CN108107213A - 一种肿瘤免疫生物标志物及其用途 - Google Patents

一种肿瘤免疫生物标志物及其用途 Download PDF

Info

Publication number
CN108107213A
CN108107213A CN201711110798.5A CN201711110798A CN108107213A CN 108107213 A CN108107213 A CN 108107213A CN 201711110798 A CN201711110798 A CN 201711110798A CN 108107213 A CN108107213 A CN 108107213A
Authority
CN
China
Prior art keywords
immunotherapy
tumors
apobec
mutation
predict
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711110798.5A
Other languages
English (en)
Other versions
CN108107213B (zh
Inventor
刘雪松
王诗翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201711110798.5A priority Critical patent/CN108107213B/zh
Publication of CN108107213A publication Critical patent/CN108107213A/zh
Application granted granted Critical
Publication of CN108107213B publication Critical patent/CN108107213B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/12Pulmonary diseases

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Oncology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供了一种肿瘤免疫生物标志物及其用途。所述的肿瘤免疫生物标志物,其特征在于,包括APOBEC。目前已知的肿瘤免疫治疗标志物包括:PD‑L1表达水平、错配修复缺陷、T细胞浸润和总突变数。与已知的标志物总突变数相比,本发明的新标记物更准确,大大扩展了对癌症免疫治疗领域的理解。

