts and methods of forming the same
TWI709162B (zh) 形成磊晶矽層及其半導體裝置的方法
US12040382B2 (en) Method of forming a nano-FET semiconductor device
US11855185B2 (en) Multilayer masking layer and method of forming same
US11302567B2 (en) Shallow trench isolation forming method and structures resulting therefrom
US11515403B2 (en) Semiconductor device and method
US20210135000A1 (en) Semiconductor Device and Method
US20220231023A1 (en) Finfet device and method
US20230261052A1 (en) Semiconductor device and method
US20220045178A1 (en) Gate electrode deposition and structure formed thereby
US20220352348A1 (en) Etch selective bottom-up dielectric film
US20230268416A1 (en) Semiconductor Devices and Methods of Manufacture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180605