CN108025979A - 外延生长用取向氧化铝基板 - Google Patents

外延生长用取向氧化铝基板 Download PDF

Info

Publication number
CN108025979A
CN108025979A CN201680050570.9A CN201680050570A CN108025979A CN 108025979 A CN108025979 A CN 108025979A CN 201680050570 A CN201680050570 A CN 201680050570A CN 108025979 A CN108025979 A CN 108025979A
Authority
CN
China
Prior art keywords
aluminum oxide
substrate
layer
orientation
oxide substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680050570.9A
Other languages
English (en)
Other versions
CN108025979B (zh
Inventor
渡边守道
佐藤圭
松岛洁
七泷努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of CN108025979A publication Critical patent/CN108025979A/zh
Application granted granted Critical
Publication of CN108025979B publication Critical patent/CN108025979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/12Single-crystal growth directly from the solid state by pressure treatment during the growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/02Production of homogeneous polycrystalline material with defined structure directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/727Phosphorus or phosphorus compound content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6835Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)

Abstract

作为本发明的一个实施方式的外延生长用取向氧化铝基板,其构成表面的晶体粒子的倾斜角为1°以上3°以下,平均烧结粒径为20μm以上。这里,倾斜角是指X射线摆动曲线半高宽(XRC·FWHM)。平均烧结粒径是指:对取向氧化铝基板的板面进行热蚀刻之后使用由扫描电子显微镜拍摄到的图像进行测定所得的值。与以往相比,利用该外延生长用取向氧化铝基板制作的半导体器件的特性有所提高。

Description

外延生长用取向氧化铝基板
技术领域
本发明涉及一种外延生长用取向氧化铝基板。
背景技术
作为发光二极管(LED)等发光元件或半导体器件用的外延生长用基板,使用蓝宝石(α-氧化铝单晶)基板,或者使用使GaN等的半导体层在蓝宝石基板上结晶生长而成的复合基板。具有在这样的外延生长用基板上按顺序依次层叠n型GaN层、多重量子阱层(MQW)以及p型GaN层而形成的结构的发光元件用基板实现了批量生产,其中,所述多重量子阱层是包括InGaN层的量子阱层与包括GaN层的势垒层交替层叠而成的。
然而,一般情况下,蓝宝石基板的面积小且价格昂贵。因此,本发明的发明人提出了使用取向氧化铝基板来代替蓝宝石基板的方案(参照专利文献1、2)。专利文献1中,利用MOCVD法在取向氧化铝基板上形成GaN晶种层,通过助熔剂法在该晶种层上形成GaN缓冲层,并在其上方形成发光功能层(按照n型GaN层c、多重量子阱层以及p型GaN层的顺序依次层叠而成的层)而制作发光元件用基板。在本说明书中,将这样在构成要素中包含取向氧化铝基板的类型的发光元件用基板称为元件用基板S1。另外,专利文献2中,利用MOCVD法在取向氧化铝基板上形成GaN晶种层,通过助熔剂法在该晶种层上形成Ge掺杂GaN层,然后通过基于砂轮的磨削加工而将取向氧化铝基板部除去,由此得到Ge掺杂GaN自立基板。然后,通过在该自立基板上形成发光功能层而制作发光元件用基板。在本说明书中,将这样包含半导体自立基板来代替取向氧化铝基板的类型的发光元件用基板称为元件用基板S2。
现有技术文献
专利文献
专利文献1:国际公开第2015/093335号的小册子
专利文献2:日本专利第5770905号公报
发明内容
使用这些元件用基板S1、S2制作的发光元件等半导体器件具有良好的特性。然而,在专利文献1、2的取向氧化铝基板上形成发光功能层、具有一定厚度的半导体层(例如厚度为20μm以上)的情况下,有时会在得到的发光功能层、半导体层产生凹坑(pit)。若在这样的元件用基板的上方制作LED等器件,则会成为电流泄漏等不良的原因。如果在不具有凹坑的部分制作器件,则不会引起问题,但随着器件尺寸的增大,难以完全避免凹坑,这成为成品率无法充分提高的重要因素。
本发明是为了解决这样的课题而完成的,其主要目的在于提高半导体器件的成品率。
为了提高发光元件等半导体器件的成品率,本发明的发明人对凹坑的产生状况与取向氧化铝基板的特性之间的关系进行了深入研究,结果发现:对于制造半导体器件时所利用的外延生长用基板的构成表面的晶体粒子,通过将倾斜角设为1°以上3°以下、且将平均烧结粒径设为20μm以上,能够大幅减少制造半导体器件时的凹坑的产生数量,从而完成了本发明。
本发明的外延生长用取向氧化铝基板的构成表面的晶体粒子的倾斜角为1°以上3°以下,平均烧结粒径为20μm以上。这里,倾斜角是指X射线摆动曲线半高宽(XRC·FWHM)。图1中示出了氧化铝晶体的倾斜角的示意性的说明图。平均烧结粒径是指:对取向氧化铝基板的板面进行热蚀刻之后使用由扫描电子显微镜拍摄到的图像进行测定所得的值。
如果利用本发明的外延生长用取向氧化铝基板制作上述元件用基板S1、S2,并进一步利用这些元件用基板S1、S2制作半导体器件,则在制作中途能够大幅减少在发光功能层、半导体层等处产生的凹坑的数量,从而能够提高半导体器件的成品率。虽然其理由尚不确定,但能够推测出这是因为:构成取向氧化铝基板的表面的粒径为20μm以上的粒子略微倾斜则使得发光功能层、半导体层容易在水平方向上生长,难以产生凹坑。此外,作为半导体器件,除了发光元件以外,可举出太阳能电池、功率器件等。在元件用基板S1、S2中,缓冲层或半导体层的形成方法并未特别限定,优选举例示出的MBE(分子束外延法)、HVPE(卤化物气相生长法)、溅射等气相法、Na助熔剂法、氨热法、水热法、溶胶-凝胶法等液相法、利用粉末的固相生长的粉末法、以及上述方法的组合。
本发明也可以如下理解为外延生长方法。即,也可以理解为“使半导体晶体在构成表面的晶体粒子的倾斜角为1°以上3°以下、且平均烧结粒径为20μm以上的取向氧化铝基板的表面进行外延生长,由此形成薄膜的外延生长方法”。
附图说明
图1是氧化铝晶体的倾斜角的示意性的说明图。
图2是对层叠体1进行烧成而制作取向氧化铝基板7的工序的示意图。
图3是由发光元件用基板10制作发光元件30的工序的剖视图。
图4是由发光元件用基板20制作发光元件40的工序的剖视图。
图5是测定摆动曲线的说明图。
具体实施方式
[外延生长用取向氧化铝基板]
本发明的一个实施方式的外延生长用取向氧化铝基板是多晶氧化铝基板,构成表面的晶体粒子的倾斜角优选为1°以上3°以下,平均烧结粒径优选为20μm以上。
当构成表面的晶体粒子的倾斜角小于1°时或超过3°时,在制作半导体器件的中途无法充分抑制在发光功能层、半导体层等处所产生的凹坑的数量,因而并非为优选方式。虽然其理由尚不明确,但能够想到这是因为:当倾斜角小于1°或超过3°时,水平方向的生长不充分,从而难以减少凹坑。倾斜角更优选为1.0°以上2.5°以下,进一步优选为1.1°以上2.5°以下,特别优选为1.1°以上2°以下。
只要平均烧结粒径为20μm以上就没有问题。当平均烧结粒径小于20μm时,凹坑的数量增加,因而并非为优选方式。另一方面,如果平均烧结粒径过大,则强度降低,因而,根据操作性的观点,平均烧结粒径优选为300μm以下,更优选为150μm以下,进一步优选为100μm以下。平均烧结粒径的数值范围的上限和下限可以从这些数值中适当地选择并加以组合,但根据兼顾成品率和操作性的观点,优选为20~300μm,更优选为20~150μm,进一步优选为20~100μm。
对于本实施方式的外延生长用取向氧化铝基板,通过Lotgering法求出的c面取向度优选为50%以上,更优选为70%以上,进一步优选为90%以上,特别优选为95%以上,最优选为100%。
优选地,本实施方式的外延生长用取向氧化铝基板的厚度为能独自立起的厚度,但是,若过厚,则根据制造成本的观点而并非为优选方式。因此,厚度优选为20μm以上,更优选为100μm以上,进一步优选为100~1000μm。另一方面,当使半导体晶体在该取向氧化铝基板生长时,因取向氧化铝基板与半导体晶体之间的热膨胀差所引起的应力而在基板整体产生翘曲,有时会对其后续的工序造成妨碍。作为抑制这样的翘曲的方法之一,可以使用较厚的取向氧化铝基板。
本实施方式的外延生长用取向氧化铝基板如果含有杂质,则在制作缓冲层、半导体层时,有时基板容易被侵蚀而断裂。特别是在Na、Mg、Si、P、Ca、Fe、Ti、Zn的含量多时,侵蚀较为明显,根据耐腐蚀性的观点,Na、Mg、Si、P、Ca、Fe、Ti、Zn各自的含量优选为1500ppm以下,更优选为1000ppm以下,更优选为500ppm以下,更优选为150ppm以下,更优选为100ppm以下,更优选为50ppm以下,更优选为10ppm以下,并不存在下限。另一方面,为了控制取向氧化铝基板的取向度、倾斜角、烧结粒径,有时加入MgO、SiO2、CaO等氧化物或氟化物作为烧结助剂。在控制烧结粒径的基础上,MgO抑制异常晶粒生长的效果也较高。特别是以高温进行烧成时,可以通过加入MgO而以良好的成品率制作不含有异常晶粒的取向氧化铝烧结体。因此,根据抑制异常晶粒生长的观点,优选含有15ppm以上的Mg(优选30ppm以上,更优选50ppm以上,进一步优选100ppm以上)。因此,作为兼顾耐腐蚀性和制造时的成品率的Mg的含量,优选为15~1500ppm,更优选为15~1000ppm,进一步优选为15~500ppm,特别优选为30~150ppm。
[外延生长用取向氧化铝基板的制法]
本实施方式的外延生长用取向氧化铝基板的制法并未特别限定,作为优选的制法,可举出包含(a)制作层叠体的工序、以及(b)对层叠体进行烧成的工序的制法,上述层叠体是微细氧化铝粉末层、与板状氧化铝粒子的板面以沿着微细氧化铝粉末层的表面的方式排列而成的板状氧化铝粉末层交替层叠而成的。
工序(a)中使用的微细氧化铝粉末层是微细氧化铝粒子的集合体的层。微细氧化铝粉末是平均粒径比板状氧化铝粉末的平均粒径小的粉末。微细氧化铝粉末层可以是对微细氧化铝粉末本身进行成型而成的层,也可以是对微细氧化铝粉末中加入有添加剂的物质进行成型而成的层。作为添加剂,例如可举出烧结助剂、石墨、粘合剂、增塑剂、分散剂、分散介质等。成型方法并未特别限定,例如可举出带成型、挤出成型、浇铸成型、注塑成型、单轴加压成型等。微细氧化铝粉末层的厚度优选为5~100μm,更优选为10~100μm,进一步优选为20~60μm。
工序(a)中使用的板状氧化铝粉末层为板状氧化铝粒子的集合体的层。根据高取向化、低倾斜化的观点,优选板状氧化铝粉末的长径比较大,从而优选为3以上,更优选为10以上,进一步优选为30以上。长径比为平均粒径/平均厚度。这里,平均粒径为粒子板面的长轴长度的平均值,平均厚度为粒子的短轴长度的平均值。利用扫描式电子显微镜(SEM)观察板状氧化铝粉末中任意的100个粒子而确定上述这些值。根据取向烧结体的高取向化、低倾斜化的观点,优选板状氧化铝粉末的平均粒径较大,从而优选为1.5μm以上,更优选为5μm以上,进一步优选为10μm以上,特别优选为15μm以上。但是,根据致密化的观点,优选板状氧化铝粉末的平均粒径较小,从而优选为30μm以下。因此,为了兼顾高取向和致密化,平均粒径优选为1.5μm~30μm。另外,根据高取向化、低倾斜化的观点,优选板状氧化铝粉末的平均厚度比微细氧化铝粉末的平均厚度厚。板状氧化铝粉末层可以是板状氧化铝粉末本身的层,也可以是在板状氧化铝粉末中加入有添加剂的物质的层。作为添加剂,例如可举出烧结助剂、石墨、粘合剂、增塑剂、分散剂、分散介质等。对于板状氧化铝粉末层,构成板状氧化铝粉末的板状氧化铝粒子的板面以沿着微细氧化铝粉末层的表面的方式排列。优选板状氧化铝粉末为单一粒子。在并非单一粒子的情况下,有时会使得取向度、倾斜角变差。为了使粒子变得单一,只要采用分级处理、碎解处理以及淘析处理中的至少1种处理即可,优选采用所有处理。优选在出现凝聚等时采用分级处理、碎解处理。作为分级处理,可举出气流分级等。作为碎解处理,可举出罐式碎解、湿式微粒化方式等。优选在混入有微粒粉时采用淘析处理。
通过工序(a)制作的层叠体是微细氧化铝粉末层与板状氧化铝粉末层交替层叠而成的。在制作层叠体时,可以制作利用板状氧化铝粉末层将微细氧化铝粉末的成型体的单面的整个面或一部分覆盖而成的单面加工体,并利用该单面加工体制作层叠体。或者,可以制作利用板状氧化铝粉末层将微细氧化铝粉末的成型体的双面的整个面或一部分覆盖而成的双面加工体,并利用该双面加工体和未加工的成型体制作层叠体。
可以在微细氧化铝粉末的成型体的单面或双面对与该成型体相比而厚度较薄的板状氧化铝粉末的成型体进行层叠,由此制作单面加工体或双面加工体。在该情况下,板状氧化铝粉末的成型体可以使用以沿着该成型体的表面的方式通过带成型或印刷等对板状氧化铝粒子的板面施加剪切力而成型的成型体。或者,可以通过在微细氧化铝粉末的成型体的单面或双面对板状氧化铝粉末的分散液进行印刷、喷涂、旋涂或浸涂而制作单面加工体或双面加工体。在喷涂、旋涂、浸涂中,即使不强制性地施加剪切力,板状氧化铝粒子的板面也以沿着其成型体的表面的方式排列。对于在成型体的表面排列的板状氧化铝粒子而言,几个板状氧化铝粒子可以重叠,但优选不与其它板状氧化铝粒子重叠。
在利用单面加工体时,只要以使得微细氧化铝粉末层与板状氧化铝粉末层交替层叠的方式对单面加工体进行层叠即可。在利用双面加工体时,只要使双面加工体与未加工的微细氧化铝粉末的成型体交替层叠即可。此外,可以利用单面加工体和双面加工体的双方来制作层叠体,也可以利用单面加工体、双面加工体以及未加工的成型体来制作层叠体。
工序(b)中,对层叠体进行烧成。在该情况下,烧成方法并未特别限定,优选对层叠体进行加压烧成。作为加压烧成,例如可举出热压烧成、HIP烧成等。此外,可以在加压烧成前进行常压预烧成。在进行HIP烧成时,还可以使用胶囊法。热压烧成时的压力优选为50kgf/cm2以上,更优选为200kgf/cm2以上。HIP烧成时的压力优选为1000kgf/cm2以上,更优选为2000kgf/cm2以上。烧成气氛并未特别限定,优选大气、氮、Ar等惰性气体、真空气氛下的任一种,特别优选处于氮、Ar气氛下,最优选氮气气氛。烧成温度(最高到达温度)优选为1700~2050℃,更优选为1800~2000℃,进一步优选为1900~2000℃。图2是对层叠体1进行烧成而制作取向氧化铝基板7的工序的示意图。如图2所示,层叠体1是作为微细氧化铝粒子3a的集合体的层的微细氧化铝粉末层3、与板状氧化铝粒子5a的板面沿微细氧化铝粉末层3的表面排列而成的板状氧化铝粉末层5交替层叠而成的。如果对层叠体1进行烧成,则板状氧化铝粒子5a成为晶种(模板,template),微细氧化铝粒子3a成为基质(matrix),模板一边引入基质一边进行同质外延生长。因此,得到的烧结体成为取向度较高、且具有适当的倾斜角的取向氧化铝基板7。除了取决于板状氧化铝粉末的粒径、长径比、板状氧化铝粉末的厚度与微细氧化铝粉末的粒径差、板状氧化铝粒子的凝聚状态、板状氧化铝粉末层中的板状氧化铝粒子的重叠状态、烧成条件以外,取向度和倾斜角还取决于板状氧化铝粉末将微细氧化铝粉末层的表面覆盖的覆盖率、微细氧化铝粉末层的厚度。可以通过适当地控制这些因素而得到取向度较高、倾斜角为1°以上3°以下的取向氧化铝基板。当该覆盖率为1~60%(优选为1~20%,更优选为3~20%)时,取向度得到提高,倾斜角减小。另外,当微细氧化铝粉末层的厚度为5~100μm(优选为10~100μm,更优选为20~60μm)时,取向度得到提高,倾斜角减小。这里,取向度是指:使用X射线衍射图谱并通过Lotgering法而求出的c面取向度。
另外,作为其他优选的例子,可举出如下制法:对板状氧化铝粉末和微细氧化铝粉末进行混合,通过使用剪切力的方法使板状氧化铝粉末取向而制作成型体,并通过同上的方法进行烧成。作为使用剪切力的方法的优选的例子,可举出带成型、挤出成型、刮刀法以及它们的任意的组合。对于使用剪切力的取向方法,在上述例示的任意方法中,还优选在混合粉末中适当地加入粘合剂、增塑剂、分散剂、分散介质等添加物并使其实现浆料化,进而使该浆料从狭缝状的狭窄的排出口通过,由此在基板上排出并成型为片状。排出口的狭缝宽度优选设为10~400μm。此外,分散介质的量优选设为使得浆料粘度达到5000~100000cP的量,更优选为使得浆料粘度达到20000~60000cP的量。成型为片状的取向成型体的厚度优选为5~500μm,更优选为10~200μm。优选对多个该成型为片状的取向成型体进行层叠并将其设为具有所需厚度的前驱层叠体,进而对该前驱层叠体实施加压成型。可以优选以如下方式进行该加压成型:通过真空包装等对前驱层叠体进行包装,在50~95℃的温水中以10~2000kgf/cm2的压力实施静水压加压。另外,可以对成型为片状的取向成型体或前驱层叠体实施基于辊加压法(例如加热辊加压、压延辊等)的处理。另外,在利用挤出成型时,也可以通过设计模具内的流路而在模具内从狭窄的排出口通过之后,在模具内使片状的成型体实现一体化,并以层叠的状态将成型体排出。优选根据公知的条件对得到的成型体实施脱脂。
[元件用基板S1和使用该元件用基板S1的发光元件30]
元件用基板S1是构成要素中包含取向氧化铝基板的类型的发光元件用基板。图3的上段是作为元件用基板S1的一个例子的发光元件用基板10的剖视图。发光元件用基板10在形成于取向氧化铝基板12上的缓冲层16上形成有发光功能层14。发光功能层14是自缓冲层16侧开始层叠有n型层14c、活性层14b以及p型层14a的复合层。构成发光功能层14的各层由以半导体材料为主成分的材料构成。作为半导体材料,可举出GaN系材料、ZnO系材料以及AlN系材料等,其中,优选为GaN系材料。n型层14c在半导体材料中掺杂有n型掺杂剂,p型层14a在半导体材料中掺杂有p型掺杂剂。活性层14b是量子阱层与势垒层交替层叠而成的多重量子阱层,当使用GaN材料作为半导体材料时,可以将量子阱层设为InGaN层、且将势垒层设为GaN层。缓冲层16是用于减少因取向氧化铝基板12与发光功能层14的晶格失配所致的晶格缺陷而改善结晶性的层。优选地,缓冲层16是与发光功能层14的晶体结构相同或类似的、具有高结晶性的晶体结构,可以使用晶格常数相同或相近的晶体结构。缓冲层16具有模仿取向氧化铝基板12的结晶方位生长而成的结构。优选缓冲层16由以上述半导体材料为主成分的材料构成,也可以适当地含有用于控制成p型或n型的掺杂剂。
例如可以以如下方式制造发光元件用基板10。即,通过使GaN等半导体的晶体在取向氧化铝基板12上进行外延生长而形成半导体层(缓冲层16)。在该情况下,可以使半导体的晶体在取向氧化铝基板12上进行外延生长而形成半导体薄膜(晶种层),进一步使相同的半导体的晶体在该半导体薄膜上进行外延生长而形成比半导体薄膜厚的膜,并将这两个膜作为半导体层。此外,可以以气相、液相、固相中的任一方式进行外延生长。接下来,在缓冲层16上按照n型层14c、活性层14b以及p型层14a的顺序依次对它们进行层叠而形成发光功能层14。由此,得到发光元件用基板10。
可以以如下方式制造利用了发光元件用基板10的发光元件30。图3是制作发光元件30的工序的剖视图。首先,在发光元件用基板10的发光功能层14侧使n型层14c的一部分露出。接着,在n型层14c的露出的部分形成阴极电极17。另一方面,在p型层14a的上表面形成透光性阳极电极18,并进一步在其上方形成阳极电极焊盘19。最后,将电极形成后的发光元件用基板10切断而实现芯片化,并将其安装于引线框(lead frame)而得到横型结构的发光元件30。
此外,也可以利用发光元件用基板10而制作纵型结构的发光元件。例如,可以通过如下方式来制作:在发光元件用基板10的p型层14a的上表面形成阳极电极,使阳极电极与安装基板接合,通过激光剥离法将取向氧化铝基板12除去,并在露出的n型层14c的表面形成阴极电极。当通过激光剥离法将取向氧化铝基板12除去时,可以将缓冲层16也一并除去。
[元件用基板S2和使用该元件用基板S2的发光元件40]
元件用基板S2是构成要素中包含半导体自立基板以代替元件用基板S1的取向氧化铝基板的类型的发光元件用基板。图4的上段是作为元件用基板S2的一个例子的发光元件用基板20的剖视图。发光元件用基板20在半导体自立基板22上形成有发光功能层24。发光功能层24是层叠有n型层24c、活性层24b以及p型层24a的复合层,但基本上与上述的发光功能层14相同,因此省略其说明。图4中的半导体自立基板22是掺杂有n型掺杂剂的半导体材料,但也可以为非掺杂的半导体材料。由通过n型掺杂剂的导入而具有导电性的氮化镓制成基板,由此能够实现纵型结构的发光元件。
例如可以以如下方式制造发光元件用基板20。即,通过使GaN等半导体的晶体在取向氧化铝基板上进行外延生长而形成半导体层。在该情况下,可以使半导体的晶体在取向氧化铝基板上进行外延生长而形成半导体薄膜(晶种层),进一步使相同的半导体的晶体在该半导体薄膜上进行外延生长而形成比半导体薄膜厚的膜,并将这两个膜作为半导体层。此外,可以以气相、液相、固相中的任一方式而进行外延生长。接下来,通过磨削加工等方法将取向氧化铝基板除去,由此得到半导体层的单体、即半导体自立基板22。在该半导体自立基板22上按照n型层24c、活性层24b以及p型层24a的顺序依次对它们进行层叠而形成发光功能层24。由此,得到发光元件用基板20。
利用发光元件用基板20的发光元件40可以通过如下方式制造。图4是制作发光元件40的工序的剖视图。首先,在发光元件用基板20的半导体自立基板22侧形成阴极电极27。另一方面,在p型层24a的上表面形成透光性阳极电极28,进一步在其上方形成阳极电极焊盘29。最后,将电极形成后的发光元件用基板20切断而实现芯片化,并将其安装于引线框,由此得到纵型结构的发光元件40。
此外,本发明未受到上述实施方式的任何限定,只要属于本发明的技术范围,当然可以以各种方式而实施。
【实施例】
以下说明的实验例A1~A8为外延取向氧化铝基板的制作例,实验例B1~B8为元件用基板S1的制作例,实验例C1~C8为元件用基板S2的制作例。
[实验例A1]
(1)取向氧化铝基板的制作
(1a)层叠体的制作
相对于微细氧化铝粉末(大明化学工业株式会社制,等级为TM-DAR)的100质量份,加入0.0125质量份(125质量ppm)的氧化镁(500A,宇部Material制)、7.8质量份的作为粘合剂的聚乙烯醇缩丁醛(型号为BM-2,积水化学工业制)、3.9质量份的作为增塑剂的邻苯二甲酸二(2-乙基己基)酯(黑金化成制)、2质量份的作为分散剂的失水山梨糖醇三油酸酯(RHEODOL SP-O30,花王制)、以及作为分散介质的2-乙基己醇进行混合。分散介质的量调整成使得浆料粘度达到20000cP。通过刮刀法(doctor brade method)使这样制备的浆料在PET膜上成型为片状,并使其干燥后的厚度达到40μm,由此制成微细氧化铝粉末层。
对于市场贩卖的板状氧化铝粉末(KINSEI MATEC制,等级为YFA10030)的100质量份,加入500质量份的作为分散介质的异丙醇。利用超声波分散机对得到的分散液(板状氧化铝浆料)进行5分钟的分散,然后,利用喷枪(TAMIYA制的Spray-Work HG Airbrush Wide)以0.2MPa的喷雾压力、20cm的喷射距离对上述微细氧化铝粉末层的单面进行喷雾,由此得到单面加工体。此时,板状氧化铝粉末将微细氧化铝粉末层的表面覆盖的覆盖率为1%。此外,以如下方式对单面加工体的覆盖率进行计算。即,利用光学显微镜观察微细氧化铝粉末层表面,通过图像处理将该观察照片分割为板状氧化铝粉末的部分和除此以外的部分,并将观察照片中的板状氧化铝粉末的面积相对于微细氧化铝粉末层表面的面积的比例设为覆盖率。
将得到的单面加工体切断成直径为50mm的圆形,然后,使其从PET膜剥离,以不使喷雾后的加工面重叠的方式层叠65层,并将其载置于厚度为10mm的Al板的上方,然后,装入袋中并将内部抽成真空而制成真空包装。在85℃的温水中以100kgf/cm2的压力对该真空包装进行静水压力加压,由此得到层叠体。
(1b)层叠体的烧成
将得到的层叠体配置于脱脂炉中,以600℃、10小时的条件进行了脱脂。使用石墨制的模具,通过热压的方式在氮中以1975℃的烧成温度(最高到达温度)、4小时、200kgf/cm2的表面压力的条件对得到的脱脂体进行烧成,由此得到氧化铝烧结体。此外,当从烧成温度开始降温时,直至1200℃为止而维持加压压力,在小于1200℃的温度区域将加压压力释放为零。
(1c)取向氧化铝基板的制作
将这样得到的烧结体固定于陶瓷平板(surface plate),使用磨石磨削至#2000而使板面变得平坦。接着,通过使用金刚石研磨粒子的研磨加工,使板面实现平滑化,作为取向氧化铝基板而得到直径为50mm、厚度为0.5mm的取向氧化铝烧结体。使得研磨粒子的尺寸从3μm阶梯式地减小到0.5μm,并提高了平坦性。加工后的平均粗糙度Ra为4nm。
(2)取向氧化铝基板的特性
(2a)c面取向度
为了确认得到的取向氧化铝基板的取向度,以与取向氧化铝基板的上表面平行的方式进行研磨加工,然后,对其研磨面照射X射线而测定c面取向度。使用XRD装置(理学制,RINT-TTR III),在2θ=20~70°的范围内对XRD图谱进行了测定。具体而言,使用CuKα射线以50kV的电压、300mA的电流的条件进行了测定。通过Lotgering法对c面取向度进行了计算。具体而言,通过下式进行了计算。式中,P是根据取向氧化铝基板的XRD而得到的值,P0是根据标准α-氧化铝(JCPDS Cards No.46-1212)而计算出的值。实验例1的取向氧化铝基板的c面取向度为100%。
[数学式1]
(Io(h k l)、Is(h k l)分别为ICDD No.461212以及试样中的(h k l)面的衍射强度的积分值(2θ=20~70°))
(2b)倾斜角
倾斜角是结晶轴的斜率分布,且是对氧化铝的结晶方位相对于c轴以何种程度的频率倾斜进行评价的参数。这里,由X射线摆动曲线(XRC)半高宽(FWHM)来表示倾斜角。对于XRC·FWHM,像图5那样使X射线源与检测器联动而对取向氧化铝基板的板面(与c面取向度的测定相同的面)进行扫描,并对所得到的曲线的半高宽进行了测定。将这样使得2θ(检测器与入射X射线所成的角度)的值固定为其衍射峰值位置、且仅对ω(试样基板面与入射X射线所成的角度)进行扫描的测定方法称为摆动曲线测定。对于装置,使用理学制的RINT-TTRIII,利用CuKα射线以50kV的电压、300mA的电流的条件而使得ω的扫描范围变为3.8°~38.8°。实验例1的取向氧化铝基板的XRC·FWHM为1.2°。
(2c)取向氧化铝基板的粒径评价
对于取向氧化铝基板的烧结体粒子,通过以下方法对板面的平均烧结粒径进行了测定。对得到的取向氧化铝基板以1550℃的温度进行了45分钟的热蚀刻,然后,利用扫描电子显微镜拍摄了图像。在对得到的图像的对角线引出直线的情况下,使得引出的任意直线均穿过10个~30个粒子,将可引出上述直线的范围作为视野范围。对得到的图像的对角线引出的2条直线中,对于直线所穿过的全部粒子而求出各粒子的内侧的线段的长度的平均值,并将该平均值乘以1.5而得的值设为板面的平均烧结粒径。其结果,板面的平均烧结粒径为68μm。
(2d)取向氧化铝基板的杂质量
利用纯度为99.9质量%的氧化铝研钵将氧化铝烧结体粉碎,然后,通过下述方法进行了定量分析。然后,求出氧化铝烧结体中的Na、Mg、Si、P、Ca、Fe、Ti、Zn的质量比例(ppm)。实验例1的氧化铝烧结体中除了Mg以外的杂质元素均为检测边界值以下,并且检测出了62ppm的Mg。
杂质定量方法:通过基于JISR1649的加压硫酸分解法而将板状氧化铝粉末溶解,使用ICP(感应耦合等离子体)发光分析装置(日立高新技术制的PS3520UV-DD)进行了分析。
表1中对实验例A1的烧成方法、烧成温度以及取向氧化铝基板的特性进行了总结。
[表1]
[实验例A2]
在实验例A1中,作为微细氧化铝粉末而使用了AKP-20(平均粒径为0.4μm,住友化学制),除此以外,与实验例A1同样地制作取向氧化铝基板,并对其特性进行了测定。表1中示出了取向氧化铝基板的特性。
[实验例A3]
(1)取向氧化铝基板的制作
(1a)层叠体的制作
相对于微细氧化铝粉末(大明化学工业株式会社制,等级为TM-DAR)的100质量份,加入0.0125质量份(125质量ppm)的氧化镁(500A,宇部Material制)、7.8质量份的作为粘合剂的聚乙烯醇缩丁醛(型号为BM-2,积水化学工业制)、3.9质量份的作为增塑剂的邻苯二甲酸二(2-乙基己基)酯(黑金化成制)、2质量份的作为分散剂的失水山梨糖醇三油酸酯(RHEODOL SP-O30,花王制)、以及作为分散介质的2-乙基己醇进行了混合。分散介质的量调整成使得浆料粘度达到20000cP。通过刮刀法使这样制备的浆料在PET膜上成型为片状,且使得干燥后的厚度达到40μm,由此制成微细氧化铝粉末层。
相对于市场贩卖的板状氧化铝粉末(KINSEI MATEC制,等级为YFA10030),KINSEIMATEC制)的100质量份,加入50质量份的作为粘合剂的聚乙烯醇缩丁醛(型号为BM-2,积水化学工业制)、25质量份的作为增塑剂的邻苯二甲酸二(2-乙基己基)酯(黑金化成制)、2质量份的作为分散剂的失水山梨糖醇三油酸酯(RHEODOL SP-O30,花王制)、以及作为分散介质的二甲苯和1-丁醇的混合熔液(混合比率1:1)而进行了混合。分散介质的量调整成使得浆料粘度达到5000cP。通过反向刮刀法使这样制备的浆料在PET膜上成型为片状,且使得干燥后的厚度达到3μm,由此制成板状氧化铝粉末层。
将微细氧化铝粉末层和板状氧化铝粉末层分别切断成直径为50mm的圆形,然后,使它们从PET膜剥离,使50层的微细氧化铝粉末层和50层的板状氧化铝粉末层交替层叠并将它们载置于厚度为10mm的Al板上,然后,将它们装入袋中且将内部抽成真空而制成真空包装。在85℃的温水中以100kgf/cm2的压力对该真空包装进行静水压力加压,由此得到层叠体。此时,板状氧化铝粉末层将微细氧化铝粉末层的表面覆盖的覆盖率为60%。
(1b)层叠体的烧成
将得到的层叠体配置于脱脂炉中,以600℃、10小时的条件进行了脱脂。使用石墨制的模具,通过热压的方式在氮中以1975℃的烧成温度(最高到达温度)、4小时、200kgf/cm2的表面压力的条件对得到的脱脂体进行烧成,由此得到氧化铝烧结体。此外,当从烧成温度开始降温时,直至1200℃为止而维持加压压力,在小于1200℃的温度区域将加压压力释放为零。
(1c)取向氧化铝基板的制作
将这样得到的烧结体固定于陶瓷平板(surface plate),使用磨石磨削至#2000而使板面变得平坦。接着,通过使用金刚石研磨粒子的研磨加工,使板面实现平滑化,作为取向氧化铝基板而得到直径为50mm、厚度为0.5mm的取向氧化铝烧结体。使得研磨粒子的尺寸从3μm阶梯式地减小到0.5μm,并提高了平坦性。加工后的平均粗糙度Ra为4nm。
(2)取向氧化铝基板的特性
与实验例A1同样地测定了取向氧化铝基板的特性。表1中示出了取向氧化铝基板的特性。
[实验例A4]
作为原料,准备了板状氧化铝粉末(KINSEI MATEC株式会社制,等级为10030)、微细氧化铝粉末(大明化学工业株式会社制,等级为TM-DAR)、以及氧化镁粉末(宇部Material株式会社,等级为500A),对0.5重量份的板状氧化铝粉末、99.5重量份的微细氧化铝粉末、0.0125重量份的氧化镁粉末进行混合而得到氧化铝原料。接下来,相对于氧化铝原料的100重量份,对8重量份的粘合剂(聚乙烯醇缩丁醛:型号为BM-2,积水化学工业株式会社制)、4重量份的增塑剂(DOP:邻苯二甲酸二(2-乙基己基)酯,黑金化成株式会社制)、2重量份的分散剂(RHEODOL SP-O30,花王株式会社制)、以及分散介质(以1:1的重量比对二甲苯和1-丁醇进行混合而成的分散介质)进行了混合。分散介质的量调整成使得浆料粘度达到20000cP。通过刮刀法使以上述方式制备的浆料在PET膜上成型为片状,并使得干燥后的厚度达到20μm。将得到的带切断成直径为50mm的圆形,然后层叠150个并载置于厚度为10mm的Al板上,然后进行了真空包装。在85℃的温水中以100kgf/cm2的压力对该真空包装进行静水压力加压,从而得到圆盘状的成型体。
将得到的成型体配置于脱脂炉中,以600℃、10小时的条件进行了脱脂。使用石墨制的模具,通过热压的方式在氮中以1975℃、4小时,200kgf/cm2的表面压力的条件对得到的脱脂体进行了烧成。与实验例A1同样地对得到的烧结体进行加工而制作取向氧化铝基板,并对其特性进行了测定。表1中示出了取向氧化铝基板的特性。
[实验例A5]
对99.8质量份的微细氧化铝粉末(大明化学工业株式会社制,等级为TM-DAR)、0.2质量份的氧化钇粉末(信越化学工业株式会社制,等级为UU)进行混合,相对于100g的混合粉末以50cc的比例添加作为溶剂的水,利用球磨机(ball mill)进行了40小时的混合粉碎而实现了浆料化。将得到的浆料注入至内径为50mm的石膏模具,并在12T的磁场中载置3小时而进行了浇铸成型。使成型体从石膏中脱模,在室温下进行干燥之后,使用石墨制的模具,通过热压的方式在氮中以1400℃、4小时、200kgf/cm2的表面压力的条件进行了烧成。与实验例A1同样地对得到的烧结体进行加工而制作取向氧化铝基板,并对其特性进行了测定。表1中示出了取向氧化铝基板的特性。
[实验例A6]
作为原料,准备了板状氧化铝粉末(KINSEI MATEC株式会社制,等级为00610)。相对于板状氧化铝粒子的100重量份,对7重量份的粘合剂(聚乙烯醇缩丁醛:型号为BM-2,积水化学工业株式会社制)、3.5重量份的增塑剂(DOP:邻苯二甲酸二(2-乙基己基)酯,黑金化成株式会社制)、2重量份的分散剂(RHEODOL SP-O30,花王株式会社制)、以及分散介质2-乙基己醇)进行了混合。分散介质的量调整成使得浆料粘度达到20000cP。通过刮刀法使以上述方式制备的浆料在PET膜上成型为片状,并使得干燥后的厚度达到20μm。将得到的带切断成直径为50mm的圆形,然后层叠150个并载置于厚度为10mm的Al板上,然后进行了真空包装。在85℃的温水中以100kgf/cm2的压力对该真空包装进行静水压力加压,从而得到圆盘状的成型体。
将得到的成型体配置于脱脂炉中,以600℃、10小时的条件进行了脱脂。使用石墨制的模具,通过热压的方式在氮中以1600℃、4小时、200kgf/cm2的表面压力的条件对得到的脱脂体进行烧成。将得到的烧结体设置于石墨制固定件(setter)上,通过热等静压加压法(HIP)在氩中以1700℃、2小时、1500kgf/cm2的气压的条件再次进行了烧成。
与实验例A1同样地对得到的烧结体进行加工而制作取向氧化铝基板,并对其特性进行了测定。表1中示出了取向氧化铝基板的特性。
[实施例A7]
除了将实验例A3中的烧成温度(最高到达温度)设为1800℃以外,与实验例A3同样地制作取向氧化铝基板,并对其特性进行了测定。表1中示出了取向氧化铝基板的特性。
[实施例A8]
在实验例A1中,作为板状氧化铝粉末而使用如下板状氧化铝粉末:对于市场贩卖的板状氧化铝粉末(KINSEI MATEC制,等级为YFA10030),利用气流分级机(日清工程制的TC-15N)将切割点设定为3μm而进行分级,利用罐式碎解机并借助直径为0.3mm的球石进行20小时的碎解,然后通过淘析而将微粒粉末除去,除此以外,通过与实验例A1相同的方法而制作取向氧化铝基板,并对其特性进行了评价。表1中示出了取向氧化铝基板的特性
[实验例B1]
(1)发光元件用基板(元件用基板S1)的制作
(1a)晶种层的成膜
利用MOCVD法在实验例A1中制作的取向氧化铝基板的上方形成晶种层。具体而言,在530℃的温度下堆积40nm的低温GaN层,然后,以1050℃的温度对厚度为3μm的GaN膜进行层叠而得到晶种基板。
(1b)基于Na助熔剂法的GaN缓冲层的成膜
将通过上述工序制作的晶种基板设置于内径为80mm、高度为45mm的圆筒平底的氧化铝坩埚的底部,接下来,在杂物箱(glove box)内将熔液组合物填充到坩埚内。熔液组合物的组成如下。
·金属Ga:60g
·金属Na:60g
将该氧化铝坩埚放入耐热金属制的容器进行密闭,然后,将其设置于晶体培育炉的能够旋转的工作台上。在氮气气氛中升温加压至870℃、4.0MPa,然后保持10小时、且使熔液旋转,由此一边搅拌、一边使氮化镓晶体生长为缓冲层。在结晶生长结束之后,花费3小时逐渐冷却至室温,并从晶体培育炉中将培育容器取出。使用乙醇将残留于坩埚内的熔液组合物除去,并对氮化镓晶体生长后的试样进行了回收。对于得到的试样而言,氮化镓晶体在50mm的晶种基板的整个面上生长,晶体的厚度约为0.1mm。并未确认到裂纹。
将这样得到的取向氧化铝基板上的氮化镓晶体连同基板一起固定于陶瓷平板,利用#600和#2000的磨石对氮化镓晶体的板面进行磨削而使板面变得平坦。接着,通过使用金刚石研磨粒子的研磨加工,使氮化镓晶体的板面实现了平滑化。此时,使得研磨粒子的尺寸从3μm阶梯式地减小到0.1μm,并提高了平坦性。氮化镓晶体板面的加工后的平均粗糙度Ra为0.2nm。这样,得到在取向氧化铝基板上形成有厚度约为50μm的氮化镓晶体层的基板。此外,虽然在本例中为了提高后述的发光功能层的结晶性而形成这样的氮化镓缓冲层,但也可以根据目标特性或用途而将缓冲层本身省略。另外,也可以形成为在氮化镓缓冲层中掺杂有锗、硅、氧等而具有导电性的结构。
(1c)基于MOCVD法的发光功能层的成膜
使用MOCVD法,作为n型层,在基板上以1050℃的温度堆积3μm的n-GaN层,该n-GaN层掺杂成使得Si原子浓度达到5×1018/cm3。接下来,作为活性层,以750℃的温度而堆积多重量子阱层。具体而言,对5层由InGaN构成的2.5nm的阱层、6层由GaN构成的10nm的势垒层交替地进行层叠。接下来,作为p型层,以950℃的温度堆积200nm的p-GaN,上述p-GaN掺杂成使得Mg原子浓度达到1×1019/cm3。然后,将其从MOCVD装置中取出,作为p型层的Mg离子的活化处理,在氮气气氛中进行10分钟的800℃的热处理,由此得到发光元件用基板。
[实验例B2~B8]
使用实验例A2~A8的取向氧化铝基板并通过与实验例B1相同的方法而制作发光元件用基板。在使用A6的取向氧化铝基板制作发光元件用基板时,在基板的一部分产生了裂纹。
[发光元件用基板的凹坑评价]
本发明的发明人发现:可以将对半导体层的形成造成影响的凹坑量置换为使用非接触式表面形状测量仪测定所得的平方平均粗糙度Rms值而进行评价。因此,对于得到的发光元件用基板的表面,利用非接触式表面形状测量仪(Zygo公司制的New View 7000)以物镜×5倍对平方平均粗糙度Rms进行了计算。此外,对于软件而使用Metro Pro 9.0.10,观察视野为1.4mm×1.05mm。表2中示出了得到的Rms值。Rms优选为2.0nm以下,越小越好。另一方面,当超过2.0nm时,能够由元件用基板制作的半导体器件的数量减少,成品率降低。
[表2]
[实验例C1]
(1)发光元件用基板(元件用基板S2)的制作
(1a)晶种层的成膜
利用MOCVD法在实验例A1中制作的取向氧化铝基板的上方形成晶种层。具体而言,作为缓冲层,以530℃的衬托器(susceptor)温度在氢气气氛中堆积30nm的低温GaN层,然后,在氮气、氢气气氛中升温至1050℃的衬托器温度而对厚度为3μm的GaN膜进行层叠,由此得到晶种基板。
(1b)基于Na助熔剂法的Ge掺杂GaN层的成膜
将通过上述工序制作的晶种基板设置于内径为80mm、高度为45mm的圆筒平底的氧化铝坩埚的底部,接下来,在杂物箱内将熔液组合物填充到坩埚内。熔液组合物的组成如下。
·金属Ga:60g
·金属Na:60g
·四氯化锗:1.85g
在将该氧化铝坩埚放入耐热金属制的容器中进行密闭之后,将其设置于晶体培育炉的能够旋转的工作台上。在氮气气氛中升温加压至870℃、3.5MPa,然后保持50小时、并使熔液旋转,由此一边进行搅拌、一边使氮化镓晶体生长。在结晶生长结束后,花费3小时而逐渐冷却至室温,并从晶体培育炉中取出培育容器。使用乙醇而将残留于坩埚内的熔液组合物除去,并对氮化镓晶体生长后的试样进行了回收。在得到的试样中,Ge掺杂氮化镓晶体在50mm的晶种基板的整个面上生长,晶体的厚度约为0.5mm。并未确认到裂纹。通过基于磨石的磨削加工而将这样得到的试样的取向氧化铝基板部除去,由此得到Ge掺杂氮化镓的单体。利用#600以及#2000的磨石对该Ge掺杂氮化镓晶体的板面进行研磨而使板面变得平坦,接着,通过使用金刚石研磨粒子的研磨加工,使板面实现平滑化,由此得到厚度约为300μm的Ge掺杂多晶氮化镓自立基板。此外,通过平滑化加工,使得研磨粒子的尺寸从3μm阶梯式地减小至0.1μm,并提高了平坦性。氮化镓自立基板表面的加工后的平均粗糙度Ra为0.2nm。
此外,虽然在本例中掺杂锗而制作n型半导体,但也可以根据用途、结构而掺杂不同的元素或者不掺杂元素。
[实验例C2~C8]
使用实验例A2~A8的取向氧化铝基板并通过与实验例C1相同的方法而制作发光元件用基板。当使用A6的取向氧化铝基板制作发光元件用基板时,在基板的一部分产生裂纹。
[发光元件用基板的凹坑评价]
为了对得到的发光元件用基板的凹坑量进行评价,通过与实验例B1~B8相同的方法对发光元件用基板的Rms进行了测定。表3中示出了得到的结果。
[表3]
在以上说明的实验例中,实验例A1~A4相当于本发明的实施例,实验例A5~A8相当于比较例。此外,本发明未受到上述实施例的任何限定,只要属于本发明的技术范围,当然也可以以各种方式来实施。
本申请以平成28年7月14日申请的日本专利申请第2016-139508号、平成28年3月29日申请的日本专利申请第2016-66432号、平成28年2月25日申请的日本专利申请第2016-34005号、平成28年1月25日申请的日本专利申请第2016-11190号、平成27年11月16日申请的日本专利申请第2015-224164号、平成27年9月30日申请的日本专利申请第2015-193943号以及平成27年9月30日申请的日本专利申请第2015-193944号作为主张优先权的基础,通过引用而将它们的所有内容包含于本说明书中。
产业上的可利用性
例如在制造半导体器件时利用本发明的外延生长用基板。
附图标记说明
1…层叠体;3…微细氧化铝粉末层;3a…微细氧化铝粒子;5…板状氧化铝粉末层;5a…板状氧化铝粒子;7…取向氧化铝基板;10…发光元件用基板;12…取向氧化铝基板;14…发光功能层;14a…p型层;14b…活性层;14c…n型层;16…缓冲层;17…阴极电极;18…透光性阳极电极;19…阳极电极焊盘;20…发光元件用基板;22…半导体自立基板;24…发光功能层;24a…p型层;24b…活性层;24c…n型层;27…阴极电极;28…透光性阳极电极;29…阳极电极焊盘;30…发光元件;40…发光元件;S1…元件用基板;S2…元件用基板。

Claims (3)

1.一种外延生长用取向氧化铝基板,其特征在于,
构成表面的晶体粒子的倾斜角为1°以上3°以下,
平均烧结粒径为20μm以上。
2.根据权利要求1所述的外延生长用取向氧化铝基板,其特征在于,
Na、Mg、Si、P、Ca、Fe、Ti、Zn各自的含量为1500ppm以下。
3.根据权利要求1或2所述的外延生长用取向氧化铝基板,其特征在于,
Mg的含量为15ppm以上。
CN201680050570.9A 2015-09-30 2016-09-26 外延生长用取向氧化铝基板 Active CN108025979B (zh)

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
JP2015193944 2015-09-30
JP2015193943 2015-09-30
JP2015-193944 2015-09-30
JP2015-193943 2015-09-30
JP2015-224164 2015-11-16
JP2015224164 2015-11-16
JP2016-011190 2016-01-25
JP2016011190 2016-01-25
JP2016034005 2016-02-25
JP2016-034005 2016-02-25
JP2016-066432 2016-03-29
JP2016066432 2016-03-29
JP2016139508 2016-07-14
JP2016-139508 2016-07-14
PCT/JP2016/078266 WO2017057272A1 (ja) 2015-09-30 2016-09-26 エピタキシャル成長用配向アルミナ基板

Publications (2)

Publication Number Publication Date
CN108025979A true CN108025979A (zh) 2018-05-11
CN108025979B CN108025979B (zh) 2021-06-01

Family

ID=58427658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680050570.9A Active CN108025979B (zh) 2015-09-30 2016-09-26 外延生长用取向氧化铝基板

Country Status (4)

Country Link
US (1) US10435816B2 (zh)
JP (1) JP6681406B2 (zh)
CN (1) CN108025979B (zh)
WO (1) WO2017057272A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536369A (zh) * 2022-10-18 2022-12-30 湖北晶耐新材料有限公司 一种自增韧氧化铝陶瓷材料的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6691133B2 (ja) * 2015-09-30 2020-04-28 日本碍子株式会社 アルミナ焼結体及び光学素子用下地基板
JP6684815B2 (ja) * 2015-09-30 2020-04-22 日本碍子株式会社 エピタキシャル成長用配向アルミナ基板
WO2017057272A1 (ja) * 2015-09-30 2017-04-06 日本碍子株式会社 エピタキシャル成長用配向アルミナ基板
CN111201208B (zh) 2017-10-05 2023-05-23 阔斯泰公司 氧化铝质烧结体及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256792A (en) * 1980-01-25 1981-03-17 Honeywell Inc. Composite electronic substrate of alumina uniformly needled through with aluminum nitride
JPH05270894A (ja) * 1992-03-27 1993-10-19 Sumitomo Metal Ind Ltd セラミックス基板の製造方法
JP2002050585A (ja) * 2000-08-03 2002-02-15 Hitachi Cable Ltd 半導体の結晶成長方法
JP2002293609A (ja) * 2001-03-29 2002-10-09 Ngk Insulators Ltd セラミックス多結晶体及びその製造方法
JP2004359495A (ja) * 2003-06-04 2004-12-24 Ngk Insulators Ltd エピタキシャル膜用アルミナ基板
CN101364482A (zh) * 2008-09-19 2009-02-11 南京大学 一种可见光铟镓氮基光电化学电池及制备方法
CN101599466A (zh) * 2009-07-10 2009-12-09 中山大学 一种外延生长用的图形衬底及其制作方法
US20150144956A1 (en) * 2013-05-31 2015-05-28 Ngk Insulators, Ltd. Gallium nitride self-supported substrate, light-emitting device and manufacturing method therefor
WO2015093335A1 (ja) * 2013-12-18 2015-06-25 日本碍子株式会社 発光素子用複合基板及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549746A (en) * 1993-09-24 1996-08-27 General Electric Company Solid state thermal conversion of polycrystalline alumina to sapphire using a seed crystal
CN101468915A (zh) * 2007-12-26 2009-07-01 中国科学院上海硅酸盐研究所 一种具有择优取向的多晶氧化铝透明陶瓷及其制备方法
EP2305621B1 (en) * 2009-09-09 2015-04-22 NGK Insulators, Ltd. Translucent polycrystalline sintered body, method for producing the same, and arc tube for high-intensity discharge lamp
WO2014157430A1 (ja) * 2013-03-27 2014-10-02 日本碍子株式会社 半導体用複合基板のハンドル基板
JP5770905B1 (ja) * 2013-12-18 2015-08-26 日本碍子株式会社 窒化ガリウム自立基板、発光素子及びそれらの製造方法
JP6691133B2 (ja) * 2015-09-30 2020-04-28 日本碍子株式会社 アルミナ焼結体及び光学素子用下地基板
WO2017057272A1 (ja) * 2015-09-30 2017-04-06 日本碍子株式会社 エピタキシャル成長用配向アルミナ基板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256792A (en) * 1980-01-25 1981-03-17 Honeywell Inc. Composite electronic substrate of alumina uniformly needled through with aluminum nitride
JPH05270894A (ja) * 1992-03-27 1993-10-19 Sumitomo Metal Ind Ltd セラミックス基板の製造方法
JP2002050585A (ja) * 2000-08-03 2002-02-15 Hitachi Cable Ltd 半導体の結晶成長方法
JP2002293609A (ja) * 2001-03-29 2002-10-09 Ngk Insulators Ltd セラミックス多結晶体及びその製造方法
JP2004359495A (ja) * 2003-06-04 2004-12-24 Ngk Insulators Ltd エピタキシャル膜用アルミナ基板
CN101364482A (zh) * 2008-09-19 2009-02-11 南京大学 一种可见光铟镓氮基光电化学电池及制备方法
CN101599466A (zh) * 2009-07-10 2009-12-09 中山大学 一种外延生长用的图形衬底及其制作方法
US20150144956A1 (en) * 2013-05-31 2015-05-28 Ngk Insulators, Ltd. Gallium nitride self-supported substrate, light-emitting device and manufacturing method therefor
WO2015093335A1 (ja) * 2013-12-18 2015-06-25 日本碍子株式会社 発光素子用複合基板及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536369A (zh) * 2022-10-18 2022-12-30 湖北晶耐新材料有限公司 一种自增韧氧化铝陶瓷材料的制备方法
CN115536369B (zh) * 2022-10-18 2023-09-26 湖北晶耐新材料有限公司 一种自增韧氧化铝陶瓷材料的制备方法

Also Published As

Publication number Publication date
US20180179665A1 (en) 2018-06-28
WO2017057272A1 (ja) 2017-04-06
CN108025979B (zh) 2021-06-01
JP6681406B2 (ja) 2020-04-15
JPWO2017057272A1 (ja) 2018-07-26
US10435816B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
CN105830237B (zh) 发光元件用复合基板及其制造方法
CN108025979A (zh) 外延生长用取向氧化铝基板
JP5770905B1 (ja) 窒化ガリウム自立基板、発光素子及びそれらの製造方法
CN105556685B (zh) 多晶氮化镓自立基板和使用该多晶氮化镓自立基板的发光元件
CN107208312A (zh) 自立基板、功能元件及其制造方法
CN105658849B (zh) 氮化镓自立基板、发光元件及它们的制造方法
CN108779578B (zh) 包含多晶第13族元素氮化物的自立基板和使用该自立基板的发光元件
US20220209062A1 (en) Composite Substrate, Light Emitting Element, and Methods for Manufacturing Composite Substrate and Light Emitting Element
US10707373B2 (en) Polycrystalline gallium nitride self-supported substrate and light emitting element using same
CN108137411A (zh) 外延生长用取向氧化铝基板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant