CN108033805B - 一种无机纳米包覆结构绝热材料及其制备方法 - Google Patents

一种无机纳米包覆结构绝热材料及其制备方法 Download PDF

Info

Publication number
CN108033805B
CN108033805B CN201711294033.1A CN201711294033A CN108033805B CN 108033805 B CN108033805 B CN 108033805B CN 201711294033 A CN201711294033 A CN 201711294033A CN 108033805 B CN108033805 B CN 108033805B
Authority
CN
China
Prior art keywords
particles
polyethylene
nano
silicon dioxide
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711294033.1A
Other languages
English (en)
Other versions
CN108033805A (zh
Inventor
黄丛亮
甄文开
蔺子甄
黄尊
吴东旭
罗笑
刘尚
钟金鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201711294033.1A priority Critical patent/CN108033805B/zh
Publication of CN108033805A publication Critical patent/CN108033805A/zh
Application granted granted Critical
Publication of CN108033805B publication Critical patent/CN108033805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • C04B38/0041Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter the particulate matter having preselected particle sizes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)
  • Thermal Insulation (AREA)

Abstract

本发明公开了一种无机纳米包覆结构绝热材料的制备方法,包括以下步骤:步骤一:在室温条件下,分别将粒径为150‑250nm的二氧化硅颗粒与粒径为100‑150nm的聚乙烯颗粒以8:2‑4:6的质量比混合,加入红外遮蔽剂放入至超声分散机中,以400W功率超声分散60min;步骤二:放入干燥箱,在60℃的温度下完全干燥;再放入球磨机中,在300K的温度下进行球磨分散混合;步骤三:采用冷压法压制成型;步骤四:放入管式炉中进行烧结,温升速率10℃/min,烧结时间60min,得到无机纳米包覆结构绝热材料。本发明所制备的无机纳米包覆结构绝热材料具有密度小,孔道分布均匀和导热系数比较低、导电等特点,制备工艺简单,原材料价格低廉,降低生产成本。

Description

一种无机纳米包覆结构绝热材料及其制备方法
技术领域
本发明涉及一种绝热材料及其制备方法,特别是一种无机纳米包覆结构绝热材料及其制备方法。
背景技术
纳米绝热材料是指在预定的使用条件下,其导热系数低于“无对流空气”导热系数的绝热材料。目前,人类一直在开发具有独特性能的新材料和改善现有材料的性能,以满足自身不断发展的生产和生活的需要,如高温超导材料的开发,超轻硬质材料的研制等。而通过复合技术开发具有特定热物理性能的新材料的过程,即属于材料热物性设计的范畴。
纳米复合材料是指两种或两种以上固相材料组成,且其中某一分散相具有纳米尺度的复合材料。纳米复合材料的性能不仅优于其组成材料成分中的任意一种,还具有单一组分所不具备的独特性能;另外,这种材料还兼具纳米尺寸材料独有的各项效应,因此纳米复合材料迅速成为当前世界科学研究的热点之一。进入21世纪,高科技的飞速发展对高性能材料的要求越来越高,“纳米尺寸合成”为发展高性能新材料和改善现有材料的性能提供了全新的途径,包覆结构纳米复合材料成为复合材料、纳米材料等领域研究的热点。
公开号为CN104448372A公开了一种纳米二氧化硅聚乙烯薄膜的制备方法,将乙醇、氨水和超纯水混合,逐滴加入正硅酸乙酯;室温下密封搅拌得二氧化硅溶胶;将超声清洗干净的聚乙烯薄膜在二氧化硅溶胶中采用浸渍提拉的方法处理,自然晾干后,即可制得涂有纳米二氧化硅的聚乙烯薄膜。本发明的纳米二氧化硅聚乙烯薄膜的制备方法虽然产生的二氧化硅粒子的粒径很小,具有极大的表面积,高的表面自由能,亲水性能较好,但其耐高温性和力学性能差,导热系数高。
公开号为CN106867078A公开了一种纳米二氧化硅/低密度聚乙烯复合材料及其制备方法,该复合材料是由低密度聚乙烯、改性纳米二氧化硅和抗氧剂组成,其制备方法是将低密度聚乙烯、改性纳米二氧化硅和抗氧剂加入到混炼机中,熔融共混,即得复合材料。该复合材料制作工艺简单,但其表现出对空间电荷有很好的抑制能力,导电性能不良。
发明内容
本发明的目的是提供一种无机纳米包覆结构绝热材料及其制备方法,本发明所制备的无机纳米包覆结构绝热材料不仅密度小,孔道分布均匀,而且导热系数较低、导电性能良好,同时该制备方法简单,原材料价格低廉,降低生产成本。
为实现上述目的,本发明的技术方案是:一种无机纳米包覆结构绝热材料的制备方法,包括以下步骤:
步骤一:在室温条件下,分别将粒径为150-250nm的二氧化硅颗粒与粒径为100-150nm的聚乙烯颗粒以8:2-4:6的质量比混合,得到二氧化硅与聚乙烯的混合颗粒A;再将得到二氧化硅与聚乙烯的混合颗粒A与红外遮蔽剂以10:1的质量比混合,放入至超声分散机中,以400W功率超声分散60min,得到二氧化硅与聚乙烯的混合颗粒B;
步骤二:将超声分散后的二氧化硅与聚乙烯的混合颗粒B放入干燥箱,在60℃的温度下完全干燥;再放入球磨机中,在300K的温度下进行球磨分散混合,得到二氧化硅与聚乙烯的混合颗粒C;
步骤三:采用冷压法将球磨后的二氧化硅与聚乙烯的混合颗粒C压制成型,到二氧化硅与聚乙烯的混合颗粒D;
步骤四:将二氧化硅与聚乙烯的混合颗粒D放入管式炉中进行烧结,温升速率10℃/min,烧结时间60min,得到无机纳米包覆结构绝热材料。
优选的,所述红外遮蔽剂为TiO2纳米颗粒、SiC纳米颗粒、六钛酸钾晶须细粉三者以质量比为1:1:1,所述TiO2纳米颗粒粒径为5-50nm,SiC纳米颗粒粒径为100-150nm,六钛酸钾晶须细粉的粒径小于2μm。
优选的,所述步骤二中的球磨时间为60-120min,球磨机转速为100-300r/min。
优选的,所述步骤三冷压过程中混合颗粒C压制成型的压强为25-35MPa。
优选的,所述步骤四混合颗粒D放入管式炉中进行烧结时的烧结温度为600-1200K。
一种无机纳米包覆结构绝热材料的制备方法所制备的无机纳米包覆结构绝热材料。
与现有技术相比:本发明以150-250nm二氧化硅纳米颗粒和100-150nm聚乙烯颗粒以8:2-4:6的质量比压制成型,经过烧结聚乙烯碳化包覆在纳米颗粒表面形成纳米包覆结构,在二氧化硅与包覆结构之间存在大量的纳米级界面,使得材料的导热系数大幅度减小。因为碳包覆结构的存在,使得绝热材料具有导电性。在绝热材料内部有大量的纳米级孔道,显著降低了内部空气的对流换热。红外遮蔽剂的加入能显著提高材料的消光系数,吸收红外线,降低包覆结构表面辐射传热。
本发明所制备的无机纳米包覆结构绝热材料平均孔径为90-120nm,密度为0.57-1.13gcm-3,孔隙率为45%-65%,导热系数在300K时为0.09-0.21Wm-1K-1,导热系数在500K时为0.12-0.32Wm-1K-1,本发明所制备的无机纳米包覆结构绝热材料不仅密度小,孔道分布均匀,而且导热系数较低、导电性能良好,同时该制备方法简单,原材料价格低廉,降低生产成本。
具体实施方式
下面结合实施例对本发明作进一步详细说明。
实施例1:
一种无机纳米包覆结构绝热材料的制备方法,包括以下步骤:
步骤一:在室温条件下,分别将粒径为150nm的二氧化硅颗粒与粒径为100nm的聚乙烯颗粒以8:2的质量比混合,得到二氧化硅与聚乙烯的混合颗粒A;再将二氧化硅与聚乙烯的混合颗粒A与红外遮蔽剂以10:1的质量比混合,放入至超声分散机中,以400W功率超声分散60min,得到二氧化硅与聚乙烯的混合颗粒B;所述红外遮蔽剂为TiO2纳米颗粒、SiC纳米颗粒、六钛酸钾晶须细粉三者以质量比为1:1:1,所述TiO2纳米颗粒粒径为5nm,SiC纳米颗粒粒径为100nm,六钛酸钾晶须细粉的粒径小于2μm。
步骤二:将超声分散后的二氧化硅与聚乙烯的混合颗粒B放入干燥箱,在60℃的温度下完全干燥;再放入球磨机中,在300K的温度下进行球磨分散混合,得到二氧化硅与聚乙烯的混合颗粒C;球磨时间为60min,球磨机转速为100r/min。
步骤三:采用冷压法将球磨后的二氧化硅与聚乙烯的混合颗粒C压制成型,到二氧化硅与聚乙烯的混合颗粒D;冷压过程中压强为25MPa。
步骤四:将二氧化硅与聚乙烯的混合颗粒D放入管式炉中进行烧结,烧结温度为800K,温升速率10℃/min,烧结时间60min,得到无机纳米包覆结构绝热材料。
本实施例1所制得的无机纳米包覆结构绝热材料的孔径为90±1nm,体积密度为1.13±0.005gcm-3,孔隙率为48±0.1%,导热系数在300K时为0.178±0.001Wm-1K-1,在500K时为0.283±0.001Wm-1K-1,碳包覆层平均厚度为70nm。
实施例2
一种无机纳米包覆结构绝热材料的制备方法,包括以下步骤:
步骤一:在室温条件下,分别将粒径为250nm的二氧化硅颗粒与粒径为150nm的聚乙烯颗粒以4:6的质量比混合,得到二氧化硅与聚乙烯的混合颗粒A;再将二氧化硅与聚乙烯的混合颗粒A与红外遮蔽剂以10:1的质量比混合,放入至超声分散机中,以400W功率超声分散60min,得到二氧化硅与聚乙烯的混合颗粒B;所述红外遮蔽剂为TiO2纳米颗粒、SiC纳米颗粒、六钛酸钾晶须细粉三者以质量比为1:1:1,所述TiO2纳米颗粒粒径为50nm,SiC纳米颗粒粒径为150nm,六钛酸钾晶须细粉的粒径小于2μm。
步骤二:将超声分散后的二氧化硅与聚乙烯的混合颗粒B放入干燥箱,在60℃的温度下完全干燥;再放入球磨机中,在300K的温度下进行球磨分散混合,得到二氧化硅与聚乙烯的混合颗粒C;球磨时间为120min,球磨机转速为300r/min。
步骤三:采用冷压法将球磨后的二氧化硅与聚乙烯的混合颗粒C压制成型,到二氧化硅与聚乙烯的混合颗粒D;冷压过程中压强为35MPa。
步骤四:将二氧化硅与聚乙烯的混合颗粒D放入管式炉中进行烧结,烧结温度为1200K,温升速率10℃/min,烧结时间60min,得到无机纳米包覆结构绝热材料。
本实施例2所制得的无机纳米包覆结构绝热材料的孔径为120±1nm,体积密度为0.57gcm-3,孔隙率为45%,导热系数在300K时为0.148±0.001Wm-1K-1,在500K时为0.209±0.001Wm-1K-1,碳包覆层平均厚度为125nm。
实施例3
一种无机纳米包覆结构绝热材料的制备方法,包括以下步骤:
步骤一:在室温条件下,分别将粒径为200nm的二氧化硅颗粒与粒径为120nm的聚乙烯颗粒以6:4的质量比混合,得到二氧化硅与聚乙烯的混合颗粒A;再将二氧化硅与聚乙烯的混合颗粒A与红外遮蔽剂以10:1的质量比混合,放入至超声分散机中,以400W功率超声分散60min,得到二氧化硅与聚乙烯的混合颗粒B;所述红外遮蔽剂为TiO2纳米颗粒、SiC纳米颗粒、六钛酸钾晶须细粉三者以质量比为1:1:1,所述TiO2纳米颗粒粒径为30nm,SiC纳米颗粒粒径为120nm,六钛酸钾晶须细粉的粒径小于2μm。
步骤二:将超声分散后的二氧化硅与聚乙烯的混合颗粒B放入干燥箱,在60℃的温度下完全干燥;再放入球磨机中,在300K的温度下进行球磨分散混合,得到二氧化硅与聚乙烯的混合颗粒C;球磨时间为90min,球磨机转速为200r/min。
步骤三:采用冷压法将球磨后的二氧化硅与聚乙烯的混合颗粒B压制成型,到二氧化硅与聚乙烯的混合颗粒D;冷压过程中压强为30MPa。
步骤四:将二氧化硅与聚乙烯的混合颗粒D放入管式炉中进行烧结,烧结温度为800K,温升速率10℃/min,烧结时间60min,得到无机纳米包覆结构绝热材料。
本实施例3所制得的无机纳米包覆结构绝热材料的孔径为105nm±1nm,体积密度为0.85gcm-3,孔隙率为63%,导热系数在300K时为0.102±0.001Wm-1K-1,在500K时为0.157±0.001Wm-1K-1,碳包覆层平均厚度为113nm±1nm。
实施例4
一种无机纳米包覆结构绝热材料的制备方法,包括以下步骤:
步骤一:在室温条件下,分别将粒径为200nm的二氧化硅颗粒与粒径为100nm的聚乙烯颗粒以5:5的质量比混合,得到二氧化硅与聚乙烯的混合颗粒A;再将二氧化硅与聚乙烯的混合颗粒A与红外遮蔽剂以10:1的质量比混合,放入至超声分散机中,以400W功率超声分散60min,得到二氧化硅与聚乙烯的混合颗粒B;所述红外遮蔽剂为TiO2纳米颗粒、SiC纳米颗粒、六钛酸钾晶须细粉三者以质量比为1:1:1,所述TiO2纳米颗粒粒径为30nm,SiC纳米颗粒粒径为110nm,六钛酸钾晶须细粉的粒径小于2μm。
步骤二:将超声分散后的二氧化硅与聚乙烯的混合颗粒B放入干燥箱,在60℃的温度下完全干燥;再放入球磨机中,在300K的温度下进行球磨分散混合,得到二氧化硅与聚乙烯的混合颗粒C;球磨时间为60min,球磨机转速为150r/min。
步骤三:采用冷压法将球磨后的二氧化硅与聚乙烯的混合颗粒C压制成型,到二氧化硅与聚乙烯的混合颗粒D;冷压过程中压强为25MPa
步骤四:将二氧化硅与聚乙烯的混合颗粒D放入管式炉中进行烧结,烧结温度为1200K,温升速率10℃/min,烧结时间60min,得到无机纳米包覆结构绝热材料。
本实施例4所制得的无机纳米包覆结构绝热材料的孔径为113nm±1nm,体积密度为0.71±0.005gcm-3,孔隙率为67%,导热系数在300K时为0.164±0.001Wm-1K-1,在500K时为0.231±0.001Wm-1K-1,碳包覆层平均厚度为125±1nm。
实施例5
一种无机纳米包覆结构绝热材料的制备方法,包括以下步骤:
步骤一:在室温条件下,分别将粒径为200nm的二氧化硅颗粒与粒径为100nm的聚乙烯颗粒以7:3的质量比混合,得到二氧化硅与聚乙烯的混合颗粒A;再将二氧化硅与聚乙烯的混合颗粒A与红外遮蔽剂以10:1的质量比混合,放入至超声分散机中,以400W功率超声分散60min,得到二氧化硅与聚乙烯的混合颗粒B;所述红外遮蔽剂为TiO2纳米颗粒、SiC纳米颗粒、六钛酸钾晶须细粉三者以质量比为1:1:1,所述TiO2纳米颗粒粒径为5-50nm,SiC纳米颗粒粒径为100-150nm,六钛酸钾晶须细粉的粒径小于2μm。
步骤二:将超声分散后的二氧化硅与聚乙烯的混合颗粒B放入干燥箱,在60℃的温度下完全干燥;再放入球磨机中,在300K的温度下进行球磨分散混合,得到二氧化硅与聚乙烯的混合颗粒C;球磨时间为60min,球磨机转速为150r/min。
步骤三:采用冷压法将球磨后的二氧化硅与聚乙烯的混合颗粒C压制成型,到二氧化硅与聚乙烯的混合颗粒D;冷压过程中压强为25-35MPa
步骤四:将二氧化硅与聚乙烯的混合颗粒D放入管式炉中进行烧结,烧结温度为1000K,温升速率10℃/min,烧结时间60min,得到无机纳米包覆结构绝热材料。
本实施例5所制得的无机纳米包覆结构绝热材料的孔径为105nm,体积密度为0.92±0.005gcm-3,孔隙率为56%,导热系数在300K时为0.161±0.001Wm-1K-1,在500K时为0.234±0.001Wm-1K-1,碳包覆层平均厚度为100±3nm。
实施例6
一种无机纳米包覆结构绝热材料的制备方法,包括以下步骤:
步骤一:在室温条件下,分别将粒径为200nm的二氧化硅颗粒与粒径为100nm的聚乙烯颗粒以5:5的质量比混合,得到二氧化硅与聚乙烯的混合颗粒A;再将二氧化硅与聚乙烯的混合颗粒A与红外遮蔽剂以10:1的质量比混合,放入至超声分散机中,以400W功率超声分散60min,得到二氧化硅与聚乙烯的混合颗粒B;所述红外遮蔽剂为TiO2纳米颗粒、SiC纳米颗粒、六钛酸钾晶须细粉三者以质量比为1:1:1,所述TiO2纳米颗粒粒径为5-50nm,SiC纳米颗粒粒径为100-150nm,六钛酸钾晶须细粉的粒径小于2μm。
步骤二:将超声分散后的二氧化硅与聚乙烯的混合颗粒B放入干燥箱,在60℃的温度下完全干燥;再放入球磨机中,在300K的温度下进行球磨分散混合,得到二氧化硅与聚乙烯的混合颗粒C;球磨时间为60min,球磨机转速为150r/min。
步骤三:采用冷压法将球磨后的二氧化硅与聚乙烯的混合颗粒C压制成型,到二氧化硅与聚乙烯的混合颗粒D;冷压过程中压强为35MPa
步骤四:将二氧化硅与聚乙烯的混合颗粒D放入管式炉中进行烧结,烧结温度为1000K,温升速率10℃/min,烧结时间60min,得到无机纳米包覆结构绝热材料。
本实施例6所制得的无机纳米包覆结构绝热材料的孔径为115nm,体积密度为0.71±0.005gcm-3,孔隙率为48%,导热系数在300K时为0.122±0.001Wm-1K-1,在500K时为0.191±0.001Wm-1K-1,碳包覆层平均厚度为120±1nm。

Claims (6)

1.一种无机纳米包覆结构绝热材料的制备方法,其特征在于,包括以下步骤:
步骤一:在室温条件下,分别将粒径为150-250nm的二氧化硅颗粒与粒径为100-150nm的聚乙烯颗粒以8:2-4:6的质量比混合,得到二氧化硅与聚乙烯的混合颗粒A;再将二氧化硅与聚乙烯的混合颗粒A与红外遮蔽剂以10:1的质量比混合,放入至超声分散机中,以400W功率超声分散60min,得到二氧化硅与聚乙烯的混合颗粒B;
步骤二:将超声分散后的二氧化硅与聚乙烯的混合颗粒B放入干燥箱,在60℃的温度下完全干燥;再放入球磨机中,在300K的温度下进行球磨分散混合,得到二氧化硅与聚乙烯的混合颗粒C;
步骤三:采用冷压法将球磨后的二氧化硅与聚乙烯的混合颗粒C压制成型,到二氧化硅与聚乙烯的混合颗粒D;
步骤四:将二氧化硅与聚乙烯的混合颗粒D放入管式炉中进行烧结,温升速率10℃/min,烧结时间60min,得到无机纳米包覆结构绝热材料。
2.根据权利要求1所述的一种无机纳米包覆结构绝热材料的制备方法,其特征在于,所述红外遮蔽剂为TiO2 纳米颗粒、SiC纳米颗粒、六钛酸钾晶须细粉三者以质量比为1:1:1,所述TiO2 纳米颗粒粒径为5-50nm,SiC纳米颗粒粒径为100-150nm,六钛酸钾晶须细粉的粒径小于2μm。
3.根据权利要求2所述的一种无机纳米包覆结构绝热材料的制备方法,其特征在于,所述步骤二中的球磨时间为60-120min,球磨机转速为100-300r/min。
4.根据权利要求1或3所述的一种无机纳米包覆结构绝热材料的制备方法,其特征在于,所述步骤三冷压过程中混合颗粒C压制成型的压强为25-35MPa。
5.根据权利要求1或3所述的一种无机纳米包覆结构绝热材料的制备方法,其特征在于,所述步骤四混合颗粒D放入管式炉中进行烧结时的烧结温度为600-1200K。
6.根据权利要求1-5中任一项所述的无机纳米包覆结构绝热材料的制备方法所制备的无机纳米包覆结构绝热材料。
CN201711294033.1A 2017-12-08 2017-12-08 一种无机纳米包覆结构绝热材料及其制备方法 Active CN108033805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711294033.1A CN108033805B (zh) 2017-12-08 2017-12-08 一种无机纳米包覆结构绝热材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711294033.1A CN108033805B (zh) 2017-12-08 2017-12-08 一种无机纳米包覆结构绝热材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108033805A CN108033805A (zh) 2018-05-15
CN108033805B true CN108033805B (zh) 2021-01-26

Family

ID=62101626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711294033.1A Active CN108033805B (zh) 2017-12-08 2017-12-08 一种无机纳米包覆结构绝热材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108033805B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018552A (zh) * 2019-12-26 2020-04-17 山东鲁阳浩特高技术纤维有限公司 一种高度均一性纳米微孔隔热板及其制备方法
CN113651624B (zh) * 2021-09-22 2023-03-14 武汉理工大学 一种低热红外发射率的绝热保温涂层及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0505270D0 (en) * 2005-03-15 2005-04-20 Microtherm Int Ltd Granular fibre-free microporous thermal insulation material and method
CN102464468B (zh) * 2010-10-30 2013-06-19 中国科学院合肥物质科学研究院 纳米复合绝热材料及其制备方法
CN102964088A (zh) * 2012-11-23 2013-03-13 山东鲁阳股份有限公司 超低导热率纳米气凝胶绝热材料及其制备方法
WO2017043721A1 (ko) * 2015-09-10 2017-03-16 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓 및 이의 제조방법
CN106674705A (zh) * 2016-11-02 2017-05-17 赵洪全 一种无机纳米颗粒/聚乙烯共聚物复合材料的制备方法
CN106328909B (zh) * 2016-11-18 2020-01-24 深圳市贝特瑞新能源材料股份有限公司 纳米二氧化硅-硅基复合材料、制备方法及包含该复合材料的锂离子电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Near-field radiative heat transfer across a pore and its effects on thermal conductivity of mesoporous silica;Jing Li et.al;《Physica B》;20140918;237-243 *
介孔二氧化硅基导电聚合物复合材料热导率的实验研究;黄丛亮 等;《物理学报》;20121231;154402-1-154402-8 *

Also Published As

Publication number Publication date
CN108033805A (zh) 2018-05-15

Similar Documents

Publication Publication Date Title
Du et al. Multifunctional carbon nanofiber-SiC nanowire aerogel films with superior microwave absorbing performance
Zhang et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism
Peng et al. Low-temperature carbonized biomimetic cellulose nanofiber/MXene composite membrane with excellent microwave absorption performance and tunable absorption bands
CN103896621B (zh) 气相纳米SiO2-Al2O3复合介孔隔热材料及其制备方法
CN108245682B (zh) 酸度、光热响应型介孔MXene纳米片药物载体及制法
Hou et al. Thermostable SiCO@ BN sheets with enhanced electromagnetic wave absorption
Quan et al. Cellulose nanofibrous/MXene aerogel encapsulated phase change composites with excellent thermal energy conversion and storage capacity
CN108033805B (zh) 一种无机纳米包覆结构绝热材料及其制备方法
CN109093108A (zh) 高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法
CN113831581A (zh) 一种高弹性抗辐射纳米纤维气凝胶材料及其制备方法
CN113663611A (zh) 一种耐高温复合纳米纤维气凝胶材料及其制备方法
Guo et al. Rational design of FeCo imbedded 3D porous carbon microspheres as broadband and lightweight microwave absorbers
CN105155815B (zh) 一种纳米碳纤维发热地板的制备方法
CN101948649A (zh) 硅酸钙纳米线复合保温涂料
Zhou et al. Fabrication of thermal conductivity enhanced polymer composites with three‐dimensional networks based on natural cotton
Zhang et al. Enhanced high-temperature thermal conductivity of the reduced graphene oxide@ SiO2 composites synthesised by liquid phase deposition
Zhang et al. TiN-based materials for multispectral electromagnetic wave absorption
CN110041895A (zh) 一种储热传热材料及其制备方法
Li et al. Copper and graphene work together to construct a three‐dimensional skeleton thermal conductivity network to improve the thermal conductivity of the epoxy resin
JP2024508000A (ja) 電気赤外線加熱膜、その調製方法、電気赤外線加熱装置
Qin et al. Sandwich-type phase-change composites with the dual-function of efficient heat management and temperature-regulated electromagnetic interference shielding performance
Shu et al. Ethylene glycol-based solar-thermal fluids dispersed with reduced graphene oxide
Chen et al. Review on Porous Ceramic‐Based Form‐Stable Phase Change Materials: Preparation, Enhance Thermal Conductivity, and Application
CN114058081B (zh) 石墨烯基导热散热复合材料制备方法和应用
TW201402514A (zh) 遠紅外線散熱陶瓷漿料、使用該漿料製備之纖維布、使用該漿料製備之薄膜及其製備方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant