CN108070824A - 减小光学薄膜内应力的镀膜方法 - Google Patents
减小光学薄膜内应力的镀膜方法 Download PDFInfo
- Publication number
- CN108070824A CN108070824A CN201611012072.3A CN201611012072A CN108070824A CN 108070824 A CN108070824 A CN 108070824A CN 201611012072 A CN201611012072 A CN 201611012072A CN 108070824 A CN108070824 A CN 108070824A
- Authority
- CN
- China
- Prior art keywords
- film
- optical thin
- internal stress
- thin film
- plating process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明提供了一种减小光学薄膜内应力的镀膜方法,将SiO2或者ZrO的薄膜基片放入真空室内在275‑285℃的温度下烘烤90min,关闭烘烤,进行蒸镀。能消除薄膜内应力或者减少应力的产生,最终保证膜厚不受内应力的影响。
Description
技术领域
本发明属于光学技术领域,涉及一种镀膜方法,具体涉及一种减小光学薄膜内应力的镀膜方法。
背景技术
目前,光学薄膜技术对于薄膜的物理特性都是通过光学镀膜工艺来控制的,包括抽真空、真空室加温烘烤、离子源轰击和镀膜等工艺过程,此种工艺对一般较薄物理厚度的常用氧化物薄膜厚度比较适用,但当薄膜厚度达到8000纳米以上,随着膜层层度的增加其内应力达到一定程度就会导致膜裂,之后导致脱膜现象。
随着激光技术、图像技术、红外技术等在高科技产品中的应用,对光学薄膜的性能要求、光学特性要求逐渐提高,并在同一光学系统中完成并实现光波、光信息要求,这样就导致光学薄膜厚度越来越厚,要求越来越高。如YAG1064多角度激光反射镜、多波长及激光反射系统、中红外薄膜的检测遥感技术等。因此,解决光学薄膜膜裂问题的方法也就显得较为迫切。
发明内容
针对上述技术问题,本发明提出了一种减小光学薄膜内应力的镀膜方法,能消除薄膜内应力或者减少应力的产生,最终保证膜厚不受内应力的影响。
为了实现上述发明目的,本发明采用如下技术方案:
减小光学薄膜内应力的镀膜方法,将SiO2或者ZrO的薄膜基片放入真空室内在275-285℃的温度下烘烤90min,关闭烘烤,进行蒸镀。
本发明方法用于薄膜厚度为8000纳米以上的光学薄膜。
本发明进一步的优选方案是:膜厚度每镀制到4000纳米厚时,暂停蒸镀15-30分钟。让膜层直接产生的应力得到释放,而不能一次性镀制完成,否则膜层物理厚度太厚,就会导致膜层开裂,致使膜裂及掉膜。
本发明针对SiO2和ZrO两种特定膜料,配合工艺在抽真空过程中设置烘烤温度由传统的220℃提高到275-285℃,使基片材料内部应力进行释放,消除基片对薄膜产生的应力,然后在开蒸镀的时候关闭烘烤,这样可以让薄膜形成过程尽可能不产生新的应力,使光学薄膜达到一定8000纳米以上的物理厚度后仍不产生膜裂,保证膜厚不受内应力的影响。
具体实施例
为了便于本领域技术人员理解,下面将结合实施例对本发明做进一步的描述。
实施例1
减小光学薄膜内应力的镀膜方法,将SiO2的薄膜基片放入真空室内在275℃的温度下烘烤90min,关闭烘烤,进行蒸镀。
实施例2
减小光学薄膜内应力的镀膜方法,将ZrO的薄膜基片放入真空室内在285℃的温度下烘烤90min,关闭烘烤,进行蒸镀。
所述光学薄膜的厚度为8000nm以上。
实施例3
减小光学薄膜内应力的镀膜方法,将SiO2的薄膜基片放入真空室内在280℃的温度下烘烤90min,关闭烘烤,进行蒸镀。
所述光学薄膜的厚度为8000nm以上。
膜厚度每镀制到4000纳米厚时,暂停蒸镀15分钟。
实施例4
减小光学薄膜内应力的镀膜方法,将ZrO的薄膜基片放入真空室内在276℃的温度下烘烤90min,关闭烘烤,进行蒸镀。
所述光学薄膜的厚度为8000nm以上。
膜厚度每镀制到4000纳米厚时,暂停蒸镀30分钟。
实施例5
减小光学薄膜内应力的镀膜方法,将SiO2的薄膜基片放入真空室内在282℃的温度下烘烤90min,关闭烘烤,进行蒸镀。
所述光学薄膜的厚度为8000nm以上。
膜厚度每镀制到4000纳米厚时,暂停蒸镀20分钟。
以上所述实施例仅表达了本发明的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。
Claims (3)
1.减小光学薄膜内应力的镀膜方法,其特征在于,将SiO2或者ZrO的薄膜基片放入真空室内在275-285℃的温度下烘烤90min,关闭烘烤,进行蒸镀。
2.根据权利要求1所述的减小光学薄膜内应力的镀膜方法,其特征在于,所述光学薄膜的厚度为8000nm以上。
3.根据权利要求2所述的减小光学薄膜内应力的镀膜方法,其特征在于,膜厚度每镀制到4000纳米厚时,暂停蒸镀15-30分钟。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611012072.3A CN108070824A (zh) | 2016-11-17 | 2016-11-17 | 减小光学薄膜内应力的镀膜方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611012072.3A CN108070824A (zh) | 2016-11-17 | 2016-11-17 | 减小光学薄膜内应力的镀膜方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108070824A true CN108070824A (zh) | 2018-05-25 |
Family
ID=62163456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611012072.3A Pending CN108070824A (zh) | 2016-11-17 | 2016-11-17 | 减小光学薄膜内应力的镀膜方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108070824A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109212646A (zh) * | 2018-10-19 | 2019-01-15 | 苏州文迪光电科技有限公司 | 一种滤光片镀膜工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101209904A (zh) * | 2006-12-26 | 2008-07-02 | 比亚迪股份有限公司 | 一种镀膜玻璃 |
CN103147047A (zh) * | 2013-03-21 | 2013-06-12 | 上海理工大学 | 低紫外光学损耗的光学薄膜的制备方法 |
CN103233200A (zh) * | 2013-03-28 | 2013-08-07 | 同济大学 | 一种355nm高阈值高反膜的制备方法 |
CN204166157U (zh) * | 2014-11-14 | 2015-02-18 | 孟繁有 | 一种通带波段为430-450nm的带通滤光片及陈米筛选系统 |
CN104536064A (zh) * | 2015-01-08 | 2015-04-22 | 中国科学院国家天文台南京天文光学技术研究所 | 光学超宽带增透膜的复合制作方法 |
-
2016
- 2016-11-17 CN CN201611012072.3A patent/CN108070824A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101209904A (zh) * | 2006-12-26 | 2008-07-02 | 比亚迪股份有限公司 | 一种镀膜玻璃 |
CN103147047A (zh) * | 2013-03-21 | 2013-06-12 | 上海理工大学 | 低紫外光学损耗的光学薄膜的制备方法 |
CN103233200A (zh) * | 2013-03-28 | 2013-08-07 | 同济大学 | 一种355nm高阈值高反膜的制备方法 |
CN204166157U (zh) * | 2014-11-14 | 2015-02-18 | 孟繁有 | 一种通带波段为430-450nm的带通滤光片及陈米筛选系统 |
CN104536064A (zh) * | 2015-01-08 | 2015-04-22 | 中国科学院国家天文台南京天文光学技术研究所 | 光学超宽带增透膜的复合制作方法 |
Non-Patent Citations (4)
Title |
---|
周国宝: "光学薄膜生长过程的缺陷形成机理研究", 《中国优秀硕士学位论文全文数据库》 * |
季一勤: "离子束溅射高性能SiO2薄膜特性研究", 《中国博士学位论文全文数据库》 * |
毛文凡: "塑料透镜表面预处理及其镀膜工艺", 《光学技术》 * |
蒋钊等: "薄膜的应力控制技术研究现状", 《真空科学与技术学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109212646A (zh) * | 2018-10-19 | 2019-01-15 | 苏州文迪光电科技有限公司 | 一种滤光片镀膜工艺 |
CN109212646B (zh) * | 2018-10-19 | 2021-09-21 | 苏州文迪光电科技有限公司 | 一种滤光片镀膜方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110484869B (zh) | 一种防霉防潮光学薄膜及其制备方法 | |
RU2012147263A (ru) | Улучшение адгезии органических покрытий на стекле | |
DE60233418D1 (de) | Verfahren zur grosstechnischen herstellung von cdte/cds dünnschicht-solarzellen | |
WO2009145492A3 (ko) | 마그네트론 스퍼터링에 의한 후막제조방법 | |
CN110373644B (zh) | 一种光学炫彩薄膜及其制作方法 | |
CN109136859A (zh) | 一种制备高透光率氧化镓薄膜的方法 | |
CN108048803A (zh) | 一种镜片镀膜方法 | |
CN108070824A (zh) | 减小光学薄膜内应力的镀膜方法 | |
CN106191799A (zh) | 一种不锈钢af涂层工艺 | |
CN104459835A (zh) | 一种红外玻璃gasir1增透膜及其制备方法 | |
CN107602997A (zh) | 一种eva彩色太阳能胶片的生产工艺 | |
CN204331075U (zh) | 一种红外玻璃gasir1增透膜 | |
CN111286700B (zh) | 基于混合物单层膜的光学镀膜元件面形补偿方法 | |
RU2015101144A (ru) | Изолирующее покрытие для стеклянных контейнеров | |
CN102337501A (zh) | 真空镀膜件及其制备方法 | |
Hsu et al. | Anti-reflective effect of transparent polymer by plasma treatment with end-hall ion source and optical coating | |
CN104733292A (zh) | 超薄自支撑单晶钛酸钡薄膜制备方法 | |
López et al. | Influence of the bilayer thickness on the optical properties of Al2O3-Y2O3 dielectric nanolaminate films grown by thermal atomic layer deposition | |
CN103586183A (zh) | Uv胶固化方法及oled封装方法 | |
CN103255372A (zh) | 一种耐高温和耐uv的led防潮薄膜及其制备方法 | |
CN204009123U (zh) | 一种铝膜反射镜 | |
CN102242339B (zh) | 一种氧稳定氟化钇薄膜的制备方法 | |
Winkowski et al. | Wide band antireflective coatings Al2O3/HfO2/MgF2 for UV region | |
CN107479116A (zh) | 一种双面低反射铬膜系及其制备方法 | |
TWI753095B (zh) | 含二烷基鋅及二烷基鋅部分水解物之溶液及使用彼等溶液之氧化鋅薄膜之製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180525 |
|
RJ01 | Rejection of invention patent application after publication |