CN108084341B - 结晶紫分子印迹微球的合成方法及应用 - Google Patents

结晶紫分子印迹微球的合成方法及应用 Download PDF

Info

Publication number
CN108084341B
CN108084341B CN201711076243.3A CN201711076243A CN108084341B CN 108084341 B CN108084341 B CN 108084341B CN 201711076243 A CN201711076243 A CN 201711076243A CN 108084341 B CN108084341 B CN 108084341B
Authority
CN
China
Prior art keywords
crystal violet
adsorption
polymer
microspheres
molecularly imprinted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711076243.3A
Other languages
English (en)
Other versions
CN108084341A (zh
Inventor
蒋旭红
程杏安
刘展眉
叶静敏
舒绪刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongkai University of Agriculture and Engineering
Original Assignee
Zhongkai University of Agriculture and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongkai University of Agriculture and Engineering filed Critical Zhongkai University of Agriculture and Engineering
Priority to CN201711076243.3A priority Critical patent/CN108084341B/zh
Publication of CN108084341A publication Critical patent/CN108084341A/zh
Application granted granted Critical
Publication of CN108084341B publication Critical patent/CN108084341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/02Characterised by the use of homopolymers or copolymers of esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种结晶紫分子印迹微球的合成方法及应用。本发明以结晶紫为模板分子,在乙腈溶剂条件下,以MAA为功能单体,EGDMA或DVB为交联剂,在引发剂作用下,经恒温水浴振荡沉淀聚合法聚合反应,合成得到结晶紫分子印迹聚合物,所述分子印迹微球可有效地吸附结晶紫并具有良好的专一识别性,通过对模板分子的识别与吸附,达到更好的分离富集效果。本发明在整体合成步骤的设计基础上,进一步总结优选的交联剂、搅拌方式、模板分子、功能单体、交联剂、溶剂用量的比例对微球性能的影响,聚合物的吸附容量高达39.12μmol/g,印迹因子为3.17,表明合成制得的聚合物对目标分子具有良好的识别吸附能力,具有优异的应用前景。

