CN108091707A - 一种基于纳米结构的双面受/陷光单晶硅太阳能电池及其制备方法 - Google Patents

一种基于纳米结构的双面受/陷光单晶硅太阳能电池及其制备方法 Download PDF

Info

Publication number
CN108091707A
CN108091707A CN201711330389.6A CN201711330389A CN108091707A CN 108091707 A CN108091707 A CN 108091707A CN 201711330389 A CN201711330389 A CN 201711330389A CN 108091707 A CN108091707 A CN 108091707A
Authority
CN
China
Prior art keywords
layer
light
zinc
solar cell
silicon solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711330389.6A
Other languages
English (en)
Inventor
于晓明
余璇
陈立桥
冷哲
胡金飞
王亚宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Ocean University ZJOU
Original Assignee
Zhejiang Ocean University ZJOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ocean University ZJOU filed Critical Zhejiang Ocean University ZJOU
Priority to CN201711330389.6A priority Critical patent/CN108091707A/zh
Publication of CN108091707A publication Critical patent/CN108091707A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供一种基于纳米结构的双面受/陷光单晶硅太阳能电池及其制备方法,电池上部采用金属栅线/氧化锌纳米柱层/氧化锌薄膜层复合结构电极接受光照,电池下部采用P型聚合物层/银纳米线层/P型保护层复合结构透明导电薄膜接受光照。其优点是:通过简单的非真空方法制备P型聚合物层/银纳米线层/P型保护层复合薄膜应用于硅太阳能电池一侧,上述薄膜具有高度透过率的同时因纳米线能够实现光的有效散射,实现光受光/陷光的硅太阳能电池;在硅太阳能电池另外一侧,制备金属栅线/氧化锌纳米柱复合结构电极,也实现光的高度透过同时对光的有效散射,综合利用上述结构的三重光散射,实现基于纳米结构的双面受/陷光单晶硅太阳能电池。