Description

一种肿瘤免疫生物标志物及其用途
技术领域
本发明涉及一种预测肿瘤免疫治疗是否有效的分子标志物。
背景技术
传统上肿瘤是通过放疗、外科手术切除和化学药物治疗的,但是传统治疗对肿瘤晚期病人的预后一般很差。最近兴起的抗PD-1和PD-L1肿瘤免疫疗法已经被批准用于治疗多种人类癌症,而且在部分晚期肿瘤病人中取得非常好的治疗效果。免疫治疗的市场也十分巨大,全球免疫治疗药物市值从2016年的1084.1亿美元预计到2021年飙升到2015.2亿美元。尽管临床研究显示抗PD-1和PD-L1肿瘤免疫疗法潜力巨大,但是预测哪种病人适合用免疫疗法的标志物目前仍旧匮乏。
肺癌是全球癌症死亡的主要原因,其中两种主要类型是小细胞肺癌(SCLC)和非小细胞肺癌(NSCLC)。约80%至85%的肺癌是NSCLC,约10%至15%是SCLC。NSCLC的三个主要亚型是腺癌,鳞状细胞癌和大细胞癌。近40%的肺癌是肺腺癌(LUAD)1。NSCLC以其突变负荷较多而闻名。吸烟是导致NSCLC突变负荷较多的主要原因之一2。除了吸烟外,文献还报道了APOBEC3B的表达是导致NSCLC点突变较多的重要来源3。吸烟相关的突变似乎在肿瘤起始中起着很强的作用,而APOBEC相关突变在NSCLC发展的后期更为突出,很可能与肿瘤进展和转移有关4。APOBEC3B属于单链DNA中将胞嘧啶转化为尿嘧啶(C-to-U)的脱氨酶家族成员,此家族成员的酶活性对于适应性和先天性免疫应答都是必不可少的5。值得注意的是,APOBEC3B表达在多种肿瘤中显著上调,并且其靶向修饰序列在多种肿瘤,尤其在NSCLC中经常突变3
尽管APOBEC3B在NSCLC中发挥关键作用,靶向治疗APOBEC3B过度表达NSCLC仍然是一个很大的挑战。有报道显示通过抑制APOBEC3B表达可以抑制肿瘤的进展,但是目前还没有可以抑制APOBEC3B表达或酶活性的化学物质。传统上NSCLC可以通过辐射、手术和化学疗法治疗。虽然最近针对免疫检测点的抗PD-1和PD-L1的抗体已被批准用于治疗人类癌症6-11。在晚期非小细胞肺癌(NSCLC)中,靶向PD-1的抗体治疗显示出的反应率,其中一些反应是非常持久的7。尽管临床研究显示抗PD-1和PD-L1肿瘤免疫疗法潜力巨大,但是预测哪种病人适合用免疫疗法的标志物目前仍旧匮乏。
与本发明相关专利:
目前市场上已有一些专利内容涉及到免疫治疗是否有效的标志物,这些标志物主要包括:PD-L1表达、免疫细胞浸润、DNA错配修复(mismatch repair)缺陷。但是没有一个已知的专利提到用APOBEC突变模式作为预测免疫治疗是否有效的标志物。
参考文献:
1.Travis WD.Pathology of lung cancer.Clin Chest Med 2002;23:65-81,viii
2.Govindan R,Ding L,Griffith M,Subramanian J,Dees ND,Kanchi KL,etal.Genomic landscape of non-small cell lung cancer in smokers and never-smokers.Cell 2012;150:1121-34
3.Burns MB,Temiz NA,Harris RS.Evidence for APOBEC3B mutagenesis inmultiple human cancers.Nat Genet 2013;45:977-83
4.Shi J,Hua X,Zhu B,Ravichandran S,Wang M,Nguyen C,et al.SomaticGenomics and Clinical Features of Lung Adenocarcinoma:A RetrospectiveStudy.PLoS Med 2016;13:e1002162
5.Refsland EW,Harris RS.The APOBEC3family of retroelement restrictionfactors.Curr Top Microbiol Immunol 2013;371:1-27
6.Hodi FS,O′Day SJ,McDermott DF,Weber RW,Sosman JA,Haanen JB,etal.Improved survival with ipilimumab in patients with metastatic melanoma.NEngl J Med 2010;363:711-23
7.Topalian SL,Hodi FS,Brahmer JR,Gettinger SN,Smith DC,McDermott DF,et al.Safety,activity,and immune correlates of anti-PD-1 antibody in cancer.NEngl J Med2012;366:2443-54
8.Wolchok JD,Kluger H,Callahan MK,Postow MA,Rizvi NA,Lesokhin AM,etal.Nivolumab plus ipilimumab in advanced melanoma.NEngl J Med 2013;369:122-33
