CN108110221A - 一种能量功率型锂离子电池的制备方法 - Google Patents

一种能量功率型锂离子电池的制备方法 Download PDF

Info

Publication number
CN108110221A
CN108110221A CN201711119211.7A CN201711119211A CN108110221A CN 108110221 A CN108110221 A CN 108110221A CN 201711119211 A CN201711119211 A CN 201711119211A CN 108110221 A CN108110221 A CN 108110221A
Authority
CN
China
Prior art keywords
positive
negative
lithium ion
ion battery
negative pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711119211.7A
Other languages
English (en)
Inventor
欧阳浩淼
李新峰
王双双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Gotion High Tech Power Energy Co Ltd
Original Assignee
Hefei Guoxuan High Tech Power Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Guoxuan High Tech Power Energy Co Ltd filed Critical Hefei Guoxuan High Tech Power Energy Co Ltd
Priority to CN201711119211.7A priority Critical patent/CN108110221A/zh
Publication of CN108110221A publication Critical patent/CN108110221A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种能量功率型锂离子电池的制备方法,包括正/负极合浆、正/负极片涂布、卷芯、组装、烘烤、化成、分容,得到成品电池,其中,在正/负极片涂布的操作中,正/负极片的总涂覆面密度分别为2P0和2N0;在正/负极片涂布的操作中,正极片正反两面涂布面密度分别为P0(1‑X)和P0(1+X),负极片正反两面涂布面密度分别为N0(1‑Y)和N0(1+Y),其中,X和Y的取值为:0.1≤X≤0.3,0.1≤Y≤0.3。本发明能够弥补锂离子电池不能同时兼顾能量和功率的缺陷。