Description

一种基于纳米结构的双面受/陷光单晶硅太阳能电池及其制 备方法
【技术领域】
本发明涉及太阳能电池制造技术领域,特别涉及一种基于纳米结构的双面受/陷光单晶硅太阳能电池及其制备方法。
【背景技术】
近年来,光伏发电技术日益普及,全球太阳能电池的产量不断上升,其中晶体硅太阳能电池占据绝大部分比重。硅太阳能电池由于转换效率稳定,光电转化效率高等优势,获得人们的持续的关注,人们愿意通过硅太阳能电池的研发,在获得高的转换效率的同时降低其制造成本。在硅太阳能电池器件中,硅材料不能将入射光完全吸收,因此造成太阳能电池器件的光电转换效率额外的损失,通过设计电池表面的曲面结构,能够有效增加光在太阳能电池中的光程,即采用表面陷光结构提高太阳能电池效率。但是如何采用低成本材料及工艺制备硅太阳能电池,以有效降低太阳能电池成本成为新的研究方向。
【发明内容】
本发明的目的在于提供一种基于纳米结构的双面受/陷光单晶硅太阳能电池及其制备方法,采用简单的制备工艺及低廉的材料,制备出能够双面接受太阳光,双面陷光的硅太阳能电池。
为了解决上述问题,根据本发明的一个方面,本发明提供一种基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法,其包括:提供具有第一表面和与所述第一表面相对应的第二表面的P型晶体硅衬底;在所述第一表面上制备N型层;在所述N型层上通过溶液法制备氧化锌薄膜层;在所述氧化锌薄膜层上通过水热法制备氧化锌纳米柱层;在所述第二表面上依次涂覆P型聚合物层、银纳米线层和P型保护层;在所述氧化锌纳米柱层上制备顶电极,即银栅线电极,形成基于纳米结构的双面受/陷光单晶硅太阳能电池。
作为本发明的一个优选的实施例,在所述N型层上通过溶液法制备氧化锌薄膜层包括:在所述N型层上通过浸渍提拉镀膜法或旋转涂膜法涂覆氧化锌溶胶后,在300-500℃的温度条件下干燥10-100min,形成氧化锌薄膜层。
作为本发明的一个优选的实施例,所述氧化锌薄膜层的厚度为10-100nm。
作为本发明的一个优选的实施例,在所述氧化锌薄膜层上通过水热法制备氧化锌纳米柱层包括:将氧化锌薄膜层面朝下置于水热釜中,所述水热釜内装有硝酸锌和六亚甲基次胺溶液,所述硝酸锌和六亚甲基次胺溶液中硝酸锌与六亚甲基次胺的摩尔比为1:1,在90℃的条件下加热3h,冷却后形成氧化锌纳米柱层。
作为本发明的一个优选的实施例,所述氧化锌纳米柱层的厚度为300-2000nm。
作为本发明的一个优选的实施例,所述P型聚合物层的厚度为10-100nm,所述银纳米线层采用直径为10-100nm、长度为5-30μm的银纳米线,所述银纳米线层的厚度为100-300nm,所述P型保护层的厚度为10-100nm。
作为本发明的一个优选的实施例,所述P型聚合物层和P型保护层的材料为P3HT、PTB7、PCDTBT、PBDTTPD、PBDTTT-CF中的任意一种或几种。
作为本发明的一个优选的实施例,所述P型聚合物层和P型保护层的材料为PEDOT:PSS溶液。
作为本发明的一个优选的实施例,所述银栅线电极的厚度为50-1000nm。
根据本发明的另一个方面,本发明提供一种基于纳米结构的双面受/陷光单晶硅太阳能电池,由上而下依次包括:银栅线电极、氧化锌纳米柱层、氧化锌薄膜层、N型层、P型晶体硅衬底、P型聚合物层、银纳米线层和P型保护层,电池上部采用金属栅线/氧化锌纳米柱层/氧化锌薄膜层复合结构电极接受光照,电池下部采用P型聚合物层/银纳米线层/P型保护层复合结构透明导电薄膜接受光照。
与现有技术相比,本发明中一种基于纳米结构的双面受/陷光单晶硅太阳能电池及其的制备方法,基于氧化锌纳米线和银纳米线等纳米材料,能够实现大面积、低成本、非真空制备纳米复合薄膜技术,基于此技术构筑硅太阳能电池,利用纳米线的透明导电以及对光的有效调制作用,双侧纳米复合薄膜技术实现硅太阳能电池双侧受光,双侧陷光结构,从而提高硅太阳能电池的光电转换效率,此项发明对硅太阳能电池的基础研究及商业化应用都具有重要的意义,适用于各种硅太阳能电池。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为本发明中的基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法在一个实施例中的流程图;