9.Robert C,Ribas A,Wolchok JD,Hodi FS,Hamid O,Kefford R,et al.Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma:a randomised dose-comparison cohort of a phase 1trial.Lancet2014;384:1109-17
10.Powles T,Eder JP,Fine GD,Braiteh FS,Loriot Y,Cruz C,etal.MPDL3280A(anti-PD-L1)treatment leads to clinical activity in metastaticbladder cancer.Nature2014;515:558-62
11.Ansell SM,Lesokhin AM,Borrello I,Halwani A,Scott EC,GutierrezM,etal.PD-1blockade with nivolumab in relapsed or refractoryHodgkin′s lymphoma.NEngl J Med2015;372:311-9
12.Li B,Severson E,Pignon JC,Zhao H,Li T,Novak J et al.Comprehensiveanalyses of tumor immunity:implications for cancer immunotherapy.Genome Biol2016;17:174.
13.Rizvi NA,Hellmann MD,Snyder A,Kvistborg P,Makarov V,Havel JJ,etal.Cancer immunology.Mutational landscape determines sensitivity to PD-1blockade in non-small cell lung cancer.Science 2015;348:124-8。
发明内容
本发明的目的是提供一种肿瘤免疫生物标志物及其用途,用于预测肿瘤免疫治疗是否有效的标志物。
本发明提供了一种肿瘤免疫生物标志物,其特征在于,包括APOBEC。
本发明还提供了用于检测APOBEC突变特征的试剂在制备用于预测肿瘤免疫治疗是否有效的试剂盒中的应用。
本发明还提供了一种用于预测肿瘤免疫治疗是否有效的试剂盒,其特征在于,包括用于检测APOBEC突变特征的试剂。
优选地,所述的突变特征为APOBEC诱发突变数目。
优选地,所述的APOBEC诱发突变数目为TCW上的C→T或C→G变异总数,其中,W=A或T;当APOBEC诱发突变数大于或等于24时,病人适合免疫检验点抑制剂进行免疫治疗。
优选地,所述的肿瘤免疫治疗采用免疫检验点抑制剂。
优选地,所述的免疫检验点抑制剂包括抗PD-1,抗PD-L1和抗CTLA4的抗体中的至少一个。
优选地,所述的肿瘤为肺癌。
更优选地,所述的肿瘤为非小细胞肺癌。
本发明还提供了一种用于预测肿瘤免疫治疗是否有效的系统,其特征在于,包括用于将测序数据和参考外显子数据库进行比对并统计发生在TCW上的C→T或C→G变异总数的模块,其中,W=A或T。
本发明首次发现APOBEC突变模式特异地出现在对肿瘤免疫治疗有良好反应的病人基因组DNA,而且APOBEC诱发突变数比总突变数能更好地预测肿瘤免疫治疗是否有效。因而APOBEC突变模式所代表的APOBEC诱发突变数能作为新的有效预测肿瘤免疫治疗是否有效的分子标志物。
与现有技术相比,本发明的有益效果是:
目前已知的肿瘤免疫治疗标志物包括:PD-L1表达水平,错配修复(MMR)缺陷,T细胞浸润和总突变数。与已知的标志物总突变数相比,本发明的新标记物更准确,大大扩展了对癌症免疫治疗领域的理解。
附图说明
图1为APOBEC3B的mRNA表达与预后比较图;图中,a.APOBEC3B的mRNA表达在NSCLC肿瘤中相比正常肺组织显著上调。b.APOBEC3B高表达病人的预后相比APOBEC3B低表达病人的预后差。
图2为TCGA非小细胞肺癌基因表达数据分析图;图中,a.APOBEC3B的mRNA表达和PD-L1的mRNA表达正相关;b.PD-L1蛋白在APOBEC3B高表达病人相比APOBEC3B低表达病人显著上调;c.在多个不同数据库(TCGA,GSE72094,CCLE)中PD-L1mRNA在APOBEC3B高表达病人相比低表达病人均显著上调。
图3为APOBEC3B高表达与已知的肿瘤免疫治疗有效性预测标志物,CD8+T细胞浸润相关图。a,APOBEC3B高表达病人中CD8A和CD8B mRNA显著上调;b,APOBEC3B表达与肿瘤免疫微环境相关;c,APOBEC3B高表达与CD8+T细胞浸润正相关。
图4为APOBEC突变模式特异在对免疫治疗有持久反应的病人(DCB)上出现图。a,DCB病人的突变模式分析;b,对免疫治疗没有持久反应病人(NDB)的突变模式分析;c,DCB病人突变模式的余弦相似性分析显示W3突变模式(特异出现在DCB病人的突变模式)和APOBEC突变模式高度相似;d,NDB病人突变模式的余弦相似性分析。