Description

一种能量功率型锂离子电池的制备方法
技术领域
本发明涉及锂离子电池领域,具体涉及一种能量功率型锂离子电池的制备方法。
背景技术
新能源汽车是未来的发展趋势,而锂离子电池是新能源汽车唯一的成熟解决方案。按功能和需求划分,现今锂离子电池可以分为能量型和功率型。
能量型锂离子电池,其特征是电池的能量密度高,单位质量或体积内可以储存更多的电量,提供更长的续航里程;但是不能支持大倍率电流放电。功率型锂离子电池,其特征是电池能够支持较大倍率的持续放电,但是电芯能量密度较低,续航里程较低
可见,锂离子电池的能量和功率不可兼得,究其根源要归结于锂离子电池的原理及设计。锂离子电池主要有正极、负极、隔膜和电解液组成。目前,正极一般由铝集流体加之在其两侧涂覆均等面密度的正极材料构成,负极一般由由铜集流体加之在其两侧涂覆的相等面密度的负极材料构成。在现如今正负极活性材料克容量发挥水平一定的客观情形下,为了追求更高的能量密度,电池极片的活性物质占比很高,而且,集流体两侧的涂覆面密度也很大,这样做是为了使得固定的体积内能容纳更多的活性物质,以储存更多的电量。这样的设计会造成材料的电导率降低,且极片单位面积的涂覆量越大,锂离子的脱嵌越困难,无法实现大倍率的放电。反之,功率型电池为了追求大倍率放电,其单位面积的涂覆量不能太大,这就需要牺牲容量。
发明内容
基于背景技术存在的技术问题,本发明提出了一种能量功率型锂离子电池的制备方法,以弥补锂离子电池不能同时兼顾能量和功率的缺陷。
本发明提出的一种能量功率型锂离子电池的制备方法,包括正/负极合浆、正/负极片涂布、卷芯、组装、烘烤、化成、分容,得到成品电池,其中,在正/负极片涂布的操作中,正/负极片的总涂覆面密度分别为2P0和2N0;在正/负极片涂布的操作中,正极片正反两面涂布面密度分别为P0(1-X)和P0(1+X),负极片正反两面涂布面密度分别为N0(1-Y)和N0(1+Y),其中,X和Y的取值为:0.1≤X≤0.3,0.1≤Y≤0.3。
优选地,在卷芯的操作中,使正极片面密度为P0(1-X)的一侧和负极片面密度为N0(1-Y)的一侧正对应。
上述P0和N0的取值应满足能量型电池对容量的要求和电池设计对NP的基本要求。
与现有技术相比,本发明的有益效果在于:
1)本发明正/负极片正反两面的面密度存在差异化,使得较小涂覆面密度的一侧具有大倍率放电的能力,具备功率电芯的需求;虽然差异化了正/负极正反两面的面密度,但是保证了正极和负极片总涂覆面密度不变,保障了电芯的容量,满足能量型电芯的要求,制得的锂离子电池同时具有较高的能量和较大的功率。
2)本发明在优选方案中将X和Y的取值设置为:0.1≤X≤0.3,0.1≤Y≤0.3,若X和Y小于0.1时会使得极片较小面一侧的功率特性发挥不明显;X和Y大于0.3时会使得较大面密度一侧涂覆量过大,存在附着力不够或锂离子脱嵌困难的风险,以致破坏能量型电芯的基本性能需求。
附图说明
图1为本发明能量功率型锂离子电池的制备方法中正/负极片面密度对应关系示意图。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明。
实施例1
一种能量功率型锂离子电池的制备方法,包括如下步骤:
S1、正/负极合浆:准备正极磷酸铁锂和负极人造石墨材料,其中,正极磷酸铁锂标称克容量为145mAh/g,负极人造石墨标称克容量为350mAh/g。将磷酸铁锂正极粉末按照LFP:导电剂SP:导电剂石墨烯复合浆料:PVDF=96:0.5:1:2.5的比例进行合浆;将人造石墨负极粉末按照石墨:SP:CMC:SBR=95.5:1.5:1.2:1.8的比例进行合浆。
S2、正/负极极片制备:将合浆好的浆料进行涂覆和极片辊压,得到可加工的正/负极极片。其中,正极片正反面面密度分别为145g/m2和196g/m2,其中,P0=170g/m2,X=0.15;负极片正反面面密度分别为69g/m2和91g/m2,其中,N0=80g/m2,Y=0.14。
S3、将正/负极极片依次进行激光切极耳、卷绕和组装后得到电芯。其中,参照图1,在卷绕时,正极片面密度为145g/m2的一侧和负极片面密度为69g/m2的一侧正对应,中间以隔膜隔开;正极片196g/m2的一侧和负极片91g/m2的一侧对应。
S4、将电芯依次进行烘烤、注液、化成和分容后得到成品电池。
实施例2
一种能量功率型锂离子电池的制备方法,包括如下步骤:
S1、正/负极合浆:准备正极磷酸铁锂和负极人造石墨材料,其中,正极磷酸铁锂标称克容量为145mAh/g,负极人造石墨标称克容量为350mAh/g。将磷酸铁锂正极粉末按照LFP:导电剂SP:导电剂石墨烯复合浆料:PVDF=96:0.5:1:2.5的比例进行合浆;将人造石墨负极粉末按照石墨:SP:CMC:SBR=95.5:1.5:1.2:1.8的比例进行合浆。
S2、正/负极极片制备:将合浆好的浆料进行涂覆和极片辊压,得到可加工的正/负极极片。其中,正极片正反面面密度分别为153g/m2和187g/m2,其中,P0=170g/m2,X=0.1;负极片正反面面密度分别为72g/m2和88g/m2,其中,N0=80g/m2,Y=0.1。
S3、将正/负极极片依次进行激光切极耳、卷绕和组装后得到电芯。其中,在卷绕时,正极片面密度为153g/m2的一侧和负极片面密度为72g/m2的一侧正对应,中间以隔膜隔开;正极片187g/m2的一侧和负极片88g/m2的一侧对应。
S4、将电芯依次进行烘烤、注液、化成和分容后得到成品电池。
实施例3
一种能量功率型锂离子电池的制备方法,包括如下步骤:
S1、正/负极合浆:准备正极磷酸铁锂和负极人造石墨材料,其中,正极磷酸铁锂标称克容量为145mAh/g,负极人造石墨标称克容量为350mAh/g。将磷酸铁锂正极粉末按照LFP:导电剂SP:导电剂石墨烯复合浆料:PVDF=96:0.5:1:2.5的比例进行合浆;将人造石墨负极粉末按照石墨:SP:CMC:SBR=95.5:1.5:1.2:1.8的比例进行合浆。
S2、正/负极极片制备:将合浆好的浆料进行涂覆和极片辊压,得到可加工的正/负极极片。其中,正极片正反面面密度分别为119g/m2和221g/m2,其中,P0=170g/m2,X=0.3;负极片正反面面密度分别为56g/m2和104g/m2,其中,N0=80g/m2,Y=0.3。
S3、将正/负极极片依次进行激光切极耳、卷绕和组装后得到电芯。其中,在卷绕时,正极片面密度为119g/m2的一侧和负极片面密度为56g/m2的一侧正对应,中间以隔膜隔开;正极片221g/m2的一侧和负极片104g/m2的一侧对应。
S4、将电芯依次进行烘烤、注液、化成和分容后得到成品电池。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (2)

1.一种能量功率型锂离子电池的制备方法,包括正/负极合浆、正/负极片涂布、卷芯、组装、烘烤、化成、分容,得到成品电池,其中,在正/负极片涂布的操作中,正/负极片的总涂覆面密度分别为2P0和2N0,其特征在于,在正/负极片涂布的操作中,正极片正反两面涂布面密度分别为P0(1-X)和P0(1+X),负极片正反两面涂布面密度分别为N0(1-Y)和N0(1+Y),其中,X和Y的取值为:0.1≤X≤0.3,0.1≤Y≤0.3。
2.根据权利要求1所述能量功率型锂离子电池的制备方法,其特征在于,在卷芯的操作中,使正极片面密度为P0(1-X)的一侧和负极片面密度为N0(1-Y)的一侧正对应。
CN201711119211.7A 2017-11-14 2017-11-14 一种能量功率型锂离子电池的制备方法 Pending CN108110221A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711119211.7A CN108110221A (zh) 2017-11-14 2017-11-14 一种能量功率型锂离子电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711119211.7A CN108110221A (zh) 2017-11-14 2017-11-14 一种能量功率型锂离子电池的制备方法