图2为本发明中的基于纳米结构的双面受/陷光单晶硅太阳能电池在一个实施例中的结构示意图。
【具体实施方式】
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
请参阅图1,图1为本发明中的基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法100在一个实施例中的流程图。如图1所示,所述制造方法100包括如下步骤。
步骤110,提供具有第一表面和与所述第一表面相对应的第二表面的P型晶体硅衬底。
步骤120,在所述第一表面上制备N型层。
步骤130,在所述N型层上通过溶液法制备氧化锌薄膜层。
在一个实施例中,在所述N型层上通过浸渍提拉镀膜法或旋转涂膜法涂覆氧化锌溶胶后,在300-500℃的温度条件下干燥10-100min,形成氧化锌薄膜层,所述氧化锌薄膜层的厚度为10-100nm。
步骤140,在所述氧化锌薄膜层上通过水热法制备氧化锌纳米柱层。
在一个实施例中,将氧化锌薄膜层面朝下置于水热釜中,所述水热釜内装有硝酸锌和六亚甲基次胺溶液,所述硝酸锌和六亚甲基次胺溶液中硝酸锌与六亚甲基次胺的摩尔比为1:1,在90℃的条件下加热3h,冷却后形成氧化锌纳米柱层,所述氧化锌纳米柱层的厚度为300-2000nm。
步骤150,在所述第二表面上依次涂覆P型聚合物层、银纳米线层和P型保护层。
具体的,所述P型聚合物层的厚度为10-100nm,所述P型聚合物层和P型保护层的材料为P3HT、PTB7、PCDTBT、PBDTTPD、PBDTTT-CF中的任意一种或几种,所述银纳米线层采用直径为10-100nm、长度为5-30μm的银纳米线,所述银纳米线层的厚度为100-300nm,所述P型保护层的厚度为10-100nm。
在一个实施例中,所述P型聚合物层和P型保护层的材料为PEDOT:PSS溶液。
步骤160,在所述氧化锌纳米柱层上制备顶电极,即银栅线电极,形成基于纳米结构的双面受/陷光单晶硅太阳能电池。
具体的,所述银栅线电极的厚度为50-1000nm。
经上述制备方法制得的基于纳米结构的双面受/陷光单晶硅太阳能电池的结构如下。
请参阅图2,图2为本发明中的基于纳米结构的双面受/陷光单晶硅太阳能电池在一个实施例中的结构示意图。如图2所示,所述基于纳米结构的双面受/陷光单晶硅太阳能电池,由上而下依次包括:银栅线电极1、氧化锌纳米柱层2、氧化锌薄膜层3、N型层4、P型晶体硅衬底5、P型聚合物层6、银纳米线层7和P型保护层8,电池上部采用金属栅线/氧化锌纳米柱层/氧化锌薄膜层复合结构电极接受光照,电池下部采用P型聚合物层/银纳米线层/P型保护层复合结构透明导电薄膜接受光照。
下面结合一种基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法介绍两个能够充分体现本发明内容的实施例:
实施例1
(1)硅片清洗及PN结的制备
单晶硅片或多晶硅片的预处理方法为:将硅片在10wt%的盐酸溶液中浸泡2h,然后取出洗净、干燥。PN结制备,N型层通过高温离子扩散工艺制备,高温离子可以选用磷元素。
(2)氧化锌薄膜层的制备
将醋酸锌(0.003mol)、乙醇胺(0.001mol)和乙醇(100ml)在60℃下混合并进行反应,陈化24h后形成氧化锌溶胶(100ml),氧化锌前驱液的浓度为0.03mol/L。将步骤(1)中制备得到的玻璃基板/银纳米线薄膜放置在旋转涂膜机上,将制备的氧化锌溶胶前驱液100ul滴于硅片N型层一侧,采用2200rpm/min速度旋转30s,300℃范围干燥10min,即形成氧化锌薄膜层,氧化锌薄膜层的厚度为20nm。
(3)制备氧化锌纳米柱层:
将步骤(2)中制备得到的硅片/氧化锌薄膜置于特氟龙内衬水热釜,氧化锌薄膜面朝下,水热釜内放置硝酸锌和六亚甲基次胺溶液,溶剂采用去离子水,其中硝酸锌:六亚甲基次胺(HMT)摩尔比=1:1,其中六亚甲基次胺浓度为1mol/L,水热釜放入鼓风干燥箱,90℃加热3h,冷却后取出样品,即获得基板/银纳米线/氧化锌薄膜/氧化锌纳米柱,氧化锌纳米柱层的厚度范围是3000nm。