Description

结晶紫分子印迹微球的合成方法及应用
技术领域
本发明涉及分子印迹微球的制备技术领域,更具体地,涉及一种结晶紫分子印迹微球的合成方法及应用。
背景技术
结晶紫是一种绿色带有金属光泽结晶或深绿色结晶性粉末的三苯甲烷类碱性染料,广泛应用于工业染色、临床消毒、杀菌、水产养殖业的杀菌剂、驱虫药。研究表明,结晶紫进入人或动物机体后,可通过生物转化,还原代谢成脂溶性的隐性结晶紫(LCV),具有高毒性、高残留和致癌、致突变等副作用,可能通过食物链对人类造成危害,严重影响水产品的食用安全性。现已被许多国家明令禁止用于食用水产品消毒。但由于结晶紫的杀菌效果好、价格低廉,目前仍有不法商户还在使用。研究结晶紫特异性吸附材料对食品安全及检测具有重要的意义。
目前水产品中结晶紫残留量的检测方法主要有:高效液相色谱法、液质联用法和分光光度法,所述方法的样品前处理过程繁琐时间长,难以得到技术性的推广。固相萃取技术的推广解决了上述的问题,但传统的固相萃取剂对分析物的选择性不够理想,分子印迹固相萃取技术由于对模板分子具有特异性吸附的作用,可大大提高萃取效率,减少样品前处理时间,材料能反复使用,为结晶紫的分离与检测提供了更高效快速的前处理技术。
目前没有相关结晶紫分子印迹聚合物的相关技术报道。
发明内容
本发明要解决的技术问题是针对现有结晶紫检测分析技术不足,尤其是适用于结晶紫检测分析的分子印迹物技术不足,提供一种结晶紫分子印迹微球的合成方法。
本发明另一要解决的技术问题是提供所述分子印迹微球的应用。
本发明的目的通过以下技术方案予以实现:
提供一种结晶紫分子印迹微球的合成方法,以结晶紫为模板分子,在乙腈溶剂条件下,以α-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)或二乙烯苯(DVB)为交联剂,在引发剂作用下,经恒温水浴振荡沉淀聚合法聚合反应,合成得到结晶紫分子印迹聚合物(微球)。所述分子印迹微球对目标分子具有良好的吸附能力。
优选地,所述交联剂为乙二醇二甲基丙烯酸酯。
优选地,所述模板分子的浓度为4.167mmol/L。
优选地,所述结晶紫:功能单体:交联剂的摩尔比=1:4:20。在此比例条件下,得到的印迹聚合物对目标分子具有最大的吸附能力。
优选地,所述引发剂为2’2-偶氮二异丁腈(AIBN)。
优选地,所述恒温水浴的温度为60℃。
进一步地,本发明所述合成方法包括以下步骤:
S1.称取模板分子结晶紫和功能单体MAA溶解于溶剂中,预聚合;
S2.预聚合结束后加入交联剂和引发剂,通N2脱氧,密封后于60℃恒温水浴中聚合反应;
S2.步骤S2所得反应产物冷却至室温,离心干燥得聚合物,用甲醇和乙酸混合溶剂经索式提取法洗掉印迹分子及未反应的物质,直至洗脱液中检测不到印迹分子,再用甲醇洗去过量的乙酸,干燥,即得到结晶紫印迹聚合物(MIPs)。
优选地,步骤S1所述的预聚合的时间为1h。
优选地,步骤S2所述通N2脱氧的时间为10min。
优选地,步骤S2所述聚合反应的时间为24h。
优选地,所述甲醇和乙酸混合液中二者体积比为V(甲醇):V(乙酸)=9:1。
本发明所述分子印迹微球在对目标分子吸附方面具有良好的能力,可以很好的应用于结晶紫的检测中。通过动态吸附实验得知,本发明结晶紫分子印迹聚合物(微球)在吸附时间为6h达到最大值;在选择性吸附实验可知聚合物对结晶紫具有特异选择吸附性和更高的亲和力。
本发明的有益效果如下:
本发明首次利用沉淀聚合法制备得到结晶紫分子印迹微球,所述分子印迹微球可有效地吸附结晶紫并具有良好的专一识别性,通过对模板分子的识别与吸附,达到更好的分离富集效果。
本发明采用沉淀聚合法合成结晶紫分子印迹微球,在整体合成步骤的设计基础上,进一步总结得到优选的交联剂,获得优良的微球形貌性能,同时科学精确地研究了合成过程中,搅拌方式、模板分子、功能单体、交联剂、溶剂用量的比例对微球性能的影响。结果表明:采用恒温水浴振荡法,30mL乙腈为溶剂,EGDMA为交联剂,当模板分子:功能单体:交联剂摩尔比为1:4:20时,吸附容量为39.12μmol/g,印迹因子为3.17,表明合成制得的聚合物对目标分子具有良好的识别吸附能力,具有优异的应用前景。
附图说明
图1采用不同搅拌方式获得的微球形貌。
图2采用不同交联剂获得的微球形貌
图3本发明结晶紫分子印迹微球动态吸附曲线。
图4MIPs、NIPs吸附等温线。
图5聚合物吸附性能Scatchard分析结果。
具体实施方式
下面结合具体实施例进一步说明本发明。下述实施例仅用于示例性说明,不能理解为对本发明的限制。除非特别说明,下述实施例中使用的试剂为常规市购或商业途径获得的试剂,除非特别说明,下述实施例中使用的方法和设备为本领域常规使用的方法和设备。
实施例1
1.材料与方法
1.1实验试剂和仪器
结晶紫(分析纯,天津福晨化学试剂厂);结晶紫、孔雀石绿(标准品,中国计量科学研究院);α-甲基丙烯酸(MAA)(天津市科密欧化学试剂有限公司);二乙烯苯(DVB,80%)、2’2-偶氮二异丁腈(AIBN,98%)、乙二醇二甲基丙烯酸酯(EGDMA,98%)(阿拉丁试剂);乙腈、甲醇、氯仿、冰乙酸(分析纯,天津市大茂化学试剂厂)。
THZ-82水浴恒温振荡器,荣华仪器制造有限公司;KQ-300B型超声波清洗器,昆山市超声波仪器有限公司;HH-14数显恒温水浴锅,澳华仪器有限公司;UV-2450紫外分光光度计,安捷伦公司;AUY220型电子分析天平,日本岛津公司;TGL-16B高速离心机、TDL-80-2B台式离心机,上海安亭科学仪器厂;环境扫描电子显微镜(SEM),日本日立公司;EV311旋转蒸发仪,上海亚荣生化仪器有限公司。
1.2结晶紫分子印迹聚合物的制备
称取一定量的模板分子结晶紫和功能单体MAA溶解于一定量的溶剂中,预聚合1h,加入交联剂和引发剂AIBN,通N2脱氧10min,密封后于60℃恒温水浴中聚合24h。聚合产物取出冷却至室温,离心干燥得聚合物。用V(甲醇):V(乙酸)=9:1索式提取法洗掉印迹分子及未反应的物质,直至洗脱液中检测不到印迹分子,再用甲醇洗去过量的乙酸,干燥,即得到结晶紫印迹聚合物(MIPs)。在不加模板分子的条件下,以相同方法制得空白印迹聚合物(NIPs)。
表1结晶紫分子印迹微球的合成条件
Figure BDA0001456856440000041
Figure BDA0001456856440000051
水浴法是恒温水浴振荡的简称,偶氮二异丁腈的浓度为0.33mmol/l。
1.3结晶紫乙腈溶液标准曲线的绘制
分别配制1~5μg/mL结晶紫乙腈溶液,在580nm处测定其吸光度A值。以浓度C横坐标,吸光度A为纵坐标,得回归方程A=0.1859C,R2=0.9998,线性范围:1~11μg/mL。
1.4聚合物平衡吸附量Q的测定
称取30mg聚合物,加入10mL、2mmol/L的结晶紫乙腈溶液,振荡吸附6h,离心,稀释至一定浓度,测定其吸光度A,计算聚合物的吸附量Q。
Figure BDA0001456856440000061
式中Q:吸附量(μmol/g),C0:起始浓度(μg/mL),C1:平衡浓度(μg/mL),V:吸附溶液体积(mL),W:MIPs的重量(g),407.99:结晶紫的相对分子质量。
1.5MIPs动态吸附量的测定
平行称取六份30mg的MIPs,分别加入8mL 2mmol/L的结晶紫乙腈溶液,在室温下震荡2、4、6、8、10、12h,离心,取100μL上清液稀释至10mL,紫外分光光度计在580nm处测其吸光度,计算不同时间段聚合物的吸附量。
1.6MIPs的吸附等温线
准确称取MIPs及对应的非印迹分子聚合物NIPs各30mg,加入一定体积不同浓度的结晶紫乙腈溶液,在室温下振荡吸附6h。离心,取一定量的上清液稀释至10mL,测其吸光度,根据结晶紫浓度的变化绘制出MIPs的吸附等温线。
1.7微球选择性能表征
MIPs的竞争吸附实验:分别配制等浓度的结晶紫、孔雀石绿乙腈溶液,各加入30mg的MIPs与NIPs,吸附6h后分别在580nm、619nm下测定其吸光度,计算比较两者的吸附量。
1.6扫描电镜
将干燥的微球粘于双面胶上,真空喷金,用扫描电子显微镜(SEM)观察微球形貌,并从SEM图中测量50~100个微球的粒径,计算平均粒径。
2.结果与分析
2.1结晶紫分子印迹微球合成条件的考察
2.1.1溶剂的选择
溶剂在聚合过程中除了作溶解作用,还为聚合物提供多孔结构。实验发现结晶紫只能在少数溶剂中溶解,固定条件下,分别用30mL氯仿、乙腈溶液合成反应。大量实验发现虽然氯仿溶解性更好,但合成时容易挥发,聚合24h后瓶内全部结块,加大后续操作难度。而乙腈粘度较低,可以形成较小粒径的分散微球。故本发明确定后续实验采用乙腈作为溶剂。
2.1.2合成搅拌方法
实验选择两种合成搅拌方法:恒温水浴振荡法与旋转蒸发法,通过静态吸附实验考察微球的性能、SEM电镜观察微球形貌。表2所示为不同搅拌方式的微球产率及吸附性能结果,图1所示为不同搅拌方式下获得的微球形貌,图1中,左图为恒温水浴搅拌方式获得的微球形貌,右图为旋转蒸发搅拌方式获得的微球形貌。
表2不同搅拌方式的微球产率及吸附性能
Figure BDA0001456856440000071
从表2可以看出,利用恒温水浴振荡方式得到的微球产率较高,吸附量Q较大,达到39.12μmol/g。而由旋转蒸发得到的微球粒径过小,微球容易粘结,分散性差,从而加大洗脱难度,导致吸附量降低。
2.1.3交联剂对MIPs的影响
选用两种不同交联剂:EGDMA和DVB,通过比较两者的静态吸附量以及微球形态进行比较。表3为不同交联剂对微球吸附性能的影响。图2为采用不同的交联剂获得的微球形貌,其中左图为使用EGDMA作为交联剂获得的微球形貌,右图为使用DVB作为交联剂获得的微球形貌。
表3不同交联剂对微球吸附性能的影响
Figure BDA0001456856440000072
由表3可知,在相同条件下,EGDMA作为交联剂聚合物产率、吸附容量更高,而由DVB制得的微球表面更为光滑。分析认为,DVB中含苯环,刚性较强,形成的微球较为规则。但由于EGDMA交联后的产物同时具有一定的刚性和柔性,分子识别的过程中目标分子能够扩散进入印迹孔穴。而DVB交联后的产物刚性很大,柔性却很弱,这也是EGDMA作为交联剂获得的微球其吸附性能比DVB作为交联剂获得的微球吸附性能好的原因之一。
2.1.4溶剂用量的选择
表4不同溶剂用量对微球的影响
Figure BDA0001456856440000081
由表4可知,随着溶剂用量的增加,产率有所降低,但微球的吸附量逐渐增大,微球粒径也逐渐减小。其原因是随着溶剂用量的降低,导致体系流动性降低,模板分子被聚合物链包裹程度降低,合成的微球容易粘结,粒径增大,导致洗脱难度增大,影响了微球的吸附量。
2.1.5模板分子与功能单体配比的确定
固定交联剂与功能单体配比为5,改变模板分子用量,比较其吸附量,结果见表5所示。
表5模板分子用量对微球的影响
Figure BDA0001456856440000082
Figure BDA0001456856440000091
由表5可知,随着结晶紫浓度的增大,印迹聚合物的吸附容量先增后减。这是由于模板分子量越大,单位质量形成具有印迹孔穴的聚合物也随之增多,当加入的配比为4:1时,单位质量聚合物的孔穴达到饱和,再继续增加模板分子浓度,过量的模板分子在溶剂中溶解度不高,吸附容量不再增加。
2.1.6功能单体用量与交联剂配比的选择
表6功能单体用量对微球的影响
Figure BDA0001456856440000092
由表6可知,当功能单体MAA的量增加,聚合物的吸附容量先增后减,当模板分子:MAA:EGDMA摩尔比例为1:4:20时,吸附容量达到最大,且印迹因子为3.17。分析认为,因为增大功能单体的量更利于形成具有印迹孔穴的聚合物,而当模板分子过量时,MAA会发生自身的缔合,聚合物有效位点数减少,影响吸附性能。
2.2结晶紫分子印迹微球动态吸附性能研究
根据MIPs在不同吸附时间下的吸附量作出的动态吸附曲线如图3所示。由图3可知:MIPs初始吸附速率较快,在6h时达到最大吸附量,而随着时间增长,吸附量变小最终趋于稳定。原因是由于微球中的结合位点在刚开始吸附时未达到饱和,其仍有与模板分子结合的能力,吸附量增大;当达到6h时的吸附平衡后,聚合物表层孔穴被占据,结晶紫到达内部孔穴需要更长时间,且溶液中结晶紫的浓度降低,发生部分外吐的现象,使得吸附量降低,最终达到吸附平衡。
2.3聚合物吸附等温线
MIPs和NIPs对结晶紫乙腈溶液的吸附等温线如图4所示,由图4可知,在一定浓度范围内,聚合物的吸附量随结晶紫溶液的浓度增大而增大,最终趋于平衡。并且印迹聚合物的饱和吸附量较大,这是由于印迹聚合物通过模板分子进行印迹制备,形成了和模板分子大小、形态相匹配的印迹孔穴,具有特异结合位点,因此对模板分子具有更高的亲和力和特异识别性,使得吸附量大大增加。
2.4Scathard模型评价结晶紫印迹聚合物的吸附性能
由图5所示聚合物吸附性能Scatchard分析结果可见,Q/C和Q呈明显非线性关系,说明MIPs对结晶紫存在两种不同的吸附位点,这在非共价型分子印迹聚合物中是非常普遍的,产生两种不同结合位点的原因可能是功能单体MAA和模板分子结晶紫在自组装的过程中是以不同的配比进行组合的,形成了两种不同性质的印迹空穴。由两条相交直线的斜率和截距可求得平衡解离常数分别为Kd1=1.76×10-4mol/L,Kd2=0.5×10-4mol/L;
最大表观吸附量分别为Qmax1=36.34μmol/g,Qmax2=32.59μmol/g。
2.5结晶紫MIPs选择吸附性测定
实验选用结构相似的结晶紫和孔雀石绿进行选择性吸附实验,通过比较两者吸附量的大小考察聚合物的特异性吸附。
表7 MIPs、NIPs对结晶紫、孔雀石绿的吸附量比较
Figure BDA0001456856440000101
由表7可知,以结晶紫为模板分子合成所得的MIPs对结晶紫吸附量明显高于对孔雀石绿的吸附量。孔雀石绿的印迹分子α仅为1.28,即特异吸附性能较小。这是由于聚合物在合成时形成了和模板分子(结晶紫)大小、形态相匹配的立体结构印迹孔穴,因此MIPs对结晶紫有着特异的选择吸附性。
本发明创造性地采用改进地沉淀聚合法,以乙腈溶液为致孔剂、MAA为功能单体、EGDMA为交联剂,经水浴振荡法聚合,合成得到结晶紫分子印迹聚合物(微球),对目标分子具有良好的吸附能力。
而且,当模板分子在c=4.167mmol/L浓度下,结晶紫:MAA:EGDMA摩尔比=1:4:20时,得到的印迹聚合物对目标分子具有最大的吸附能力。
通过动态吸附实验得知,本发明结晶紫分子印迹聚合物(微球)在吸附时间为6h达到最大值;在选择性吸附实验可知聚合物对结晶紫具有特异选择吸附性和更高的亲和力。

Claims (6)

1.一种结晶紫分子印迹微球的合成方法,其特征在于,以结晶紫为模板分子,在乙腈溶剂条件下,以α-甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,在引发剂作用下,经恒温水浴振荡沉淀聚合法聚合反应,合成得到结晶紫分子印迹微球;
包括以下步骤:
S1. 称取模板分子结晶紫和功能单体MAA溶解于溶剂中,预聚合;
S2. 预聚合结束后加入交联剂和引发剂,通N2脱氧,密封后于60℃恒温水浴中聚合反应;
S3. 步骤S2所得反应产物冷却至室温,离心干燥得聚合物,用甲醇和乙酸混合溶剂经索式提取法洗掉印迹分子及未反应的物质,直至洗脱液中检测不到印迹分子,再用甲醇洗去过量的乙酸,干燥,即得到结晶紫印迹聚合物;
所述模板分子的浓度为4.167 mmol/L;
所述结晶紫:功能单体:交联剂的摩尔比=1:4:20。
2.根据权利要求1所述的合成方法,其特征在于,所述引发剂为2’2-偶氮二异丁腈。
3.根据权利要求1所述的合成方法,其特征在于,所述恒温水浴的温度为60℃。
4.根据权利要求1所述的合成方法,其特征在于,步骤S1所述的预聚合的时间为1 h;步骤S2所述通N2脱氧的时间为10 min;步骤S2所述聚合反应的时间为24 h。
5.根据权利要求1所述的合成方法,其特征在于,步骤S3所述甲醇和乙酸混合液中二者体积比为V(甲醇):V(乙酸)=9:1。
6.权利要求1至5任一项所述合成方法合成得到的结晶紫分子印迹微球及其在检测结晶紫方面的吸附应用。
CN201711076243.3A 2017-11-03 2017-11-03 结晶紫分子印迹微球的合成方法及应用 Active CN108084341B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711076243.3A CN108084341B (zh) 2017-11-03 2017-11-03 结晶紫分子印迹微球的合成方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711076243.3A CN108084341B (zh) 2017-11-03 2017-11-03 结晶紫分子印迹微球的合成方法及应用

Publications (2)

Publication Number Publication Date
CN108084341A CN108084341A (zh) 2018-05-29
CN108084341B true CN108084341B (zh) 2020-06-02

Family

ID=62171928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711076243.3A Active CN108084341B (zh) 2017-11-03 2017-11-03 结晶紫分子印迹微球的合成方法及应用

Country Status (1)

Country Link
CN (1) CN108084341B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058066B (zh) * 2021-07-26 2023-05-09 仲恺农业工程学院 一种表面印迹材料及其制备方法和在苦参碱分离纯化中的应用
CN113817100A (zh) * 2021-10-28 2021-12-21 昆明理工大学 一种三唑醇分子印迹聚合物微球的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864029B (zh) * 2010-05-21 2012-01-25 华南农业大学 一种分子印迹聚合物及其制备方法和应用
CN102432736B (zh) * 2011-09-05 2013-12-25 薛巍 一种单分散分子印迹聚合物纳米微球的制备方法
CN103833915B (zh) * 2012-11-20 2018-04-13 南开大学 适于纯生物样品的分子印迹聚合物纳米颗粒及其制备方法
CN103265666A (zh) * 2013-03-08 2013-08-28 河南工业大学 马拉硫磷分子印迹聚合物及马拉硫磷限进介质-分子印迹聚合物的合成方法
CN104833781B (zh) * 2015-05-26 2017-03-22 集美大学 一种水产品孔雀石绿的磁性分子印迹仿生elisa检测方法
CN107226882B (zh) * 2017-05-11 2019-09-13 佛山科学技术学院 一种表面修饰分子印迹固相微萃取探针及其制备与应用

Also Published As

Publication number Publication date
CN108084341A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
CN107469653B (zh) 一种富集和分离诺氟沙星的分子印迹复合膜的合成方法
Yavuz et al. Synthesis of cholesterol imprinted polymeric particles
Du et al. Preparation of surface-imprinted microspheres effectively controlled by orientated template immobilization using highly cross-linked raspberry-like microspheres for the selective recognition of an immunostimulating peptide
Chen et al. A graphene oxide surface–molecularly imprinted polymer as a dispersive solid-phase extraction adsorbent for the determination of cefadroxil in water samples
CN108084341B (zh) 结晶紫分子印迹微球的合成方法及应用
Prasad et al. Highly sensitive and selective hyphenated technique (molecularly imprinted polymer solid-phase microextraction–molecularly imprinted polymer sensor) for ultra trace analysis of aspartic acid enantiomers
CN105153367A (zh) 一种双氰胺介孔表面分子印迹聚合物微球的制备方法
Zeng et al. Molecularly imprinted polymer for selective extraction and simultaneous determination of four tropane alkaloids from Przewalskia tangutica Maxim. fruit extracts using LC-MS/MS
CN114409913B (zh) 一种磁性金属有机框架材料及其制备方法和应用
Javanbakht et al. Extraction and purification of penicillin G from fermentation broth by water-compatible molecularly imprinted polymers
CN105693960B (zh) 一种谷氨酸表面分子印迹聚合物硅胶微球的制备方法
Tan et al. Development of surface imprinted core–shell nanoparticles and their application in a solid-phase dispersion extraction matrix for methyl parathion
CN114471476B (zh) 磁性多孔有机骨架材料及其制备方法与应用
CN103301820B (zh) 核-壳型罗丹明b分子印迹固相萃取磁性材料及其制备方法和应用
CN110361462B (zh) 分子印迹管尖微萃取头及其制备方法
CN104277190B (zh) 一种核壳式紫外荧光分子印迹材料的制备及材料在磺胺检测中的应用
Wu et al. Binding characteristics of homogeneous molecularly imprinted polymers for acyclovir using an (acceptor–donor–donor)—(donor–acceptor–acceptor) hydrogen-bond strategy, and analytical applications for serum samples
CN104910339B (zh) 用于检测莱克多巴胺的磁性分子印迹聚离子液体及其制备方法和用途
CN103044639B (zh) 一种新型碳纳米管表面分子印迹聚合物及其制备方法
CN108864364B (zh) 一种l-苯丙氨酸分子印迹聚合物的制备方法
CN103599755A (zh) 苯乙醇胺a分子印迹膜及其制备方法与应用
Chen et al. Preparation of quercetin molecularly imprinted polymers
CN110590998B (zh) 一种磺胺类二甲基嘧啶分子印迹聚合物的合成方法及应用
Yong et al. Chiral helical substituted polyacetylene grafted on hollow polymer particles: preparation and enantioselective adsorption towards cinchona alkaloids
Shen et al. A triple-function zwitterion for preparing water compatible diclofenac imprinted polymers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Jiang Xuhong

Inventor after: Cheng Xingan

Inventor after: Liu Zhanmei

Inventor after: Ye Jingmin

Inventor after: Shu Xugang

Inventor before: Cheng Xingan

Inventor before: Jiang Xuhong

Inventor before: Liu Zhanmei

Inventor before: Ye Jingmin

Inventor before: Shu Xugang

GR01 Patent grant
GR01 Patent grant