Publications (1)

Publication Number Publication Date
CN108110221A true CN108110221A (zh) 2018-06-01

Family

ID=62206277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711119211.7A Pending CN108110221A (zh) 2017-11-14 2017-11-14 一种能量功率型锂离子电池的制备方法

Country Status (1)

Country Link
CN (1) CN108110221A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676431A (zh) * 2019-09-06 2020-01-10 惠州锂威新能源科技有限公司 一种电芯极片结构及焊接方法
WO2023092274A1 (zh) * 2021-11-23 2023-06-01 东莞新能源科技有限公司 电化学装置及包含该电化学装置的电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212039A (zh) * 2006-12-27 2008-07-02 比亚迪股份有限公司 电池极片及其制备方法和设备以及电极片芯和二次电池
CN102769132A (zh) * 2012-08-08 2012-11-07 安阳金钟新能源有限公司 一种低内阻、高倍率动力锂离子电池及其制作方法
CN103700863A (zh) * 2013-12-10 2014-04-02 中山市电赢科技有限公司 一种高倍率软包装锂离子二次电池及其制备方法
JP2015141771A (ja) * 2014-01-27 2015-08-03 トヨタ自動車株式会社 非水電解液二次電池
CN106941150A (zh) * 2016-01-04 2017-07-11 郑州比克电池有限公司 锂离子电池正负极板及制备方法、卷芯和锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212039A (zh) * 2006-12-27 2008-07-02 比亚迪股份有限公司 电池极片及其制备方法和设备以及电极片芯和二次电池
CN102769132A (zh) * 2012-08-08 2012-11-07 安阳金钟新能源有限公司 一种低内阻、高倍率动力锂离子电池及其制作方法
CN103700863A (zh) * 2013-12-10 2014-04-02 中山市电赢科技有限公司 一种高倍率软包装锂离子二次电池及其制备方法
JP2015141771A (ja) * 2014-01-27 2015-08-03 トヨタ自動車株式会社 非水電解液二次電池
CN106941150A (zh) * 2016-01-04 2017-07-11 郑州比克电池有限公司 锂离子电池正负极板及制备方法、卷芯和锂离子电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676431A (zh) * 2019-09-06 2020-01-10 惠州锂威新能源科技有限公司 一种电芯极片结构及焊接方法
CN110676431B (zh) * 2019-09-06 2022-11-18 惠州锂威新能源科技有限公司 一种电芯极片结构及焊接方法
WO2023092274A1 (zh) * 2021-11-23 2023-06-01 东莞新能源科技有限公司 电化学装置及包含该电化学装置的电子装置

Similar Documents

Publication Publication Date Title
Meng et al. High-performance lithiated SiO x anode obtained by a controllable and efficient prelithiation strategy
Eftekhari Energy efficiency: a critically important but neglected factor in battery research
CN112599723A (zh) 补锂负极极片及其制备方法和锂离子电池
CN103918108B (zh) 用于锂离子可充电化学的锂金属掺杂电极
CN102598367B (zh) 锂二次电池用负极及其制造方法
CN102694200B (zh) 一种硅基负极锂离子电池及其制造方法
CN111009682B (zh) 一种全固态电池及其制备方法
CN103107373B (zh) 电池
CN103053063A (zh) 涂布有底漆的正极集电体和包含所述正极集电体的镁二次电池
CN103762334B (zh) 锂离子二次电池及其正极
CN109449447A (zh) 二次电池
CN112825354B (zh) 锂负极及其制备方法、锂二次电池
Kang et al. Improve the overall performances of lithium ion batteries by a facile method of modifying the surface of Cu current collector with carbon
CN105742695B (zh) 一种锂离子电池及其制备方法
CN103346292B (zh) 一种锂离子电池复合正极及其制备方法和应用
Jin et al. Vertical nanoarrays with lithiophilic sites suppress the growth of lithium dendrites for ultrastable lithium metal batteries
CN102034971A (zh) 锂离子电池磷酸铁锂/聚并吡啶复合正极材料及其制备方法
WO2020094090A1 (zh) 离子选择性复合隔膜及其制备方法和应用
CN104810505A (zh) 一种锂离子电池负极片及其二次电池
CN111403750B (zh) 一种复合电极、其制备方法及在固态锂离子电池的用途
CN115566255A (zh) 一种二次电池及用电设备
CN108110221A (zh) 一种能量功率型锂离子电池的制备方法
CN105720267A (zh) 一种磷酸亚铁锂动力电池正极片的制备方法
CN105304857A (zh) 软包磷酸铁锂电池
Wang et al. Preparation and electrochemical performance of LiFePO4-based electrode using three-dimensional porous current collector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180601