(4)制备P型聚合物层、银纳米线层、P型保护层
将上述硅片置在旋转涂膜机上,P型晶体硅衬底的第二表面向上,取PEDOT:PSS溶液100ul滴于上述薄膜之上,溶液均匀分布后采用3000rpm/min速度旋转30s,采用150℃烘干30min,即形成P型聚合物层,取1-10mg/ml的银纳米线醇分散液,将基底放置在旋转涂膜机之上,P型聚合物层向上,用旋转涂膜的方法获得银纳米线薄膜,烘干后薄膜即形成银纳米线层,取PEDOT:PSS溶液100ul滴于上述薄膜之上,溶液均匀分布后采用3000rpm/min速度旋转30s,采用150℃烘干30min,即形成P型聚合物层/银纳米线/P型保护层。
(5)顶电极制备
通过丝网印刷的方法金属银顶电极,取100ul导电银浆料放置于网版之上,样品放置于网版之下,氧化锌纳米柱层面朝上,采用挂刀往复挂三次,取走剩余银浆料,即获得银顶电极膜,成膜后采用150摄氏度加热30分钟固化电极,即形成500nm厚银顶电极。
实施例2
(1)硅片清洗及PN结制备
单晶硅片或多晶硅片的预处理方法为:将硅片在15wt%的盐酸溶液中浸泡1.5h,然后取出洗净、干燥。PN结制备,N型层通过高温离子扩散工艺制备,高温离子可以选用磷元素。
(2)氧化锌薄膜制备
将醋酸锌(0.006mol)、乙醇胺(0.002mol)和乙醇(100ml)在60℃下混合并进行反应,陈化24h后形成氧化锌溶胶(100ml),氧化锌前驱液的浓度为0.06mol/L。将步骤(1)中制备得到的玻璃基板/银纳米线薄膜放置在旋转涂膜机上,将制备的氧化锌溶胶前驱液80ul滴于硅片N型层一侧,采用2800rpm/min速度旋转30s,400℃范围干燥10min,即形成氧化锌薄膜层,氧化锌薄膜层的厚度为30nm。
(3)制备氧化锌纳米柱层:
将步骤(2)中制备得到的硅片/氧化锌薄膜置于特氟龙内衬水热釜,氧化锌薄膜面朝下,水热釜内放置硝酸锌和六亚甲基次胺溶液,溶剂采用去离子水,其中硝酸锌:六亚甲基次胺(HMT)摩尔比=1:1,其中六亚甲基次胺浓度为0.8mol/L,水热釜放入鼓风干燥箱,90℃加热3h,冷却后取出样品,即获得基板/银纳米线/氧化锌薄膜/氧化锌纳米柱,氧化锌纳米柱层的厚度范围是2500nm。
(4)制备P型聚合物层、银纳米线、P型保护层
将上述硅片置在旋转涂膜机上,P型晶体硅衬底的第二表面向上,取P3HT的氯苯溶液(1ml氯苯中含P3HT 20mg)100ul滴于上述薄膜之上,溶液均匀分布后采用3000rpm/min速度旋转30s,采用150℃烘干30min,即形成P型聚合物层,取1-10mg/ml的银纳米线醇分散液,将基底放置在旋转涂膜机之上,P型聚合物层向上,用旋转涂膜的方法获得银纳米线薄膜,烘干后薄膜即形成银纳米线层,取PEDOT:PSS溶液100ul滴于上述薄膜之上,溶液均匀分布后采用3000rpm/min速度旋转30s,采用150℃烘干30min,即形成P型聚合物层/银纳米线/P型聚合物层。
(5)顶电极制备
通过丝网印刷的方法金属银顶电极,取100ul导电银浆料放置于网版之上,样品放置于网版之下,氧化锌纳米柱层面朝上,采用挂刀往复挂三次,取走剩余银浆料,即获得银顶电极膜,成膜后采用150摄氏度加热30分钟固化电极,即形成500nm厚银顶电极。
所属领域内的普通技术人员应该能够理解的是,本发明的特点或目的之一在于:电池上部采用金属栅线/氧化锌纳米柱层/氧化锌薄膜层复合结构电极接受光照,电池下部采用P型聚合物层/银纳米线/P型保护层复合结构透明导电薄膜接受光照,从而实现双面受光/陷光的硅太阳能电池。本发明具有以下优点:1)通过简单的非真空方法制备P型聚合物层/银纳米线/P型保护层复合薄膜应用于硅太阳能电池一侧,上述薄膜具有高度透过率的同时因纳米线能够实现光的有效散射,实现光受光/陷光的硅太阳能电池。2)在硅太阳能电池另外一侧,制备金属栅线/氧化锌纳米柱复合结构电极,也实现光的高度透过同时对光的有效散射,综合利用上述结构的三重光散射,实现基于纳米结构的双面受/陷光单晶硅太阳能电池。
需要指出的是,熟悉该领域的技术人员对本发明的具体实施方式所做的任何改动均不脱离本发明的权利要求书的范围。相应地,本发明的权利要求的范围也并不仅仅局限于前述具体实施方式。

Claims (10)

1.一种基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法,其特征在于,包括:
提供具有第一表面和与所述第一表面相对应的第二表面的P型晶体硅衬底;
在所述第一表面上制备N型层;
在所述N型层上通过溶液法制备氧化锌薄膜层;
在所述氧化锌薄膜层上通过水热法制备氧化锌纳米柱层;
在所述第二表面上依次涂覆P型聚合物层、银纳米线层和P型保护层;
在所述氧化锌纳米柱层上制备顶电极,即银栅线电极,形成基于纳米结构的双面受/陷光单晶硅太阳能电池。
2.根据权利要求1所述的基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法,其特征在于,在所述N型层上通过溶液法制备氧化锌薄膜层包括:在所述N型层上通过浸渍提拉镀膜法或旋转涂膜法涂覆氧化锌溶胶后,在300-500℃的温度条件下干燥10-100min,形成氧化锌薄膜层。
3.根据权利要求1所述的基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法,其特征在于:所述氧化锌薄膜层的厚度为10-100nm。
4.根据权利要求1所述的基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法,其特征在于,在所述氧化锌薄膜层上通过水热法制备氧化锌纳米柱层包括:将氧化锌薄膜层面朝下置于水热釜中,所述水热釜内装有硝酸锌和六亚甲基次胺溶液,所述硝酸锌和六亚甲基次胺溶液中硝酸锌与六亚甲基次胺的摩尔比为1:1,在90℃的条件下加热3h,冷却后形成氧化锌纳米柱层。
5.根据权利要求1所述的基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法,其特征在于:所述氧化锌纳米柱层的厚度为300-2000nm。
6.根据权利要求1所述的基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法,其特征在于:所述P型聚合物层的厚度为10-100nm,所述银纳米线层采用直径为10-100nm、长度为5-30μm的银纳米线,所述银纳米线层的厚度为100-300nm,所述P型保护层的厚度为10-100nm。
7.根据权利要求1所述的基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法,其特征在于:所述P型聚合物层和P型保护层的材料为P3HT、PTB7、PCDTBT、PBDTTPD、PBDTTT-CF中的任意一种或几种。
8.根据权利要求1所述的基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法,其特征在于:所述P型聚合物层和P型保护层的材料为PEDOT:PSS溶液。
9.根据权利要求1所述的基于纳米结构的双面受/陷光单晶硅太阳能电池的制备方法,其特征在于:所述银栅线电极的厚度为50-1000nm。
10.一种由权利要求1-9任意一项权利要求所述方法制得的基于纳米结构的双面受/陷光单晶硅太阳能电池,其特征在于,由上而下依次包括:银栅线电极、氧化锌纳米柱层、氧化锌薄膜层、N型层、P型晶体硅衬底、P型聚合物层、银纳米线层和P型保护层,电池上部采用金属栅线/氧化锌纳米柱层/氧化锌薄膜层复合结构电极接受光照,电池下部采用P型聚合物层/银纳米线层/P型保护层复合结构透明导电薄膜接受光照。
CN201711330389.6A 2017-12-13 2017-12-13 一种基于纳米结构的双面受/陷光单晶硅太阳能电池及其制备方法 Pending CN108091707A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711330389.6A CN108091707A (zh) 2017-12-13 2017-12-13 一种基于纳米结构的双面受/陷光单晶硅太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711330389.6A CN108091707A (zh) 2017-12-13 2017-12-13 一种基于纳米结构的双面受/陷光单晶硅太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN108091707A true CN108091707A (zh) 2018-05-29

Family

ID=62174239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711330389.6A Pending CN108091707A (zh) 2017-12-13 2017-12-13 一种基于纳米结构的双面受/陷光单晶硅太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN108091707A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361293A (zh) * 2021-12-29 2022-04-15 中国建材国际工程集团有限公司 一种双面发电CdTe太阳电池及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202042488U (zh) * 2011-05-09 2011-11-16 上海交大泰阳绿色能源有限公司 一种太阳能电池陷光结构
CN102646745A (zh) * 2012-04-01 2012-08-22 北京大学深圳研究生院 一种光伏器件及太阳能电池
CN103489942A (zh) * 2013-10-14 2014-01-01 南开大学 一种基于纳米氧化锌硅异质结电池的陷光结构及制备方法
US20140262453A1 (en) * 2013-03-16 2014-09-18 Nuovo Film, Inc. Transparent conductive electrodes and their structure design, and method of making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202042488U (zh) * 2011-05-09 2011-11-16 上海交大泰阳绿色能源有限公司 一种太阳能电池陷光结构
CN102646745A (zh) * 2012-04-01 2012-08-22 北京大学深圳研究生院 一种光伏器件及太阳能电池
US20140262453A1 (en) * 2013-03-16 2014-09-18 Nuovo Film, Inc. Transparent conductive electrodes and their structure design, and method of making the same
CN103489942A (zh) * 2013-10-14 2014-01-01 南开大学 一种基于纳米氧化锌硅异质结电池的陷光结构及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
岳情情: ""银纳米线透明导电薄膜的制备与性能研究"", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361293A (zh) * 2021-12-29 2022-04-15 中国建材国际工程集团有限公司 一种双面发电CdTe太阳电池及其制造方法
CN114361293B (zh) * 2021-12-29 2024-01-26 中国建材国际工程集团有限公司 一种双面发电CdTe太阳电池及其制造方法

Similar Documents

Publication Publication Date Title
Zhang et al. Conjugated polymer–silicon nanowire array hybrid Schottky diode for solar cell application
Huang et al. Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells
CN101842934B (zh) 染料敏化太阳能电池模块
CN104659123B (zh) 化合物薄膜太阳能电池及其制备方法
CN103887347B (zh) 一种双面p型晶体硅电池结构及其制备方法
CN102779864B (zh) 一种碲化镉薄膜电池及其制备方法
Jiang et al. High performance of PEDOT: PSS/n-Si solar cells based on textured surface with AgNWs electrodes
Khang Recent progress in Si-PEDOT: PSS inorganic–organic hybrid solar cells
CN104616837B (zh) 平面有序化的金属纳米线叠层透明导电薄膜的制备方法
CN105337560B (zh) 一种复合能源装置和发电方法
Lee et al. Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator
CN1996620A (zh) 基于碳纳米管薄膜的太阳能电池及其制备方法
CN103346193B (zh) 一种CdTe纳米晶异质结太阳电池及其制备方法
WO2015188646A1 (zh) 太阳能电池超精细电极转移薄膜、制备方法及其应用方法
Da et al. Photon management effects of hybrid nanostructures/microstructures for organic‐silicon heterojunction solar cells
CN102074590A (zh) 碲化镉薄膜太阳能电池结构中的背接触电极及制备方法
CN107706308A (zh) 一种钙钛矿太阳能电池及制备方法
CN108447995A (zh) 前驱体溶液及其制备方法,太阳能电池电子传输层的制备及太阳能电池
CN111554763A (zh) 一种高开压高效钙钛矿/晶硅叠层电池
Yang et al. Ferro-pyro-phototronic effect enhanced self-powered, flexible and ultra-stable photodetectors based on highly crystalized 1D/3D ferroelectric perovskite film
CN105990525B (zh) 一种太阳能电池及其制备方法
CN107946382A (zh) Mwt与hit结合的太阳能电池及其制备方法
Patel et al. Field‐Induced Transparent Electrode‐Integrated Transparent Solar Cells and Heater for Active Energy Windows: Broadband Energy Harvester
CN106206779A (zh) 以硅纳米柱阵列为基底的异质结太阳电池及其制备方法
CN101615640B (zh) 氧化锌基太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180529