CN108084323B - 一种可以富集紫杉醇分子印迹聚合物的制备方法 - Google Patents

一种可以富集紫杉醇分子印迹聚合物的制备方法 Download PDF

Info

Publication number
CN108084323B
CN108084323B CN201711369477.7A CN201711369477A CN108084323B CN 108084323 B CN108084323 B CN 108084323B CN 201711369477 A CN201711369477 A CN 201711369477A CN 108084323 B CN108084323 B CN 108084323B
Authority
CN
China
Prior art keywords
paclitaxel
molecularly imprinted
imprinted polymer
methanol
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711369477.7A
Other languages
English (en)
Other versions
CN108084323A (zh
Inventor
白建伟
张玉男
闫慧君
刘立佳
张文盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Gubao Technology Co ltd
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201711369477.7A priority Critical patent/CN108084323B/zh
Publication of CN108084323A publication Critical patent/CN108084323A/zh
Application granted granted Critical
Publication of CN108084323B publication Critical patent/CN108084323B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种可以富集紫杉醇分子印迹聚合物的制备方法,步骤如下:称取0.05~0.06mmol紫杉醇和0.5‑0.6mmol的甲基丙烯酸充分溶解于20.0‑40.0mL乙腈中,于容器中常温下振荡3‑6h;加入乙二醇二甲基丙烯酸、三硫代碳酸酯和偶氮二异丁腈,超声5‑20min,冷冻脱气3次,在真空状态下密封聚合得到白色粉末状聚合物;采用超声和索氏提取相结合的方式,以甲醇和乙酸的混合溶液洗脱,除去模板分子及未反应化合物,用甲醇洗涤除去残留的乙酸,最后真空干燥至恒重,所得的聚合物即为紫杉醇分子印迹聚合物;本发明所制备得到的分子印迹聚合物具有优良的热性能,良好的形态结构可应用于富集分离紫杉醇,为分子印迹聚合物固相萃取分离,富集紫杉醇提供可靠的参考。

Description

一种可以富集紫杉醇分子印迹聚合物的制备方法
技术领域
本发明涉及一种有机高分子材料的制备方法,尤其涉及一种可以富集紫杉醇分子印迹聚合物的制备方法。
背景技术
分子印迹技是一种制备对目标化合物(模板分子)具有强亲和力和高选择性的高分子聚合物材料的新型技术。制备得到的聚合物称为分子印迹聚合物(MIPs)。由于MIPs是以特定的目标化合物为模板合成的,其在空间结构和功能基位置上与模板分子高度吻合,从而具有对模板分子及其结构类似物进行记忆性识别的能力。这种记忆性识别具有高度的选择性和专一性。分子印迹聚合物因其独特的性质,目前广泛应用于分离、分析、催化、传感器等各个领域,发展前景十分广阔。
紫杉醇是一种从植物中提取出来的中草药,而中草药制剂的质量很大程度上依赖于中草药中各类功能因子的分离/提取效果。因此,开展从复杂的中草药体系中选择性地分离和提取有效功能因子的研究具有十分重要的应用价值和现实意义。
甲基丙烯酰氧基倍半硅氧烷(POSS)具有一个由硅氧骨架组成的无机内核,其形状多为多面体,故得名为多面体倍半硅氧烷,其三维尺寸在1nm至3nm之间,可以为紫杉醇分子提供进出分子印迹聚合物的通道,调整POSS试剂的含量可提高紫杉醇的吸附和释放效率。
发明内容
本发明的目的是提供一种可以富集热性能优良、形态结构良好的紫杉醇分子印迹聚合物的制备方法。
本发明的目的是这样实现的:
步骤如下:
(1)称取0.05~0.06mmol紫杉醇和0.5-0.6mmol的甲基丙烯酸充分溶解于20.0-40.0mL乙腈中,于容器中常温下振荡3-6h。
(2)加入乙二醇二甲基丙烯酸、三硫代碳酸酯和偶氮二异丁腈,超声5-20min,冷冻脱气3次,在真空状态下密封聚合得到白色粉末状聚合物;
(3)采用超声和索氏提取相结合的方式,以甲醇和乙酸的混合溶液洗脱,除去模板分子及未反应化合物,用甲醇洗涤除去残留的乙酸,最后真空干燥至恒重,所得的聚合物即为紫杉醇分子印迹聚合物。
本发明还包括这样一些结构特征:
1.所述步骤(2)中额外加入甲基丙烯酰氧基倍半硅氧烷。
2.引发剂偶氮二异丁腈的质量是功能单体甲基丙烯酸和交联剂乙二醇二甲基丙烯酸总质量的1%。
3.所述甲醇和乙醇的混合溶液中甲醇和乙醇的体积比为9:1。
4.所述步骤(2)中聚合的温度为60℃,时间为24h。
以紫杉醇(PTX)模板分子,采用沉淀聚合法制备了相应的分子印迹聚合物,并对其进行了结构表征。这种分子印迹聚合物的的最佳合成条件是:乙腈为致孔剂,甲基丙烯酸为功能单体,紫杉醇(PTX)为模板分子,乙二醇二甲基丙烯酸为交联剂(EGDMA),S-十二烷基-S′-(α,α′-二甲基-α″-乙酸)三硫代碳酸酯(CTA)为链转移剂,偶氮二异丁腈(AIBN)为引发剂,反应温度为60℃,在氮气保护下反应24h。采用超声和索氏提取相结合的方式,以甲醇/乙酸(v/v=9/1)溶液洗脱,除去模板分子及未反应化合物,用甲醇洗涤除去残留的乙酸,用离心机收集产物,最后真空干燥至恒重,所得的聚合物即为紫杉醇分子印迹聚合物。
与现有技术相比,本发明的有益效果是:
POSS特有的笼型结构,可以有效的提高分子印迹聚合物的热稳定性;改善分子印迹聚合物的孔径大小,为紫杉醇分子提供进出分子印迹聚合物的通道,调整POSS试剂的含量可提高紫杉醇的吸附和释放效率。本发明所制备得到的分子印迹聚合物具有优良的热性能,良好的形态结构可应用于富集分离紫杉醇,为印迹聚合物固相萃取分离、富集紫杉醇提供可靠的参考。
本发明即以紫杉醇为模板分子结,可逆加成-断裂链转移沉淀聚合(RAFTPP)与POSS的优势,以提高所产生的紫杉醇分子印迹聚合物(PTX-MIPs)的印记效果,制备了相应的分子印迹聚合物,运用傅立叶一红外光谱仪(FTIR)、紫外可见光谱仪(UV-vis)、热重分析仪(TGA)、扫描电镜(SEM)等对其进行了结构表征。通过光谱法考察了模板分子和功能单体之间的非共价作用。采用吸附实验,考察了印迹聚合物的吸附特性和分子选择性能,并通过实验评价了四种印迹聚合物对紫杉醇的特异性吸附和释放效果。
附图说明
图1a为P1表面的扫描电镜图;
图1b为P2表面的扫描电镜图;
图1c为P1表面的扫描电镜图;
图1d为P2表面的扫描电镜图;
图2为P1,P2,P3和P4的红外光谱图;
图3为P1,P2,P3和P4的热重分析图;
图4a为P1,P2,P3和P4的氮气吸附脱附曲线;
图4b为P1,P2,P3和P4的孔径分布曲线;
图5为P1,P2,P3和P4的紫杉醇包覆率和装载率图;
图6a为P1,P2,P3和P4紫杉醇释放曲线
图6b为P3在不同pH的紫杉醇释放曲线。
具体实施方式
下面结合附图举实例对本发明作进一步说明
下面通过实施例对本发明进行具体描述,有必要在此指出的是,本发明实施例只用于对本发明进行进一步说明,但不能理解为对本发明保护范围的限制,该领域的技术熟练人员根据上述本发明的内容作出一些非本质的改进和调整。
实施例1
(1)称取0.05-0.06mmol PTX和0.50~0.60mmol功能单体MAA充分溶解于20.0~40.0mL乙腈中,于圆底烧瓶中常温下回旋振荡器中振荡3-6h。
(2)加入交联剂EGDMA,链转移剂CTA和功能单体和交联剂质量的1%的引发剂AIBN,充分混溶后,超声约15到20min,冷冻脱气3次,在真空状态下密封。将密封好的原地烧瓶在一定温度下聚合24h,得到白色粉末状聚合物。
(3)采用超声和索氏提取相结合的方式,以甲醇和乙酸混合溶液(v/v=9:1)溶液洗脱,除去模板分子及未反应化合物,用甲醇洗涤除去残留的乙酸,最后真空干燥至恒重,所得的聚合物即为紫杉醇分子印迹聚合物(P1)。
红外光谱测试结果(KBr,cm-1):3549(羧基中的氢氧伸缩振动);2988甲基碳氢特征振动峰;2955(亚甲基碳氢特征震动峰);1728(羧基的碳氧双键伸缩振动峰);1389(羧基的碳氧单键伸缩振动峰),其吸收强度较弱;1047(碳硫双键部分伸缩振动峰)。红外光谱证实所得产物为目标产物。
采用电子扫描显微镜观察分子印迹聚合物的形态结构,可以看出分子印迹聚合物具有良好的形态结构。
将所得的分子印迹聚合物放入真空干燥箱内,在60℃条件下干燥12h,TGA测试,得到分子印迹聚合物的失重速率最快Tg为382℃,失重5%和10%所对应的热分解温度(简写为T5和T10)分别为280和313℃,650℃下的残炭率Yc为0%。
实施例2
除将步骤(2)额外加入(8.45mg,0.0059mmol)POSS外,其他条件同实施例1,最后得到白色粉末状分子印迹聚合物(P2)0.73g。
红外光谱测试结果(KBr,cm-1):3565,2986,2955,1732,1390和1048。
采用电子扫描显微镜观察分子印迹聚合物的形态结构,可以看出分子印迹聚合物具有良好的形态结构。
TGA测试条件同实施例1,分子印迹聚合物P2的Tg、T5、T10和Yc值分别为437℃、278℃、331℃和1.78%。
实施例3
除将步骤(2)额外加入(84.5mg,0.059mol)POSS外,其他条件同实施例1,最后得到白色粉末状分子印迹聚合物(P3)0.89g。
红外光谱测试结果(KBr,cm-1):3551,2986,2955,1732,1390和1048。
采用电子扫描显微镜观察分子印迹聚合物的形态结构,可以看出分子印迹聚合物具有良好的形态结构。
TGA测试条件同实施例1,分子印迹聚合物P2的Tg、T5、T10和Yc值分别为448℃、278℃、331℃和6.8%。
实施例4
除将步骤(2)中额外加入(169.2mg,0.118mmol)POSS外,其他条件同实施例1,最后得到白色粉末状分子印迹聚合物(P4)0.84g。
红外光谱测试结果(KBr,cm-1):3557,2988,2955,1732,1390和1048。
采用电子扫描显微镜观察分子印迹聚合物的形态结构,可以看出分子印迹聚合物具有良好的形态结构。
TGA测试条件同实施例1,分子印迹聚合物P2的Tg、T5、T10和Yc值分别为444℃、269℃、325℃和4.2%。
空白试验
相应的空白聚合物(non-imprinted polymers NIPS)的制备除不加模板分子PTX外,其它均与印迹聚合物相同,记为NIP。
红外光谱测试结果(KBr,cm-1):3549,2988,2955,1389和1049。
采用电子扫描显微镜观察分子印迹聚合物的形态结构,可以看出聚合物NIP具有良好的形态结构。
空白聚合物的红外光谱图和分子印迹聚合物的相似,但是在3550-3570cm-1的红外光谱图有明显的不同,这是因为空白聚合物未形成氢键,羟基的吸收处于较高的波数端,且吸收峰较尖锐。当形成分子间氢键时,由于键力常数的减小,吸收移向较低波数迁移,峰型宽而钝,但其强度增加而吸收比较强。
波数为3565cm-1处为羧基中的氢氧伸缩振动;1047cm-1谱峰,它是碳硫双键的振动峰;si-o-si的红外吸收峰在1000-1100cm-1。碳碳1143-1162cm-1为C-O的伸缩振动峰,硅氧硅键的红外吸收峰的波数小于碳氧键,因此随着加入POSS试剂比例的增加,C-O吸收峰的位置会向波数减小的位置迁移,因此从红外可以观察到在P8、P9、P10、P11聚合物中POSS试剂添加量由0%、1%、10%逐渐增大,而碳硫双键吸收峰逐渐被遮挡,当增加到20%时,碳硫双键的红外吸收峰会被完全掩盖。
释放实例
在释放实验中,我们选取适量合成的聚合物来进行释放实验。首先配制pH=5的磷酸盐缓冲液,分别向离心管中加入40mL pH=5的磷酸盐缓冲液,随后向其中各个离心管里称取20mg的PTX-MIPs聚合物,使用旋转振荡器在37℃条件下进行,在适当的时间,将离心管在11000转速下,离心30分钟,将离心管的上层清夜转移到分液漏斗中,取多少上层清液就要加入多少新鲜的磷酸缓冲液。然后分别量取40mL的二氯甲烷加入分液漏斗中做萃取剂,多次震荡并静置,逐一进行。最后将下层二氯甲烷与目标分子混合物放出,用离心管将混合液放在真空干燥箱中干燥。
如此重复搅拌、离心和萃取。待每次萃取干燥后,再向离心管中加入适量乙腈溶解,并在紫外分光光度仪上测出并记录吸光度,再与之前的标准曲线对比,从而得出目标分子的浓度。可由此得出各个聚合物的紫杉醇的释放曲线。
选取吸附、释放性能最优聚合物P3在pH=7和PH=6的情况下进行研究,可以得出在酸性条件下,紫杉醇的释放效率高于中性条件。

Claims (5)

1.一种可以富集紫杉醇分子印迹聚合物的制备方法,其特征在于,步骤如下:
(1)称取0.5mmol紫杉醇和甲基丙烯酸充分溶解于20.0mL乙腈中,于容器中常温下回旋振荡器中振荡6h;
(2)加入交联剂乙二醇二甲基丙烯酸,链转移剂三硫代碳酸酯和引发剂偶氮二异丁腈,超声5-20min,冷冻脱气3次,在真空状态下密封聚合得到白色粉末状聚合物;
(3)采用超声和索氏提取相结合的方式,以甲醇和乙酸的混合溶液洗脱,除去模板分子及未反应化合物,用甲醇洗涤除去残留的乙酸,最后真空干燥至恒重,所得的聚合物即为紫杉醇分子印迹聚合物;
所述步骤(2)中额外加入甲基丙烯酰氧基倍半硅氧烷。
2.根据权利要求1所述的紫杉醇分子印迹聚合物的制备方法,其特征在于,引发剂偶氮二异丁腈的质量是功能单体甲基丙烯酸和交联剂乙二醇二甲基丙烯酸总质量的1%。
3.根据权利要求1或2所述的紫杉醇分子印迹聚合物的制备方法,其特征在于,所述甲醇和乙酸的混合溶液中甲醇和乙酸的体积比为9:1。
4.根据权利要求1或2所述的紫杉醇分子印迹聚合物的制备方法,其特征在于,所述步骤(2)中聚合的温度为60℃,时间为24h。
5.根据权利要求3所述的紫杉醇分子印迹聚合物的制备方法,其特征在于,所述步骤(2)中聚合的温度为60℃,时间为24h。
CN201711369477.7A 2017-12-19 2017-12-19 一种可以富集紫杉醇分子印迹聚合物的制备方法 Active CN108084323B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711369477.7A CN108084323B (zh) 2017-12-19 2017-12-19 一种可以富集紫杉醇分子印迹聚合物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711369477.7A CN108084323B (zh) 2017-12-19 2017-12-19 一种可以富集紫杉醇分子印迹聚合物的制备方法

Publications (2)

Publication Number Publication Date
CN108084323A CN108084323A (zh) 2018-05-29
CN108084323B true CN108084323B (zh) 2020-05-15

Family

ID=62177106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711369477.7A Active CN108084323B (zh) 2017-12-19 2017-12-19 一种可以富集紫杉醇分子印迹聚合物的制备方法

Country Status (1)

Country Link
CN (1) CN108084323B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109232782A (zh) * 2018-08-10 2019-01-18 东北林业大学 一种靶向吸附分离紫杉醇的分子印迹聚合物的制备方法
CN113929840B (zh) * 2021-10-11 2022-12-02 华中科技大学 一种用于分离富集紫杉烷的中空多孔介质、其制备和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104693353A (zh) * 2015-03-06 2015-06-10 南开大学 一种可富集紫杉醇的分子印迹聚合物的制备方法
CN107412149A (zh) * 2017-08-07 2017-12-01 天津医科大学 紫杉醇胃内滞留分子印迹控缓释给药系统及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104693353A (zh) * 2015-03-06 2015-06-10 南开大学 一种可富集紫杉醇的分子印迹聚合物的制备方法
CN107412149A (zh) * 2017-08-07 2017-12-01 天津医科大学 紫杉醇胃内滞留分子印迹控缓释给药系统及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Molecularly imprinted polymer prepared with polyhedral oligomeric silsesquioxane through reversible addition–fragmentation chain transfer polymerization;Shu-Ping Gao et al.;《Anal Bioanal Chem》;20170325;第409卷(第15期);第3741-3748页 *

Also Published As

Publication number Publication date
CN108084323A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
US11612878B2 (en) Synthesis and application of a nanomaterial for removal of patulin
CN108745321B (zh) 用于分离花色苷的虚拟模板分子印迹磁性微球的制备方法
CN102924645B (zh) 一种青霉素类抗生素及其中间体的分子印迹型聚合物的制备方法与应用
CN108084323B (zh) 一种可以富集紫杉醇分子印迹聚合物的制备方法
Tan et al. Development of surface imprinted core–shell nanoparticles and their application in a solid-phase dispersion extraction matrix for methyl parathion
An et al. Novel ionic surface imprinting technology: design and application for selectively recognizing heavy metal ions
CN104415740A (zh) 亲水色谱填料及其制备方法与应用
Chen et al. Magnetic molecularly imprinted polymers synthesized by surface‐initiated reversible addition‐fragmentation chain transfer polymerization for the enrichment and determination of synthetic estrogens in aqueous solution
CN109232782A (zh) 一种靶向吸附分离紫杉醇的分子印迹聚合物的制备方法
Yang et al. One-step double emulsion via amphiphilic SeN supramolecular interactions: Towards porous multi-cavity beads for efficient recovery lithium from brine
CN103554363A (zh) 纳米二氧化硅基强力霉素分子印迹聚合物的制备及应用
Ma et al. Water‐compatible imprinted polymers based on CS@ SiO2 particles for selective recognition of naringin
Wang et al. Preparation of magnetic molecularly imprinted polymer beads and their recognition for baicalein
CN109517181A (zh) 一种氨基化磁性纳晶纤维素的制备方法
CN110982022B (zh) 一种磁性辣椒碱分子印迹聚合物及其制备方法
CN107022037B (zh) 一种2,6-二氨基吡啶改性壳聚糖及其制备方法和应用
Li et al. Study on the binding characteristic of S-naproxen imprinted polymer and the interactions between templates and monomers
CN108047380A (zh) 一种β-环糊精印迹聚合物的制备方法
CN104610502B (zh) 基于甲基丙烯酰氧基倍半硅氧烷交联剂的茶皂素分子印迹聚合物的合成方法
CN107597080B (zh) 一种免功能单体和交联剂的全氟辛磺酸分子印迹聚合物制备方法
CN103224589B (zh) 一种氨基糖苷类抗生素分子印迹聚合物的制备方法及应用
CN106565915B (zh) 一种双温敏型介孔印迹聚合物的制备方法
Qiu et al. Determination of phenolic compounds in environmental water by HPLC combination with on-line solid-phase extraction using molecularly imprinted polymers
Hashemi-Moghaddam et al. Synthesis and comparison of new layer-coated silica nanoparticles and bulky molecularly imprinted polymers for the solid-phase extraction of glycine
Del Sole et al. Noncovalent imprinted microspheres: preparation, evaluation and selectivity of DBU template

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220623

Address after: 150000 No. 2, floor 1, unit 5, building 5, Dazhong Jiayuan, Nangang District, Harbin, Heilongjiang Province (residential)

Patentee after: Harbin Gubao Technology Co.,Ltd.

Address before: 150001 Intellectual Property Office, Harbin Engineering University science and technology office, 145 Nantong Avenue, Nangang District, Harbin, Heilongjiang

Patentee before: HARBIN ENGINEERING University

TR01 Transfer of patent right