CN108023548B - 一种复合调制信号发生器及复合调制信号发生方法 - Google Patents

一种复合调制信号发生器及复合调制信号发生方法 Download PDF

Info

Publication number
CN108023548B
CN108023548B CN201610928777.3A CN201610928777A CN108023548B CN 108023548 B CN108023548 B CN 108023548B CN 201610928777 A CN201610928777 A CN 201610928777A CN 108023548 B CN108023548 B CN 108023548B
Authority
CN
China
Prior art keywords
modulation
control unit
generate
phase
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610928777.3A
Other languages
English (en)
Other versions
CN108023548A (zh
Inventor
丁新宇
王悦
王铁军
李维森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigol Technologies Inc
Original Assignee
Rigol Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigol Technologies Inc filed Critical Rigol Technologies Inc
Priority to CN201610928777.3A priority Critical patent/CN108023548B/zh
Publication of CN108023548A publication Critical patent/CN108023548A/zh
Application granted granted Critical
Publication of CN108023548B publication Critical patent/CN108023548B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C5/00Amplitude modulation and angle modulation produced simultaneously or at will by the same modulating signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Transmitters (AREA)

Abstract

本发明提供了一种复合调制信号发生器及信号发生方法,包括:控制单元用于产生AM调制单元、FM调制单元和PM调制单元的调制参数;AM调制单元连接控制单元,用于产生AM幅度控制字;FM调制单元连接控制单元,用于产生FM频率控制字;PM调制单元连接控制单元,用于产生PM相位控制字;相位累加器连接FM调制单元,用于对FM频率控制字进行累加,产生第一相码;相位加法器连接相位累加器及PM调制单元,用于将第一相码和PM相位控制字相加,生成第二相码;载波存储器用于以第二相码为读地址,将其内部存储的一个周期的载波波形样点读出,生成角度已调信号;幅度乘法器连接载波存储器及AM调制单元,用于将角度已调信号与AM幅度控制字相乘,生成复合调制信号。

Description

一种复合调制信号发生器及复合调制信号发生方法
技术领域
本发明涉及信号发生器技术领域,尤其涉及一种复合调制信号发生器及复合调制信号发生方法。
背景技术
本部分旨在为权利要求书中陈述的本发明的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。从功能上可以将信号发生器划分为函数发生器、任意波形发生器、脉冲发生器、谐波发生器、模拟/数字调制器、扫频发生器、猝发信号发生器。随着电子芯片集成化的发展,借助于可编程逻辑阵列(FPGA)技术,很多信号发生器集上述功能于一身,成为多功能信号发生器。
信号发生器的功能之一是产生已调信号,且调制类型多样,常见的有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
现有的信号发生器虽然可以提供多种调制类型给用户设置,但是一经用户设置后,则产生单一调制类型的已调信号,只能是AM、FM、PM这些调制类型中的一种。而在实际的测试测量系统中,比如测试待测系统的幅频响应时,希望激励源在频率变化的同时,幅度也在变化。
现有的信号发生器就无法满足这种应用。
发明内容
为了解决现有技术中存在的问题,本发明提供一种复合调制信号发生器及复合调制信号发生方法,以实现对载波的幅度、频率、相位同时进行调制。
为了达到上述目的,本发明实施例提供一种复合调制信号发生器,包括:控制单元、AM调制单元、FM调制单元、PM调制单元、相位累加器、相位加法器、载波存储器和幅度乘法器;所述控制单元用于产生所述AM调制单元、FM调制单元和PM调制单元的调制参数;所述AM调制单元连接所述控制单元,用于产生AM幅度控制字;所述FM调制单元连接所述控制单元,用于产生FM频率控制字;所述PM调制单元连接所述控制单元,用于产生PM相位控制字;所述相位累加器连接所述FM调制单元,用于对所述FM频率控制字进行累加,产生第一相码;所述相位加法器连接所述相位累加器及PM调制单元,用于将所述第一相码和PM相位控制字相加,生成第二相码;所述载波存储器连接所述相位加法器,用于以所述第二相码为读地址,将其内部存储的一个周期的载波波形样点读出,生成角度已调信号;所述幅度乘法器连接所述载波存储器及AM调制单元,用于将所述角度已调信号与所述AM幅度控制字相乘,生成复合调制信号。
为了达到上述目的,本发明实施例还提供一种复合调制信号发生方法,包括:通过控制单元产生所述AM调制单元、FM调制单元和PM调制单元的调制参数;根据所述调制参数产生AM幅度控制字、FM频率控制字以及PM相位控制字;对所述FM频率控制字进行累加,产生第一相码;将所述第一相码和所述PM相位控制字相加,生成第二相码;以所述第二相码为读地址,将存储的一个周期的载波波形样点读出,生成角度已调信号;将所述角度已调信号与所述AM幅度控制字相乘,生成复合调制信号。
本发明的复合调制信号发生器及信号发生方法,可以实现AM/FM/PM复合调制,对载波的幅度、频率、相位同时进行调制;并且,本发明的各调制参数均可由控制单元灵活设置,从而使得本发明的复合调制可以是同时发生,也可有先后顺序。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的复合调制信号发生器的结构示意图;
图2为本发明实施例的AM调制单元12的结构示意图;
图3为本发明实施例的FM调制单元13的结构示意图;
图4为本发明实施例的PM调制单元14的结构示意图;
图5为本发明实施例的复合调制信号发生方法的处理流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本领域技术技术人员知道,本发明的实施方式可以实现为一种系统、装置、设备、方法或计算机程序产品。因此,本公开可以具体实现为以下形式,即:完全的硬件、完全的软件(包括固件、驻留软件、微代码等),或者硬件和软件结合的形式。
下面参考本发明的若干代表性实施方式,详细阐释本发明的原理和精神。以下所使用的术语“模块”和“单元”,可以是实现预定功能的软件和/或硬件。尽管以下实施例所描述的模块较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
DDS技术是目前频率合成中的一种主要技术,具有低成本、高分辨率、快速转换时间、可以产生任意波形以及切换时输出波形相位连续等特点,在信号发生器设计中被广泛应用。本发明的基本思想是基于DDS技术,实施时各模块均以系统时钟为工作时钟,因此本发明的附图中均没有画出系统时钟。
图1为本发明实施例的复合调制信号发生器的结构示意图。如图所示,包括:控制单元11、AM调制单元12、FM调制单元13、PM调制单元14、相位累加器15、相位加法器16、载波存储器17和幅度乘法器18。
在本实施例中,控制单元11用于根据用户在信号发生器外部进行的输入设置,产生所述AM调制单元、FM调制单元和PM调制单元的调制参数。
作为一种举例说明,控制单元11还包括输入单元,输入单元的作用是接收用户输入的多种功能和参数信息,输入单元例如可以是信号发生器仪器面板上的硬键盘,或者是显示屏幕上的软键盘等。
作为另外的举例说明,控制单元11还可以包括用于系统控制的处理单元、用于辅助处理单元工作的存储单元、用于连接上位机或者网络的LAN、GPIB、USB等的接口单元、用于为信号发生器内部各单元提供工作时钟的时钟单元、用于采集外部信号的采集单元和用于将数字信号转换为模拟信号,并进行滤波、衰减、放大等处理的数模转换单元等。
在本实施例中,控制单元11可通过信号发生器的仪器面板上的键盘接收用户输入的各种用于复合调制功能的设置信息,控制单元11根据这些设置信息,生成相对应的调制参数,传送给AM调制单元12、FM调制单元13和PM调制单元14。
所述AM调制单元12连接所述控制单元,用于产生AM幅度控制字;
所述FM调制单元13连接所述控制单元,用于产生FM频率控制字;
所述PM调制单元14连接所述控制单元,用于产生PM相位控制字;
所述相位累加器15连接所述FM调制单元13,用于对上述FM频率控制字进行累加,产生第一相码;
所述相位加法器16连接所述相位累加器15及PM调制单元14,用于将所述第一相码和PM相位控制字相加,生成第二相码;
所述载波存储器17连接所述相位加法器16,用于以所述第二相码为读地址,将其内部存储的一个周期的载波波形样点读出,生成角度已调信号;
所述幅度乘法器18连接所述载波存储器17及AM调制单元12,用于将所述角度已调信号与所述AM幅度控制字相乘,生成复合调制信号。
可以看出,由于AM幅度控制字包含了AM调制信息,FM频率控制字包含了FM调制信息,PM相位控制字包含了PM调制信息,所以本发明所输出的复合调制信号实现了AM/FM/PM的同时调制。
在具体实施时,参看图2,为本发明实施例的AM调制单元12的结构示意图。AM调制单元12的作用是产生AM幅度控制字225。本发明的AM调制源可以是内部调制源,也可选择外部调制源。
图2中各模块均以系统时钟为工作时钟,并接受控制单元11的控制,图2中没有画出系统时钟和控制单元。其中,AM调制单元12的各模块的连接关系及作用如下:
AM相位累加器121,输入信号为控制单元11配置的AM调制启动信号230和AM调制频率控制字231,当AM调制启动信号230为有效电平时,相位累加器121对AM调制频率控制字231进行累加,累加值为第一相码221并输出给AM调制波存储器122。
AM调制波存储器122,其内部初始化了一个周期的AM调制波波形样点,当然也可由控制单元11(图2中没有画出)写入一个周期的AM调制波波形样点232。AM调制波存储器122的输入信号是第一相码221,AM调制波存储器122以第一相码221为读地址,将其内部存储的AM调制波波形样点读出,生成AM内部调制源数据222,送给AM调制源选择器123。
AM调制源选择器123,按照控制单元11配置的AM选择数据233,从AM内部调制源数据222、AM外部调制源数据241中选取一路输出给AM调制偏移乘法器124,所输出数据的称为AM已选调制源数据223。
AM调制偏移乘法器124,其输入信号为AM已选调制源数据223和控制单元11配置的AM调制深度数据234。AM调制偏移乘法器124将AM已选调制源数据223、AM调制深度数据234相乘,生成AM调制乘法数据224送给AM补偿加法器125。
AM补偿加法器125,其输入信号为AM调制乘法数据224和控制单元11配置的AM调制补偿系数235;AM补偿加法器125将AM调制乘法数据224、AM调制补偿系数235相加,二者之和即为图1所示的AM幅度控制字225。
在本实施例中,AM调制启动信号230、AM调制频率控制字231、AM调制波波形样点232、AM选择数据233、AM调制深度数据234以及AM调制补偿系数235均是由控制单元11配置产生。其中:
AM调制启动信号230决定了AM调制单元12的起始工作时刻;
AM调制频率控制字231决定了AM调制频率;
AM调制波波形样点232决定了AM内部调制源的包络;
AM选择数据233决定所述AM调制源选择器203选择内部调制源数据还是外部调制源数据;
AM调制深度数据234为AM调制深度;当该数据被设置为0时,AM幅度控制字225等于AM调制补偿系数235,为一固定数值,这就相当于不执行AM;
AM调制补偿系数235则决定了AM调制是否要抑制载波,具体说来,如果设置AM调制补偿系数235为0,则AM幅度控制字225中没有直流分量,所以AM幅度控制字225与载波相乘后,载波分量被抑制了,也就是抑制载波的双边带调制。
在具体实施时,参看图3,为本发明实施例的FM调制单元13的结构示意图。FM调制单元13的作用是产生FM幅度控制字325。本发明的FM调制源可以是内部调制源,也可选择外部调制源。
图3中各模块均以系统时钟为工作时钟,并接受控制单元11的控制,图3中没有画出系统时钟和控制单元。其中,FM调制单元13的各模块的连接关系及作用如下:
FM相位累加器131,输入信号为控制单元11配置的FM调制启动信号330和FM调制频率控制字331,当FM调制启动信号330为有效电平时,FM相位累加器131对FM调制频率控制字331进行累加,累加值为第一相码321并输出给FM调制波存储器132。
FM调制波存储器132,其内部初始化了一个周期的FM调制波波形样点,当然也可由控制单元11(图3中没有画出)写入一个周期的FM调制波波形样点332。FM调制波存储器132的输入信号是第一相码321,FM调制波存储器132以第一相码321为读地址,将其内部存储的FM调制波波形样点读出,生成FM内部调制源数据322,送给FM调制源选择器133。
FM调制源选择器133,按照控制单元11配置的FM选择数据333,从FM内部调制源数据322和FM外部调制源数据341中选取一路输出给FM调制偏移乘法器134,所输出数据称为FM已选调制源数据323。
FM调制偏移乘法器134,其输入信号为FM已选调制源数据323和控制单元11配置的FM调制偏移数据334;FM调制偏移乘法器134将FM已选调制源数据323和FM调制偏移数据334相乘,生成FM调制乘法数据324并传送给FM补偿加法器135。
FM补偿加法器135,其输入信号为FM调制乘法数据324和控制单元11配置的FM调制补偿系数335。FM补偿加法器135将FM调制乘法数据324和FM调制补偿系数335相加,二者之和即为图1中所示FM频率控制字325。
在本实施例中,FM调制启动信号330、FM调制频率控制字331、FM调制波波形样点332、FM选择数据333、FM调制偏移数据334以及FM调制补偿系数335均是由控制单元11配置产生。其中:
FM调制启动信号330决定了FM调制单元13的起始工作时刻;
FM调制频率控制字331决定了FM调制频率;
FM调制波波形样点332决定了FM内部调制源的包络;
FM选择数据333决定所述FM调制源选择器133选择内部调制源数据还是外部调制源数据;
FM调制偏移数据334,也称为FM频偏;当FM调制偏移数据334被设置为0时,FM频率控制字325等于FM调制补偿系数335,为一固定数值,这就相当于不执行FM;
FM调制补偿系数335则决定了FM频率控制字要从某个起始频率开始,具体说来,如果设置FM调制补偿系数335为0,则FM频率控制字325中没有起始频率。如果FM调制补偿系数335不为0,FM频率控制字325就有了起始频率,由此可实现扫频。
在具体实施时,参看图4,为本发明实施例的PM调制单元14的结构示意图。PM调制单元14的作用是产生PM幅度控制字425。本发明的PM调制源可以是内部调制源,也可选择外部调制源。
图4中各模块均以系统时钟为工作时钟,并接受控制单元11的控制,图4中没有画出系统时钟和控制单元。其中,PM调制单元14的各模块的连接关系及作用如下:
PM相位累加器141,输入信号为控制单元11配置的PM调制启动信号430和PM调制频率控制字431,当PM调制启动信号430为有效电平时,PM相位累加器141对PM调制频率控制字431进行累加,累加值为第一相码421并输出给PM调制波存储器142。
PM调制波存储器142,其内部初始化了一个周期的PM调制波波形样点,当然也可由控制单元11(图4中没有画出)写入一个周期的PM调制波波形样点432。PM调制波存储器142的输入信号是PM第一相码421,PM调制波存储器142以PM第一相码421为读地址,将其内部存储的PM调制波波形样点读出,生成PM内部调制源数据422,传送给PM调制源选择器143。
PM调制源选择器143,按照控制单元11配置的PM选择数据433,从PM内部调制源数据422、PM外部调制源数据441中选取一路输出给PM调制偏移乘法器144,所输出数据称为PM已选调制源数据423。
PM调制偏移乘法器144,其输入信号为PM已选调制源数据423和控制单元11配置的PM调制偏移数据434。PM调制偏移乘法器144将PM已选调制源数据423和PM调制偏移数据434相乘,生成PM调制乘法数据424并传送给PM补偿加法器145。
PM补偿加法器145,其输入信号为PM调制乘法数据424和控制单元11配置的PM调制补偿系数435。PM补偿加法器145将PM调制乘法数据424和PM调制补偿系数435相加,二者之和即为图1中所示的PM相位控制字425。
在本实施例中,PM调制启动信号430、PM调制频率控制字431、PM调制波波形样点432、PM选择数据433、PM调制偏移数据434以及PM调制补偿系数435均是由控制单元11配置产生。其中:
PM调制启动信号430决定了PM调制单元的起始工作时刻;
PM调制频率控制字431决定了PM调制频率;
PM调制波波形样点432决定了PM内部调制源的包络;
PM选择数据433决定所述PM调制源选择器143选择内部调制源数据还是外部调制源数据;
PM调制偏移数据434,也称为PM相偏;当PM调制偏移数据434被设置为0时,PM相位控制字425等于PM调制补偿系数435,为一固定数值,这就相当于不执行PM;
PM调制补偿系数435则决定了PM相位控制字425要从某个起始相位开始,具体说来,如果设置PM调制补偿系数435为0,则PM相位控制字425中没有起始相位。
在通过图2、图3以及图4所示的实施例分别产生AM幅度控制字225、FM频率控制字325以及PM相位控制字425后,再次参看图1,还要通过相位累加器15、相位加法器16、载波存储器17以及幅度乘法器18进行信号的调制。
相位累加器15,输入信号为FM频率控制字325,FM频率控制字325为FM调制单元13(详见图3)产生的FM频率控制字;相位累加器15对FM频率控制字325进行累加,产生的第一相码125输出给相位加法器16。
相位加法器16,其输入信号为第一相码125和PM控制单元14(详见图4)产生的PM相位控制字425;相位加法器16将第一相码125和PM相位控制字425相加,二者之和为第二相码126,输出给载波存储器17。
载波存储器17,其内部初始化了一个周期的载波波形样点,当然也可由控制单元11(图1中没有画出)写入一个周期的载波波形样点。载波存储器17的输入信号是第二相码126,载波存储器17以第二相码126为读地址,将其内部存储的载波波形样点读出,生成角度已调数据127,传送给幅度乘法器18。
幅度乘法器18,其输入信号为角度已调数据127和AM调制单元12(详见图2)产生的AM幅度控制字225。幅度乘法器18将角度已调数据127和AM幅度控制字225相乘,生成的信号即为本发明所输出的复合调制的已调信号128。
结合图2、图3和图4,从图1中可以看出:
数据112为控制单元11配置给AM调制单元12的数据,包括图2中所示的数据230~235;
数据113为控制单元11配置给FM调制单元13的数据,包括图3中所示的数据330~335;
数据114为控制单元11配置给PM调制单元14的数据,包括图4中所示的数据430~435。
在图1-图4的实施例中,所述的AM调制单元、FM调制单元、PM调制单元、相位累加器、相位加法器、载波存储器和幅度乘法器都可由一可编程逻辑芯片实现,当然还可以由多片逻辑芯片实现。
从图1至图4的实施例中可以看出,本发明不仅可以实现AM/FM/PM复合调制,对载波的幅度、频率、相位同时进行调制;也可实现AM/FM,AM/PM,FM/PM,AM,FM,PM的工作模式的调制;并且,本发明的各调制参数均可由控制单元灵活设置,例如AM调制单元、FM调制单元、PM调制单元的调制启动时刻分别由控制单元11提供的调制启动信号来控制,从而使得本发明的复合调制可以是同时发生,也可有先后顺序。
此外,尽管在上文详细描述中提及了复合调制信号发生器的若干单元,但是这种划分仅仅并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元的特征和功能可以在一个单元中具体化。同样,上文描述的一个单元的特征和功能也可以进一步划分为由多个单元来具体化。
对应于前述实施例的复合调制信号发生器,本发明实施例还提供一种复合调制信号发生方法,如图5所示,包括:
步骤S501,通过控制单元产生所述AM调制单元、FM调制单元和PM调制单元的调制参数;
步骤S502,根据所述调制参数产生AM幅度控制字、FM频率控制字以及PM相位控制字;
步骤S503,对所述FM频率控制字进行累加,产生第一相码;
步骤S504,将所述第一相码和所述PM相位控制字相加,生成第二相码;
步骤S505,以所述第二相码为读地址,将存储的一个周期的载波波形样点读出,生成角度已调信号;
步骤S506,将所述角度已调信号与所述AM幅度控制字相乘,生成复合调制信号。
在步骤S502中,根据所述调制参数产生AM幅度控制字、FM频率控制字以及PM相位控制字的方法具体可参看图2-图4,此处不再赘述。
应当注意,尽管在附图中以特定顺序描述了本发明方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
综上所述,本发明的复合调制信号发生器及信号发生方法,可以实现AM/FM/PM复合调制,对载波的幅度、频率、相位同时进行调制;并且,本发明的各调制参数均可由控制单元灵活设置,从而使得本发明的复合调制可以是同时发生,也可有先后顺序。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种复合调制信号发生器,其特征在于,包括:控制单元、AM调制单元、FM调制单元、PM调制单元、相位累加器、相位加法器、载波存储器和幅度乘法器;
所述控制单元用于产生所述AM调制单元、FM调制单元和PM调制单元的调制参数,其中,所述调制参数中包含调制启动信号;
所述AM调制单元连接所述控制单元,用于根据所述调制参数产生AM幅度控制字;
所述FM调制单元连接所述控制单元,用于根据所述调制参数产生FM频率控制字;
所述PM调制单元连接所述控制单元,用于根据所述调制参数产生PM相位控制字;
所述相位累加器连接所述FM调制单元,用于对所述FM频率控制字进行累加,产生第一相码;
所述相位加法器连接所述相位累加器及PM调制单元,用于将所述第一相码和PM相位控制字相加,生成第二相码;
所述载波存储器连接所述相位加法器,用于以所述第二相码为读地址,将其内部存储的一个周期的载波波形样点读出,生成角度已调信号;
所述幅度乘法器连接所述载波存储器及AM调制单元,用于将所述角度已调信号与所述AM幅度控制字相乘,生成复合调制信号。
2.根据权利要求1所述的复合调制信号发生器,其特征在于,所述AM调制单元用于产生AM幅度控制字,其具体包括:AM相位累加器、AM调制波存储器、AM调制源选择器、AM调制偏移乘法器以及AM补偿加法器;
所述AM相位累加器连接所述控制单元,接收所述控制单元发送的AM调制启动信号及AM调制频率控制字,当所述AM调制启动信号为有效电平时,对所述AM调制频率控制字进行累加,生成AM第一相码;
所述AM调制波存储器连接所述AM相位累加器及控制单元,用于以所述AM第一相码为读地址,将内部存储的一个周期的AM调制波波形样点或者所述控制单元写入的一个周期的AM调制波波形样点读出,生成AM内部调制源数据;
所述AM调制源选择器,连接所述AM调制波存储器及控制单元,用于根据所述控制单元发送的AM选择数据,从所述AM内部调制源数据或者AM外部调制源数据中选取一路生成AM已选调制源数据发送给所述AM调制偏移乘法器;
所述AM调制偏移乘法器连接所述AM调制源选择器及控制单元,用于将所述控制单元发送的AM调制深度数据与所述AM已选调制源数据相乘,生成AM调制乘法数据;
所述AM补偿加法器连接所述AM调制偏移乘法器及控制单元,用于将所述控制单元发送的AM调制补偿系数与所述AM调制乘法数据相加,生成所述AM幅度控制字。
3.根据权利要求1所述的复合调制信号发生器,其特征在于,所述FM调制单元用于产生FM频率控制字,其具体包括:FM相位累加器、FM调制波存储器、FM调制源选择器、FM调制偏移乘法器以及FM补偿加法器;
所述FM相位累加器连接所述控制单元,接收所述控制单元发送的FM调制启动信号及FM调制频率控制字,当所述FM调制启动信号为有效电平时,对所述FM调制频率控制字进行累加,生成FM第一相码;
所述FM调制波存储器连接所述FM相位累加器及控制单元,用于以所述FM第一相码为读地址,将内部存储的一个周期的FM调制波波形样点或者所述控制单元写入的一个周期的FM调制波波形样点读出,生成FM内部调制源数据;
所述FM调制源选择器,连接所述FM调制波存储器及控制单元,用于根据所述控制单元发送的FM选择数据,从所述FM内部调制源数据或者FM外部调制源数据中选取一路生成FM已选调制源数据发送给所述FM调制偏移乘法器;
所述FM调制偏移乘法器连接所述FM调制源选择器及控制单元,用于将所述控制单元发送的FM调制偏移数据与所述FM已选调制源数据相乘,生成FM调制乘法数据;
所述FM补偿加法器连接所述FM调制偏移乘法器及控制单元,用于将所述控制单元发送的FM调制补偿系数与所述FM调制乘法数据相加,生成所述FM频率控制字。
4.根据权利要求1所述的复合调制信号发生器,其特征在于,所述PM调制单元用于产生PM相位控制字,其具体包括:PM相位累加器、PM调制波存储器、PM调制源选择器、PM调制偏移乘法器以及PM补偿加法器;
所述PM相位累加器连接所述控制单元,接收所述控制单元发送的PM调制启动信号及PM调制频率控制字,当所述PM调制启动信号为有效电平时,对所述PM调制频率控制字进行累加,生成PM第一相码;
所述PM调制波存储器连接所述PM相位累加器及控制单元,用于以所述PM第一相码为读地址,将内部存储的一个周期的PM调制波波形样点或者所述控制单元写入的一个周期的PM调制波波形样点读出,生成PM内部调制源数据;
所述PM调制源选择器,连接所述PM调制波存储器及控制单元,用于根据所述控制单元发送的PM选择数据,从所述PM内部调制源数据或者PM外部调制源数据中选取一路生成PM已选调制源数据发送给所述PM调制偏移乘法器;
所述PM调制偏移乘法器连接所述PM调制源选择器及控制单元,用于将所述控制单元发送的PM调制偏移数据与所述PM已选调制源数据相乘,生成PM调制乘法数据;
所述PM补偿加法器连接所述PM调制偏移乘法器及控制单元,用于将所述控制单元发送的PM调制补偿系数与所述PM调制乘法数据相加,生成所述PM相位控制字。
5.根据权利要求1~4任一项所述的复合调制信号发生器,其特征在于,所述载波存储器中存储的一个周期的载波波形样点由所述控制单元写入。
6.根据权利要求1所述的复合调制信号发生器,其特征在于,所述的AM调制单元、FM调制单元、PM调制单元、相位累加器、相位加法器、载波存储器和幅度乘法器由一可编程逻辑芯片实现。
7.一种复合调制信号发生方法,其特征在于,包括:
通过控制单元产生AM调制单元、FM调制单元和PM调制单元的调制参数,其中,所述调制参数中包含调制启动信号;
根据所述调制参数产生AM幅度控制字、FM频率控制字以及PM相位控制字;
对所述FM频率控制字进行累加,产生第一相码;
将所述第一相码和所述PM相位控制字相加,生成第二相码;
以所述第二相码为读地址,将存储的一个周期的载波波形样点读出,生成角度已调信号;
将所述角度已调信号与所述AM幅度控制字相乘,生成复合调制信号。
8.根据权利要求7所述的复合调制信号发生方法,其特征在于,所述根据所述调制参数产生AM幅度控制字,具体包括:
接收所述控制单元发送的AM调制启动信号及AM调制频率控制字,当所述AM调制启动信号为有效电平时,对所述AM调制频率控制字进行累加,生成AM第一相码;
以所述AM第一相码为读地址,将存储的一个周期的AM调制波波形样点或者所述控制单元写入的一个周期的AM调制波波形样点读出,生成AM内部调制源数据;
根据所述控制单元发送的AM选择数据,从所述AM内部调制源数据或者AM外部调制源数据中选取一路生成AM已选调制源数据;
将所述控制单元发送的AM调制深度数据与所述AM已选调制源数据相乘,生成AM调制乘法数据;
将所述控制单元发送的AM调制补偿系数与所述AM调制乘法数据相加,生成所述AM幅度控制字。
9.根据权利要求7所述的复合调制信号发生方法,其特征在于,所述根据所述调制参数产生FM幅度控制字,具体包括:
接收所述控制单元发送的FM调制启动信号及FM调制频率控制字,当所述FM调制启动信号为有效电平时,对所述FM调制频率控制字进行累加,生成FM第一相码;
以所述FM第一相码为读地址,将存储的一个周期的FM调制波波形样点或者所述控制单元写入的一个周期的FM调制波波形样点读出,生成FM内部调制源数据;
根据所述控制单元发送的FM选择数据,从所述FM内部调制源数据或者FM外部调制源数据中选取一路生成FM已选调制源数据;
将所述控制单元发送的FM调制偏移数据与所述FM已选调制源数据相乘,生成FM调制乘法数据;
将所述控制单元发送的FM调制补偿系数与所述FM调制乘法数据相加,生成所述FM幅度控制字。
10.根据权利要求7所述的复合调制信号发生方法,其特征在于,所述根据所述调制参数产生PM幅度控制字,具体包括:
接收所述控制单元发送的PM调制启动信号及PM调制频率控制字,当所述PM调制启动信号为有效电平时,对所述PM调制频率控制字进行累加,生成PM第一相码;
以所述PM第一相码为读地址,将存储的一个周期的PM调制波波形样点或者所述控制单元写入的一个周期的PM调制波波形样点读出,生成PM内部调制源数据;
根据所述控制单元发送的PM选择数据,从所述PM内部调制源数据或者PM外部调制源数据中选取一路生成PM已选调制源数据;
将所述控制单元发送的PM调制偏移数据与所述PM已选调制源数据相乘,生成PM调制乘法数据;
将所述控制单元发送的PM调制补偿系数与所述PM调制乘法数据相加,生成所述PM幅度控制字。
CN201610928777.3A 2016-10-31 2016-10-31 一种复合调制信号发生器及复合调制信号发生方法 Active CN108023548B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610928777.3A CN108023548B (zh) 2016-10-31 2016-10-31 一种复合调制信号发生器及复合调制信号发生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610928777.3A CN108023548B (zh) 2016-10-31 2016-10-31 一种复合调制信号发生器及复合调制信号发生方法

Publications (2)

Publication Number Publication Date
CN108023548A CN108023548A (zh) 2018-05-11
CN108023548B true CN108023548B (zh) 2023-06-16

Family

ID=62069717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610928777.3A Active CN108023548B (zh) 2016-10-31 2016-10-31 一种复合调制信号发生器及复合调制信号发生方法

Country Status (1)

Country Link
CN (1) CN108023548B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019289248B2 (en) 2018-06-18 2021-11-18 Rakesh Aggarwal High spectral efficiency “Zero Bandwidth Modulation Process” without side bands
CN111614588B (zh) * 2020-05-21 2023-05-30 山东浪潮科学研究院有限公司 一种信号调制方法、装置、设备及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584541A (en) * 1984-12-28 1986-04-22 Rca Corporation Digital modulator with variations of phase and amplitude modulation
CN102150203A (zh) * 2008-03-20 2011-08-10 弗劳恩霍夫应用研究促进协会 一种用于把音频信号转换成参数化表示的装置和方法、一种用于修改参数化表示的装置和方法、一种用于合成音频信号的参数化表示的装置和方法
JP2013183258A (ja) * 2012-03-01 2013-09-12 Anritsu Corp 信号発生装置および信号発生方法
CN105871337A (zh) * 2015-01-20 2016-08-17 苏州普源精电科技有限公司 一种改进的可分段调制的信号发生器
CN105871339A (zh) * 2015-01-20 2016-08-17 苏州普源精电科技有限公司 一种灵活的可分段调制的信号发生器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584541A (en) * 1984-12-28 1986-04-22 Rca Corporation Digital modulator with variations of phase and amplitude modulation
CN102150203A (zh) * 2008-03-20 2011-08-10 弗劳恩霍夫应用研究促进协会 一种用于把音频信号转换成参数化表示的装置和方法、一种用于修改参数化表示的装置和方法、一种用于合成音频信号的参数化表示的装置和方法
JP2013183258A (ja) * 2012-03-01 2013-09-12 Anritsu Corp 信号発生装置および信号発生方法
CN105871337A (zh) * 2015-01-20 2016-08-17 苏州普源精电科技有限公司 一种改进的可分段调制的信号发生器
CN105871339A (zh) * 2015-01-20 2016-08-17 苏州普源精电科技有限公司 一种灵活的可分段调制的信号发生器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种基于FPGA的多种波形发生器的设计;张正等;《时间频率学报》;20081215(第02期);正文第2-3部分,附图1-2 *
张正等.一种基于FPGA的多种波形发生器的设计.《时间频率学报》.2008,(第02期), *

Also Published As

Publication number Publication date
CN108023548A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
CN101776935B (zh) 一种基于dds的数字调制信号发生器
CN102768336A (zh) 基于片上系统或系统级封装的内建自测试系统
CN103019117B (zh) 基于PXIe接口的数字化仪
CN108023548B (zh) 一种复合调制信号发生器及复合调制信号发生方法
CN101867371A (zh) 基于fpga的线性调频信号实现方法
CN104486713B (zh) 音频功放测试系统与方法
CN103178783B (zh) 求和调制信号发生器
CN102467152B (zh) 在信号源中实现调幅及振幅键控功能的方法、装置及系统
CN103490783B (zh) 一种将模拟信号转换为数字信息的方法
US8575983B1 (en) Waveform generation circuit for a waveform generator
CN202772870U (zh) 一种基于sopc的任意波形信号源装置
CN101912277A (zh) 一种基于流水线设计的实时数字正交解调的方法与装置
JPH08242151A (ja) 伝送線路損失の補償手段を有するドライバ回路
CN110708064A (zh) 一种相位连续的任意波信号对数扫频信号的产生方法
CN115793775A (zh) 一种量子测控波形生成方法、装置及系统
CN102739200B (zh) 信号发生器
CN113343618A (zh) 一种待测数字滤波器测试方法及系统
CN115902571A (zh) 量子测控系统以及量子计算机
CN111580427A (zh) 一种基于fpga的波形生成方法、装置、设备及存储介质
CN115173887B (zh) Chirp信号的生成方法、装置、终端及计算机可读存储介质
CN104980127B (zh) 一种具有求和调制功能的信号发生器
US10788534B2 (en) Device for dynamic signal generation and analysis
JPS58150872A (ja) 入力信号に対する装置の周波数応答を試験する方法および装置
CN102495824B (zh) 在同一模拟输出卡上产生多路不同频率模拟信号的方法
CN112650633B (zh) 一种飞线信号质量的测试方法、测试装置及测试设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant