CN106206779A - 以硅纳米柱阵列为基底的异质结太阳电池及其制备方法 - Google Patents

以硅纳米柱阵列为基底的异质结太阳电池及其制备方法 Download PDF

Info

Publication number
CN106206779A
CN106206779A CN201610621268.6A CN201610621268A CN106206779A CN 106206779 A CN106206779 A CN 106206779A CN 201610621268 A CN201610621268 A CN 201610621268A CN 106206779 A CN106206779 A CN 106206779A
Authority
CN
China
Prior art keywords
column array
nano column
height
silicon nano
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610621268.6A
Other languages
English (en)
Inventor
刘静
伊福廷
王波
张天冲
王雨婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of High Energy Physics of CAS
Original Assignee
Institute of High Energy Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of High Energy Physics of CAS filed Critical Institute of High Energy Physics of CAS
Priority to CN201610621268.6A priority Critical patent/CN106206779A/zh
Publication of CN106206779A publication Critical patent/CN106206779A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic System, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种以硅纳米柱阵列为基底的异质结太阳电池及其制备方法。该太阳电池是以大高宽比硅纳米柱阵列为基底,磁控溅射的方法包裹其他薄膜材料,形成异质结结构。其制作方法包括:在P型硅片表面用氯化铯纳米岛自组装的方法制备大高宽比纳米柱阵列;在背面制备铝背场;用磁控溅射的方法在硅纳米柱阵列表面包裹氧化锌、硫化镉等N型材料层;在N型材料层表面覆盖ITO透明导电层;在上表面制备钛银电极。这种以大高宽比硅纳米柱阵列为基底的异质结电池其优点在于:第一,可以有效增加基底的表面比,提高异质结的有效面积,增加对入射光的吸收;第二,借助于大高宽比纳米柱阵列良好的陷光作用,能够减小反射,提高异质结电池的性能。

Description

以硅纳米柱阵列为基底的异质结太阳电池及其制备方法
技术领域
本发明涉及半导体微纳加工技术,异质结太阳电池技术领域,尤其是一种以大高宽比硅纳米柱阵列为基底的异质结太阳电池及其制备方法。
背景技术
纳米阵列是一种新型的表面结构,在太阳电池、LED等许多领域有巨大的工业应用,纳米织构化具有降低可见光反射的特性。对于传统的单晶或多晶硅太阳电池,可以在硅表面直接制备纳米线、纳米柱等纳米织构化,利用纳米阵列的陷光作用,能有效提高太阳电池的短路电流及电池效率。
由于制备工艺繁琐及成本较高,限制了传统太阳电池的推广。在硅衬底上利用简单工艺沉积一层透明半导体薄膜,制备异质结太阳能电池是一种具有潜在应用前景的构思。此种异质结太阳电池具有优良的光伏效应,且制作工艺简单,制备温度较低。
常见的异质结电池是指将氧化锌、硫化镉等N型材料制备在抛光硅片表面。将纳米化的氧化锌、硫化镉等材料,沉积在抛光硅片表面,也可以提高太阳电池的效率,效率可达到10.9%(R.Pietruszka,B.S.Witkowski,S.Gieraltowska,ECaban,L.Wachnicki,E.Zielony,K.Gwozdz,P.Bieganski,E.Placzek-Popko,M.Godlewski,New efficientsolar cell structures based onzinc oxide nanorods,Solar Energy Materials&Solar Cells 143(2015)99-104)。
在2011年Chuan He等人用水热法在抛光硅片表面制备纳米孔阵列,然后在这种粗糙的表面用化学浴沉积的方法制备硫化镉薄膜,这种方法能有效降低反射,但光电转化效率只有1.15×10-4%(Chuan He,Chang BaoHan,Yu Rui Xu,and Xin Jian Li,Photovoltaic effect of CdS/Sinanoheterojunction array,JOURNAL OF APPLIEDPHYSICS 110,094316(2011))。
发明内容
(一)要解决的技术问题
为克服上述现有技术中存在的各种不足,本发明提供了一种以大高宽比硅纳米柱阵列为基底的异质结太阳电池及其制备方法。
(二)技术方案
根据本发明的一个方面,本发明提供了一种以硅纳米柱阵列为基底的异质结太阳电池,该异质结太阳电池包括:P型硅片;形成于P型硅片表面的大高宽比硅纳米柱阵列;形成于P型硅片背面的铝背场;包裹于大高宽比硅纳米柱阵列表面的N型材料层;覆盖于N型材料层表面的ITO透明导电层;以及形成于ITO透明导电层表面的钛银电极。
上述方案中,所述形成于P型硅片表面的大高宽比硅纳米柱阵列,硅纳米柱的直径是50-1500纳米,高度为0.2-3微米,高宽比范围为大于0且小于等于10。
上述方案中,所述包裹于大高宽比硅纳米柱阵列表面的N型材料层为氧化锌或硫化镉。
上述方案中,所述包裹于大高宽比硅纳米柱阵列表面的N型材料层与大高宽比硅纳米柱阵列之间形成异质结。
根据本发明的另一个方面,本发明提供了一种以硅纳米柱阵列为基底的异质结太阳电池的制备方法,该方法包括:在P型硅片表面制备大高宽比硅纳米柱阵列;在制备有大高宽比硅纳米柱阵列的P型硅片背面制备铝背场;在大高宽比硅纳米柱阵列表面包裹N型材料层;在N型材料层表面覆盖ITO透明导电层;以及在ITO透明导电层表面制备钛银电极。
上述方案中,所述在P型硅片表面制备大高宽比硅纳米柱阵列的步骤中,大高宽比硅纳米柱阵列的制备采用氯化铯纳米岛刻蚀技术,制作出的纳米柱直径是50-1500纳米,高度为0.2-3微米,高宽比范围为大于0且小于等于10。
上述方案中,所述在制备有大高宽比硅纳米柱阵列的P型硅片背面制备铝背场的步骤中,是采用热蒸发的方法在制备有大高宽比硅纳米柱阵列的P型硅片背面制备铝金属背面电极。
上述方案中,所述在大高宽比硅纳米柱阵列表面包裹N型材料层的步骤中,是采用磁控溅射的方法在大高宽比硅纳米柱阵列表面包裹N型材料层,N型材料层为氧化锌或硫化镉;为保证纳米柱阵列侧壁的包裹,使样品与靶材保持一定角度完成溅射镀膜;磁控溅射镀膜后,加热一定温度,使薄膜形成良好的结晶状态。
上述方案中,所述在N型材料层表面覆盖ITO透明导电层的步骤中,是采用磁控溅射的方法在N型材料层表面磁控溅射ITO透明导电层,用于光生载流子的收集;磁控溅射后,加热一定温度,使得ITO薄膜拥有良好的透光性及导电性。
上述方案中,所述在ITO透明导电层表面制备钛银电极的步骤中,是采用热蒸法的方法在ITO透明导电层表面制备钛银梳状电极结构,以便于测试。
(三)有益效果
从上述技术方案可以看出,本发明具有以下有益效果:
1、本发明提供的这种以大高宽比硅纳米柱阵列为基底的异质结太阳电池,优点在于:第一,可以有效增加基底的表面比,提高异质结的有效面积,增加对入射光的吸收;第二,借助于大高宽比纳米柱阵列良好的陷光作用,能够减小反射,从而达到提高异质结电池性能的目的。
2、本发明提供的这种以大高宽比硅纳米柱阵列为基底的异质结太阳电池,将大高宽比的纳米柱阵列以基底的形式应用于异质结太阳电池的表面,结合磁控溅射的方法在纳米柱阵列包裹氧化锌、硫化镉等N型薄膜,制备得到异质结太阳电池,对于硫化镉异质结电池,效率可以达到1.83%。
3、本发明提供的这种以大高宽比硅纳米柱阵列为基底的异质结太阳电池的制备方法,采用氯化铯纳米岛自组装技术制备大高宽比纳米柱阵列,这种方法可以根据需要制备平均直径为50-1500纳米,高度为0.2-3微米的硅纳米柱阵列,高宽比最大可以达到10,这种方法所制备的纳米柱阵列高宽比易于控制并且纳米柱间间隔较大,适合用于磁控溅射的方法包裹其他薄膜材料。
4、本发明提供的这种以大高宽比硅纳米柱阵列为基底的异质结太阳电池的制备方法,与水热法相比,引入的杂质离子少,对硅片的污染较小,更有利于太阳电池效率的提升。同时,由氯化铯自组装技术制备的纳米岛,在硅片表面的覆盖率大约为30%,使得制备得到的硅纳米柱间隔较大,更有利于用磁控溅射的方式包裹其他薄膜材料。
5、本发明提供的这种以大高宽比硅纳米柱阵列为基底的异质结太阳电池的制备方法,采用磁控溅射的方法在纳米柱结构表面包裹氧化锌、硫化镉等N型材料层,磁控溅射法具有成膜质量好、薄膜附着力强、薄膜成分易于控制和工艺步骤简单等优点,相比化学浴沉积的方法更加适合用于异质结太阳电池的制备。
附图说明
图1是在硅片表面蒸镀一层氯化铯薄膜的示意图。
图2是在硅片表面团聚形成一个个类似水滴的纳米氯化铯半岛结构的示意图。
图3是以团聚的氯化铯岛结构为掩膜,利用等离子体刻蚀技术刻蚀硅,将氯化铯结构转移到硅表面的示意图。
图4是在硅片表面制备的纳米柱结构的示意图。
图5是在硅片背面热蒸发铝背场的示意图。
图6是在纳米阵列表面包裹一层N型材料层的示意图。
图7是在N型材料层表面制备ITO透明导电层的示意图。
图8是在ITO透明导电层表面制备钛银电极的示意图。
图9为硅片表面用氯化铯纳米岛自组装技术制备的大高宽比纳米柱阵列的SEM图。
图10为硫化镉薄膜包裹后的纳米柱阵列的SEM图。
图11为采用本发明提供的方法制备的硫化镉/硅纳米柱太阳电池的J-V曲线测试结果。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明提供了一种以大高宽比硅纳米柱阵列为基底的异质结太阳电池及其制备方法。此种异质结太阳电池是以P型大高宽比硅纳米柱阵列为基底,在纳米柱阵列表面包裹N型薄膜材料,形成异质结。其制作方法包括:首先,在P型硅片表面制备大高宽比纳米柱阵列;然后,在背面制备铝背场;接着,用磁控溅射的方法在硅纳米柱阵列表面包裹氧化锌、硫化镉等N型材料层;下一步,在N型材料层表面覆盖ITO透明导电层;最后,在上表面制备钛银电极。
本发明提出将氯化铯纳米岛自组装技术应用于太阳电池领域,将大高宽比硅纳米阵列以基底的形式应用于异质结太阳电池表面,借助于硅表面的大高宽比柱状纳米结构,一方面,可以有效增加基底的表面比,提高异质结的有效面积,增加对入射光的吸收,另一方面,大高宽比纳米柱阵列有较好的陷光作用,能够减小对入射光的反射,从而达到提高异质结电池性能的目的。
本发明中,选用的硅片为P型掺杂的硅片,单面抛光,<100>晶向,厚度为400微米,电阻率为1-5欧姆。具体的制备方法如下:
第一,用氯化铯纳米岛自组装的方法在硅片表面制备大高宽比硅纳米柱阵列。具体包括:将抛光的硅片清洗干净后放入真空镀膜腔体内,蒸镀一层氯化铯薄膜,膜厚100-7000埃,如图1所示。氯化铯薄膜蒸镀完后,向真空镀膜腔体内通入一定湿度的气体,相对湿度为10%-70%,显影氯化铯薄膜,氯化铯在湿度气体作用下发生团聚,在硅片表面形成一个个类似水滴的纳米氯化铯半岛结构如图2所示。以团聚的氯化铯岛结构为掩膜,利用等离子体刻蚀技术刻蚀硅,从而将氯化铯结构转移到硅表面上,刻蚀转移结构结果如图3所示。等离子体刻蚀工艺是通过F离子与硅反应而将硅刻蚀掉,同时不会与氯化铯反应,使氯化铯结构下的硅得到保护,而没有氯化铯结构覆盖的部分硅将被刻蚀掉一定厚度,实现氯化铯结构的图形转移。等离子体刻蚀利用SF6和C4F8为刻蚀气体,He为冷却气体。工作压强4Pa,激励功率400瓦,偏压功率为30瓦,刻蚀时间1-10分钟,刻蚀结果如图3所示意。硅表面刻蚀完成后,样品放入去离子水中2分钟,即可将氯化铯溶解掉,从而制作出直径是50-1500纳米,高度为0.2-3微米的纳米柱结构,高宽比范围为大于0且小于等于10,高宽比最高可以达到10,如图4所示意。
第二,在硅片背面热蒸发300纳米厚的铝薄膜层,加热后形成铝背场,如图5所示。
第三,用磁控溅射镀膜的方法在纳米阵列表面包裹一层厚度约为200纳米的N型材料层(例如硫化镉、氧化锌等),并加热形成良好的薄膜晶体结构,如图6所示。磁控溅射法具有成膜质量好、薄膜附着力强、薄膜成分易于控制和工艺步骤简单等优点,是未来制备高质量薄膜的一个理想方法。对于氧化锌、硫化镉等半导体材料,选用射频磁控溅射配合强磁靶,能在硅片表面制备出单晶或多晶薄膜。在镀膜过程中需要控制溅射功率、工作压强、氩气的流量、靶极距等参数。为保证纳米柱阵列侧壁的包裹,可以使样品与靶材保持一定角度完成溅射镀膜。
第四,用磁控溅射的方法在N型薄膜表面制备100纳米厚的ITO透明导电玻璃层,用于光生载流子的收集,ITO是一种N型氧化物半导体材料,具有高的导电率、高的可见光透过率、高的机械硬度和良好的化学稳定性,如图7所示。
第五,用光刻技术及热蒸发等方式在样品表面制备钛银电极,如图8所示。
图9为硅片表面用氯化铯纳米岛自组装技术制备的大高宽比纳米柱阵列(SEM图)。图10为硫化镉薄膜包裹后的纳米柱阵列(SEM图)。
图11为用此种方法制备的硫化镉/硅纳米柱太阳电池的J-V曲线测试结果,得到的电池效率为1.83%,开路电压为308.2毫伏,短路电流为13.92毫安/平方厘米。
实施案例
步骤1:硅片选择为P型掺杂,单面抛光,<100>晶向,厚度为400微米,电阻率为1-5欧姆。在抛光面上以热蒸发方法制备氯化铯薄膜,薄膜厚度200纳米。
步骤2:将步骤1中镀有氯化铯薄膜的硅片放入湿度为40%的通气腔体内,湿度由通入腔体的潮湿气体流量控制,在这一湿度条件下显影30分钟,使氯化铯薄膜团聚成纳米岛结构,在硅片表面形成氯化铯纳米岛结构。氯化铯纳米岛平均直径400纳米。
步骤3:将步骤2中表面有氯化铯岛结构的硅片放入等离子体刻蚀机的刻蚀腔体内,刻蚀工艺参数为压强4帕,刻蚀气体SF6∶C4F8∶He=60∶150∶10sccm,激励功率400瓦,偏压功率为30瓦,刻蚀时间5分钟。
步骤4:将步骤3中刻蚀后的硅片取出后放入水中,时间2分钟,使硅片上的氯化铯岛结构溶解,从而在表面获得平均直径约400纳米,高度1.5微米的纳米柱阵列的硅片。
步骤5:在步骤4中表面有纳米柱阵列的硅片放入真空镀膜腔体内,在背面蒸发300纳米厚的铝薄膜层,在氮气保护下,700℃下加热5分钟,形成铝背面电场。
步骤6:将步骤5中制备完背场及纳米柱阵列的硅片放入磁控溅射系统腔体内,射频溅射硫化镉靶,溅射功率为20瓦,Ar 20sccm,靶极距为80毫米,工作压强为0.2帕,溅射时间为30分钟,硫化镉薄膜的厚度为200纳米。
步骤7:将步骤6中镀完硫化镉薄膜后的硅片加热300℃,保持15分钟。
步骤8:在步骤7中制备硫化镉薄膜的一面,直流磁控溅射100纳米厚的ITO透明导电层,溅射功率为120瓦,Ar 20sccm,靶极距为80毫米,工作压强为1帕,溅射时间为5分钟。
步骤9:加热200℃保持15分钟。
步骤10:将带有电极图形结构的镂空金属掩膜覆盖在步骤9处理后的ITO透明导电层表面,用热蒸发的方法在表面蒸发200纳米厚的钛/银电极层。
步骤11:将步骤10得到的样品切成1×1平方厘米的面积进行测试。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种以硅纳米柱阵列为基底的异质结太阳电池,其特征在于,该异质结太阳电池包括:
P型硅片;
形成于P型硅片表面的大高宽比硅纳米柱阵列;
形成于P型硅片背面的铝背场;
包裹于大高宽比硅纳米柱阵列表面的N型材料层;
覆盖于N型材料层表面的ITO透明导电层;以及
形成于ITO透明导电层表面的钛银电极。
2.根据权利要求1所述的以硅纳米柱阵列为基底的异质结太阳电池,其特征在于,所述形成于P型硅片表面的大高宽比硅纳米柱阵列,硅纳米柱的直径是50-1500纳米,高度为0.2-3微米,高宽比范围为大于0且小于等于10。
3.根据权利要求1所述的以硅纳米柱阵列为基底的异质结太阳电池,其特征在于,所述包裹于大高宽比硅纳米柱阵列表面的N型材料层为氧化锌或硫化镉。
4.根据权利要求1所述的以硅纳米柱阵列为基底的异质结太阳电池,其特征在于,所述包裹于大高宽比硅纳米柱阵列表面的N型材料层与大高宽比硅纳米柱阵列之间形成异质结。
5.一种以硅纳米柱阵列为基底的异质结太阳电池的制备方法,其特征在于,该方法包括:
在P型硅片表面制备大高宽比硅纳米柱阵列;
在制备有大高宽比硅纳米柱阵列的P型硅片背面制备铝背场;
在大高宽比硅纳米柱阵列表面包裹N型材料层;
在N型材料层表面覆盖ITO透明导电层;以及
在ITO透明导电层表面制备钛银电极。
6.根据权利要求5所述的以硅纳米柱阵列为基底的异质结太阳电池的制备方法,其特征在于,所述在P型硅片表面制备大高宽比硅纳米柱阵列的步骤中,大高宽比硅纳米柱阵列的制备采用氯化铯纳米岛刻蚀技术,制作出的纳米柱直径是50-1500纳米,高度为0.2-3微米,高宽比范围为大于0且小于等于10。
7.根据权利要求5所述的以硅纳米柱阵列为基底的异质结太阳电池的制备方法,其特征在于,所述在制备有大高宽比硅纳米柱阵列的P型硅片背面制备铝背场的步骤中,是采用热蒸发的方法在制备有大高宽比硅纳米柱阵列的P型硅片背面制备铝金属背面电极。
8.根据权利要求5所述的以硅纳米柱阵列为基底的异质结太阳电池的制备方法,其特征在于,所述在大高宽比硅纳米柱阵列表面包裹N型材料层的步骤中,是采用磁控溅射的方法在大高宽比硅纳米柱阵列表面包裹N型材料层,N型材料层为氧化锌或硫化镉;为保证纳米柱阵列侧壁的包裹,使样品与靶材保持一定角度完成溅射镀膜;磁控溅射镀膜后,加热一定温度,使薄膜形成良好的结晶状态。
9.根据权利要求5所述的以硅纳米柱阵列为基底的异质结太阳电池的制备方法,其特征在于,所述在N型材料层表面覆盖ITO透明导电层的步骤中,是采用磁控溅射的方法在N型材料层表面磁控溅射ITO透明导电层,用于光生载流子的收集;磁控溅射后,加热一定温度,使得ITO薄膜拥有良好的透光性及导电性。
10.根据权利要求5所述的以硅纳米柱阵列为基底的异质结太阳电池的制备方法,其特征在于,所述在ITO透明导电层表面制备钛银电极的步骤中,是采用热蒸法的方法在ITO透明导电层表面制备钛银梳状电极结构,以便于测试。
CN201610621268.6A 2016-08-01 2016-08-01 以硅纳米柱阵列为基底的异质结太阳电池及其制备方法 Pending CN106206779A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610621268.6A CN106206779A (zh) 2016-08-01 2016-08-01 以硅纳米柱阵列为基底的异质结太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610621268.6A CN106206779A (zh) 2016-08-01 2016-08-01 以硅纳米柱阵列为基底的异质结太阳电池及其制备方法

Publications (1)

Publication Number Publication Date
CN106206779A true CN106206779A (zh) 2016-12-07

Family

ID=57497441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610621268.6A Pending CN106206779A (zh) 2016-08-01 2016-08-01 以硅纳米柱阵列为基底的异质结太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN106206779A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030578A (zh) * 2018-07-30 2018-12-18 清华大学 一种基于CdTe/ZnO纳米异质结结构的NO2气敏传感器的制备方法
CN109524489A (zh) * 2019-01-08 2019-03-26 中国计量大学 一种具有宽波段抗反射能力的硅纳米柱阵列结构
CN110965025A (zh) * 2019-12-20 2020-04-07 平顶山学院 一种CdS/Si纳米薄膜异质结的制备方法
CN111118450A (zh) * 2019-12-23 2020-05-08 无锡物联网创新中心有限公司 一种ZnO薄膜结构及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233539A1 (en) * 2006-01-23 2010-09-16 Mino Green Method of etching a silicon-based material
CN102148279A (zh) * 2011-01-15 2011-08-10 郑州大学 基于ⅱ-ⅵ族化合物半导体/硅纳米孔柱阵列的太阳能电池及其制备方法
CN102368506A (zh) * 2011-09-26 2012-03-07 浙江大学 一种n-氧化锌/p-硅纳米线三维异质结太阳能转换装置
CN102891191A (zh) * 2012-09-29 2013-01-23 中国科学院半导体研究所 非晶硅中间带太阳能电池及其制备方法
CN103094415A (zh) * 2013-01-14 2013-05-08 中国科学院高能物理研究所 硅光电池纳米织构化p-n结结构及其制作方法
CN103367513A (zh) * 2013-07-11 2013-10-23 湖南师范大学 一种多晶硅薄膜太阳能电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233539A1 (en) * 2006-01-23 2010-09-16 Mino Green Method of etching a silicon-based material
CN102148279A (zh) * 2011-01-15 2011-08-10 郑州大学 基于ⅱ-ⅵ族化合物半导体/硅纳米孔柱阵列的太阳能电池及其制备方法
CN102368506A (zh) * 2011-09-26 2012-03-07 浙江大学 一种n-氧化锌/p-硅纳米线三维异质结太阳能转换装置
CN102891191A (zh) * 2012-09-29 2013-01-23 中国科学院半导体研究所 非晶硅中间带太阳能电池及其制备方法
CN103094415A (zh) * 2013-01-14 2013-05-08 中国科学院高能物理研究所 硅光电池纳米织构化p-n结结构及其制作方法
CN103367513A (zh) * 2013-07-11 2013-10-23 湖南师范大学 一种多晶硅薄膜太阳能电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
闫玲玲: "ⅢA族元素掺杂的硫化镉/Si纳米孔柱阵列的制备与光电特性研究", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030578A (zh) * 2018-07-30 2018-12-18 清华大学 一种基于CdTe/ZnO纳米异质结结构的NO2气敏传感器的制备方法
CN109524489A (zh) * 2019-01-08 2019-03-26 中国计量大学 一种具有宽波段抗反射能力的硅纳米柱阵列结构
CN110965025A (zh) * 2019-12-20 2020-04-07 平顶山学院 一种CdS/Si纳米薄膜异质结的制备方法
CN110965025B (zh) * 2019-12-20 2021-07-23 平顶山学院 一种CdS/Si纳米薄膜异质结的制备方法
CN111118450A (zh) * 2019-12-23 2020-05-08 无锡物联网创新中心有限公司 一种ZnO薄膜结构及其制备方法

Similar Documents

Publication Publication Date Title
CN100405617C (zh) 基于碳纳米管薄膜的太阳能电池及其制备方法
CN106057919B (zh) 具有通过电镀制造的金属栅的太阳能电池
Chen et al. MACE nano-texture process applicable for both single-and multi-crystalline diamond-wire sawn Si solar cells
Fallahazad et al. Combination of surface texturing and nanostructure coating for reduction of light reflection in ZnO/Si heterojunction thin film solar cell
CN102227002B (zh) 多晶硅纳米线太阳能电池及其制备方法
AU2007209710A1 (en) Solar cell
CN102299206B (zh) 一种异质结太阳电池及其制备方法
CN106206779A (zh) 以硅纳米柱阵列为基底的异质结太阳电池及其制备方法
Lee Effects of heat treatment of vacuum evaporated CdCl2 layer on the properties of CdS/CdTe solar cells
CN102623517A (zh) 一种背接触型晶体硅太阳能电池及其制作方法
TWI538233B (zh) 晶圓型太陽能電池及其製造方法
Minemoto et al. Antireflective coating fabricated by chemical deposition of ZnO for spherical Si solar cells
TW201113389A (en) Method of coating substrate
Derbali et al. Electrical properties improvement of multicrystalline silicon solar cells using a combination of porous silicon and vanadium oxide treatment
Sharma et al. Design analysis of heterojunction solar cells with aligned AZO nanorods embedded in p-type Si wafer
JP2012004568A (ja) 電極の形成方法及びこれを利用した太陽電池の製造方法
CN103219426A (zh) 一种超小绒面太阳电池及其制备方法
CN102637755A (zh) 一种纳米结构czts薄膜光伏电池及其制备方法
JP4193961B2 (ja) 多接合型薄膜太陽電池
CN104681662A (zh) 一种高反射率太阳能薄膜的制备方法
Aurang et al. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices
CN110085683A (zh) 无掺杂晶体硅异质结太阳能电池及其制备方法
CN108511553A (zh) 一种高耐候性异质结太阳电池
CN219476695U (zh) 一种双面砷化镓太阳能电池
CN103000738A (zh) 一种机械叠层碲化镉/多晶硅太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161207

WD01 Invention patent application deemed withdrawn after publication