图5为APOBEC诱导突变数在预测免疫治疗是否有效方面优于总突变数图。利用文献13提供的数据,进一步分析比较APOBEC诱发突变数和总突变数在预测免疫治疗是否有效方面的差异。a,非小细胞肺癌病人免疫治疗前总突变数以及APOBEC诱导突变数(TCW突变,包含:TCA突变为TTA或TGA,TCT突变为TTT或TGT)以及对应的免疫治疗效果。b,Hosmer-Lemeshow test检验APOBEC诱导变异数、总突变数在DCB(status=1),NDB(status=0)两种状态中的区分度。APOBEC诱导变异数Hosmer-Lemeshow test检验的P值为0.5791,大于0.05,表明模型对数据拟合较好,观测数据与预测数据之间没有显著差异。而总突变数的Hosmer-Lemeshow test检验的P值为0.0657,接近0.05,数据拟合差,观察数据和预测数据差异明显。比较的结果显示APOBEC诱导变异数在预测免疫治疗是否有效时明显好于总突变数。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
从数据库(https://xenabrowser.net/datapages/)下载1129例TCGA非小细胞肺癌(NSCLC)数据,用GraphPad软件分析比较APOBEC3B在不同类型样本中表达差异,以及APOBEC3B表达与病人预后的相关性,结果如图1所示,APOBEC3B的mRNA表达在NSCLC肿瘤中相比正常肺组织显著上调,APOBEC3B高表达(APOBEC3B mRNA表达值处于样本四分位的前四分之一定义为APOBEC3B高表达,本文档余下文字中的APOBEC3B高表达也是同样定义)病人的预后相比APOBEC3B低表达(APOBEC3B mRNA表达值处于样本四分位的后四分之一定义为APOBEC3B低表达,本文档余下文字中的APOBEC3B低表达也是同样定义)病人的预后差。
从数据库(https://xenabrowser.net/datapages/)下载1129例TCGA非小细胞肺癌基因表达数据,用GraphPad软件分析比较PD-L1和APOBEC3B mRNA的表达相关性,结果如图2所示,APOBEC3B的mRNA表达和PD-L1的mRNA表达正相关;PD-L1蛋白在APOBEC3B高表达病人相比APOBEC3B低表达病人显著上调;在多个不同数据库(TCGA,GSE72094,CCLE)中PD-L1mRNA在APOBEC3B高表达(病人相比低表达病人均显著上调。
利用从数据库(https://xenabrowser.net/datapages/)下载的1129例TCGA非小细胞肺癌数据,采用文献报道的软件TIMER(参考文献12)分析比较APOBEC3B高表达以及低表达样本CD8A,CD8B以及T细胞浸润程度的差异,结果如图3所示,APOBEC3B高表达病人中CD8A和CD8B mRNA显著上调;APOBEC3B表达与肿瘤免疫微环境相关;APOBEC3B高表达与CD8+T细胞浸润正相关。
下载文献13所提供数据(http://www.cbioportal.org/study.do?cancer_study_id=luad_mskcc_2015)。用SignatureAnalyzer软件分析比较对PD-1免疫治疗有反应以及无反应病人的突变模式差异。结果如图4所示,对免疫治疗有持续临床反应的病人(patients with durable clinical benefit(DCB))的DNA变异表现三个模式,分别是W1,W2,W3,而在对免疫治疗缺乏临床反应的病人DNA只有两个突变模式。进一步分析表明W3突变模式特异地出现在对免疫治疗有持续临床反应的病人样本,而且该突变模式的诱发原因是已知的,就是APOBEC。从而首次证明APOBEC突变模式的出现能够作为判定免疫治疗是否有效的标志。
实施例2
一种用于预测肿瘤免疫治疗是否有效的试剂盒,包含用于检测APOBEC诱发突变数目的试剂,所述的用于检测APOBEC诱发突变数目的试剂包括提取RNA所用试剂以及外显子组测序所用试剂。
一个预测肿瘤免疫治疗是否有效的新方法,具体步骤为:
对于非小细胞肺癌患者,取肿瘤组织,匀浆后用Trizol(Invitrogen)提取RNA,用HiSeq 2000平台(IIIumina)进行外显子组(exome)测序,测序深度需达到150X,测序数据和参考外显子数据库(http://www.gencodegenes.org/)比对后,生物信息学分析统计发生在TCW(W=A或T)上的C→T或C→G变异总数。该类型突变主要是由APOBEC诱发,命名为APOBEC诱发突变数。
当APOBEC诱发突变数大于或等于24时,病人适合免疫检验点抑制剂(抗PD-1,抗PD-L1和抗CTLA4的抗体)进行免疫治疗。
利用APOBEC诱发突变数作为标志物,文献(13)中cbioportal数据库(http://www.cbioportal.org/study.do?cancer_study_id=luad_mskcc_2015)中,5个非小细胞肺癌病人的APOBEC诱发突变数大于24。所有(100%)5位病人对PD-1免疫治疗都有好的临床效果。相比用总突变数作为标志物,文献(13)数据库中,11位病人总突变数大于突变中位数,其中8位(72.7%)对PD-1免疫治疗都有好的临床效果。附图5详细比较了APOBEC诱发突变数和总突变数在预测PD-1免疫治疗是否有效方面的差异。用Hosmer-Lemeshow检验(H-Ltest)来判定APOBEC诱发突变数和总突变数在区分NDB,DCB病人时的预测效果差异。总突变数的H-L检验P值0.0657,接近与0.05,提示预测的和观测的差异接近显著,也就是预测效果差。而APOBEC诱发突变数的H-L检验P值0.5791,远大于0.05,提示预测的和观测的差异不显著。总而言之,分析结果显示APOBEC诱发突变数相比总突变数在预测肿瘤免疫治疗是否有效方面是一个更好的分子标志物。

Claims (10)

1.一种肿瘤免疫生物标志物,其特征在于,包括APOBEC。
2.用于检测APOBEC突变特征的试剂在制备用于预测肿瘤免疫治疗是否有效的试剂盒中的应用。
3.一种用于预测肿瘤免疫治疗是否有效的试剂盒,其特征在于,包括用于检测APOBEC突变特征的试剂。
4.如权利要求3所述的用于预测肿瘤免疫治疗是否有效的试剂盒,其特征在于,所述的突变特征为APOBEC诱发突变数目。
5.如权利要求4所述的用于预测肿瘤免疫治疗是否有效的试剂盒,其特征在于,所述的APOBEC诱发突变数目为TCW上的C→T或C→G变异总数,其中,W=A或T;当APOBEC诱发突变数大于或等于24时,病人适合免疫检验点抑制剂进行免疫治疗。
6.如权利要求3所述的用于预测肿瘤免疫治疗是否有效的试剂盒,其特征在于,所述的肿瘤免疫治疗采用免疫检验点抑制剂。
7.如权利要求6所述的用于预测肿瘤免疫治疗是否有效的试剂盒,其特征在于,所述的免疫检验点抑制剂包括抗PD-1,抗PD-L1和抗CTLA4的抗体中的至少一个。
8.如权利要求3所述的用于预测肿瘤免疫治疗是否有效的试剂盒,其特征在于,所述的肿瘤为肺癌。
9.如权利要求3所述的用于预测肿瘤免疫治疗是否有效的试剂盒,其特征在于,所述的肿瘤为非小细胞肺癌。
10.一种用于预测肿瘤免疫治疗是否有效的系统,其特征在于,包括用于将测序数据和参考外显子数据库进行比对并统计发生在TCW上的C→T或C→G变异总数的模块,其中,W=A或T。
CN201711110798.5A 2017-11-10 2017-11-10 一种肿瘤免疫生物标志物及其用途 Active CN108107213B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711110798.5A CN108107213B (zh) 2017-11-10 2017-11-10 一种肿瘤免疫生物标志物及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711110798.5A CN108107213B (zh) 2017-11-10 2017-11-10 一种肿瘤免疫生物标志物及其用途

Publications (2)

Publication Number Publication Date
CN108107213A true CN108107213A (zh) 2018-06-01
CN108107213B CN108107213B (zh) 2020-12-04

Family

ID=62207129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711110798.5A Active CN108107213B (zh) 2017-11-10 2017-11-10 一种肿瘤免疫生物标志物及其用途

Country Status (1)

Country Link
CN (1) CN108107213B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109448790A (zh) * 2018-11-19 2019-03-08 上海科技大学 一种肿瘤免疫治疗的标志物
CN110055327A (zh) * 2019-03-26 2019-07-26 南通大学 用于预测癌症免疫治疗效果的内皮细胞标记物与试剂盒
CN110632312A (zh) * 2019-10-25 2019-12-31 四川大学华西医院 A1cf自身抗体检测试剂在制备肺癌筛查试剂盒中的用途
CN110687281A (zh) * 2019-08-26 2020-01-14 中国医学科学院肿瘤医院 Pd-l1自身抗体在肿瘤预后评估中的应用
CN114252611A (zh) * 2021-12-07 2022-03-29 暨南大学附属第一医院(广州华侨医院) 一种筛选前列腺癌潜在生物标志物的方法及其应用
CN115181800A (zh) * 2022-07-11 2022-10-14 南京世和基因生物技术股份有限公司 基因标志物在非小细胞肺癌预后效果预测中的应用、预测装置以及计算机可读取介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHIXIANG WANG,ET AL.: "APOBEC3B and APOBEC mutational signature as potential predictive markers for immunotherapy response in non-small cell lung cancer", 《ONCOGENE》 *
STEPHANIE A. MULLANE, ET AL.: "Correlation of Apobec Mrna Expression with overall Survival and pd-l1 Expression in Urothelial Carcinoma", 《SCIENTIFIC REPORTS》 *
STEVEN A. ROBERTS, ET AL.: "An APOBEC Cytidine Deaminase Mutagenesis Pattern is Widespread in Human Cancers", 《NAT GENET.》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109448790A (zh) * 2018-11-19 2019-03-08 上海科技大学 一种肿瘤免疫治疗的标志物
CN109448790B (zh) * 2018-11-19 2021-11-09 上海科技大学 一种确定肿瘤免疫治疗标志物的存储介质、设备及装置
CN110055327A (zh) * 2019-03-26 2019-07-26 南通大学 用于预测癌症免疫治疗效果的内皮细胞标记物与试剂盒
CN110055327B (zh) * 2019-03-26 2023-03-10 南通大学 用于预测癌症免疫治疗效果的内皮细胞标记物与试剂盒
CN110687281A (zh) * 2019-08-26 2020-01-14 中国医学科学院肿瘤医院 Pd-l1自身抗体在肿瘤预后评估中的应用
CN110632312A (zh) * 2019-10-25 2019-12-31 四川大学华西医院 A1cf自身抗体检测试剂在制备肺癌筛查试剂盒中的用途
CN110632312B (zh) * 2019-10-25 2021-08-20 四川大学华西医院 A1cf自身抗体检测试剂在制备肺癌筛查试剂盒中的用途
CN114252611A (zh) * 2021-12-07 2022-03-29 暨南大学附属第一医院(广州华侨医院) 一种筛选前列腺癌潜在生物标志物的方法及其应用
CN114252611B (zh) * 2021-12-07 2022-09-27 暨南大学附属第一医院(广州华侨医院) 一种筛选前列腺癌潜在生物标志物的方法及其应用
CN115181800A (zh) * 2022-07-11 2022-10-14 南京世和基因生物技术股份有限公司 基因标志物在非小细胞肺癌预后效果预测中的应用、预测装置以及计算机可读取介质

Also Published As

Publication number Publication date
CN108107213B (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
CN108107213A (zh) 一种肿瘤免疫生物标志物及其用途
Xiao et al. Analysis of ultra-deep targeted sequencing reveals mutation burden is associated with gender and clinical outcome in lung adenocarcinoma
Tsang et al. KRAS (but not BRAF) mutations in ovarian serous borderline tumour are associated with recurrent low‐grade serous carcinoma
Jiao et al. hOGG1 Ser326Cys polymorphism and susceptibility to gallbladder cancer in a Chinese population
Guo et al. TOX correlates with prognosis, immune infiltration, and T cells exhaustion in lung adenocarcinoma
WO2022109607A3 (en) Determination of cytotoxic gene signature and associated systems and methods for response prediction and treatment
Kim et al. Clinical implications of microsatellite instability in early gastric cancer
Yuan et al. Identification of a Nine Immune‐Related lncRNA Signature as a Novel Diagnostic Biomarker for Hepatocellular Carcinoma
Cheng et al. Systematic pan‐cancer analysis of KLRB1 with prognostic value and immunological activity across human tumors
Zeng et al. Aberrant expression of WDR4 affects the clinical significance of cancer immunity in pan-cancer
Chan et al. Personalized treatment for hepatocellular carcinoma: Current status and future perspectives
CN115032397B (zh) 一种胃癌预后分子标志物
Liss et al. Immunogenic heterogeneity of renal cell carcinoma with venous tumor thrombus
Fan et al. Gene expression profiles for an immunoscore model in bone and soft tissue sarcoma
Xin et al. Construction of prognostic signature of patients with oral squamous cell carcinoma based on pyroptosis-related long non-coding RNAs
Elsamany et al. Thyroid transcription factor-1 expression in advanced non-small cell lung cancer: Impact on survival outcome
Nardin et al. BRAF mutation screening in melanoma: is sentinel lymph node reliable?
Chen et al. A simple-to-use nomogram for predicting early death in metastatic renal cell carcinoma: a population-based study
Liang et al. Construction and Comprehensive Prognostic Analysis of a Novel Immune‐Related lncRNA Signature and Immune Landscape in Gastric Cancer
Kojima et al. Reappraisal of tacrolimus levels post liver transplant for hepatocellular carcinoma: A multicenter study toward personalized immunosuppression regimen
Li et al. CD73/NT5E Is a Potential Biomarker for Cancer Prognosis and Immunotherapy for Multiple Types of Cancers
Anu et al. Prostate Cancer Tissue-Based Biomarkers
Ma et al. Characteristics and response to next‐generation sequencing‐guided therapy in locally advanced or metastatic esophageal cancer
Lin et al. Identification of prognostic biomarkers of cutaneous melanoma based on analysis of tumor mutation burden
Wu et al. Survival analysis of lymphoepithelioma-like carcinoma of the urinary bladder and the effect of surgical treatment modalities on prognosis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant