CN108012541A - 生产金属有机物的方法 - Google Patents

生产金属有机物的方法 Download PDF

Info

Publication number
CN108012541A
CN108012541A CN201680031695.7A CN201680031695A CN108012541A CN 108012541 A CN108012541 A CN 108012541A CN 201680031695 A CN201680031695 A CN 201680031695A CN 108012541 A CN108012541 A CN 108012541A
Authority
CN
China
Prior art keywords
metal
alkyl
ether
group
hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680031695.7A
Other languages
English (en)
Other versions
CN108012541B (zh
Inventor
U.维特尔曼
C.库尔思
S.谢雷尔
P.里特迈尔
A.斯托尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ya Bao Germany LLC
Albemarle Germany GmbH
Original Assignee
Ya Bao Germany LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ya Bao Germany LLC filed Critical Ya Bao Germany LLC
Publication of CN108012541A publication Critical patent/CN108012541A/zh
Application granted granted Critical
Publication of CN108012541B publication Critical patent/CN108012541B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/04Hydrides of alkali metals, alkaline earth metals, beryllium or magnesium; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/04Sodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/06Potassium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/006Beryllium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/02Magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/066Aluminium compounds with C-aluminium linkage compounds with Al linked to an element other than Al, C, H or halogen (this includes Al-cyanide linkage)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/323Hydrometalation, e.g. bor-, alumin-, silyl-, zirconation or analoguous reactions like carbometalation, hydrocarbation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及用于生产有机金属化合物RMn (M=碱金属或碱土金属元素,R=烷基残基)的方法,其中n=金属M的化合价,并且R=具有2至18个C原子的烷基残基,在所述方法中在烷基甲基醚中或在含有烷基甲基醚的溶剂混合物中,在氢源存在以及在过渡金属催化剂存在的情况下,通过金属M对烯烃进行加氢金属化,其中烷基甲基醚与金属M之间的摩尔比为至少0.01:1和至多50:1。

Description

生产金属有机物的方法
本专利说明书的主题是用于生产有机金属化合物RMn(M=碱金属或碱土金属元素,R=烷基残基)的方法。
碱金属有机物已部分为人所知100多年,但只有易溶且热稳定的锂的烷基化合物RLi能够获得广泛的制备和工业上重要的用途。W.Schlenk首次生产锂有机化合物是通过用锂金属裂解汞有机化合物进行的(W.Schlenk,J.Holtz,Ber.Dtsch.Chem.Ges.1917,50,262-274)。始于有毒重金属汞的这种合成显然在工业上不能得到接受。另一方面,由K.Ziegler和H.Colonius根据以下方程式首次描述的便利合成形成了锂有机化合物合成的基础:
R-Hal+2Li---->R-Li+LiHal (1)
Hal=Cl,Br,I;R=烷基或芳基
(K.Ziegler,H.Colonius,Justus Liebigs Ann.Chem.479(1930)135-149)。Ziegler合成的不利方面是,通过液体熔融电解产生的昂贵的锂金属的一半被消耗用于形成卤化锂副产物。还可使用具有除Hal-外的离去基团的官能化的有机化合物例如醚(A.Maercker,Angew.Chem.Int.Ed.Engl.26,(1987)972)和硫醚(C.G.Screttas,M.M.Screttas,J.Org.Chem.43(1978)1064)替代烷基卤化物。同样地在该情况下,至多只有一半的锂被消耗:
R-E-R'+2Li--->R-Li+R'-E-Li (2)
E=O或S
类似地,在根据B.Bogdanovic的α-烯烃的催化锂化中,除了锂化的烯烃化合物(例如,来自乙烯的乙烯基锂)以外,还形成化学计量的量的未消耗的副产物氢化锂(B.Bogdanovic,B.Wermeckes,Angew.Chem.94(1981)691;EP 0015541 A2)。
原则上可根据以下方程式通过烯烃的直接加氢锂化(hydrolithiation)避免或多或少无用或未消耗的副产物诸如LiHal、LiER'或LiH的不利形成:
遗憾的是,商业氢化锂不能用于此目的;相反,以纯的形式或作为于烃中的溶液存在的含β-氢原子的有机锂化合物根据方程式(3)的逆向分解(K.Ziegler,U.Gellert,Liebigs Ann.Chem.1950,567,179):
E.C.Ashby等检查了通过以氢(约100巴)作为还原剂和加氢金属化剂氢解叔-丁基锂(t-BuLi)生产的活性氢化锂LiH*的适合性(E.C.Ashby,S.A.Noding,J.Org.Chem.1980,45,1041-1044)。在本发明的描述中,上标星号(“*”)用于标记各自金属氢化物的高反应性变体。在用超化学计量的LiH*将α-烯烃转化成四氢呋喃(THF)中以及在超化学计量的VCl3存在的情况下,将某些烯烃定量或接近定量地转化成饱和烃。然而,在通过D2O分解反应混合物中,仅观察到少量的氘掺入(29-30%)。作者假设,还原涉及很大一部分比例的相应有机锂种类通过氘解(deuterolysis)反应以形成氘代(deuterated)饱和烃类,从而可被捕获。在作为溶剂的苯中,辛烯可在催化(5摩尔%)过渡金属浓度存在以及使用高反应性LiH*的情况下被还原成辛烷,或者在氘解后,被还原成单氘代辛烷。使用Cp2TiCl2可获得最佳产率(77%辛烷,50%D掺入)。该合成变体具有以下缺点:必需有相对大的浓度的过渡金属催化剂(在于THF中反应的情况下为理论值的300%),并且经推测原位形成的有机锂化合物随着从溶剂提取H而分解(可由低D掺入来辨识)。在苯中的反应变体中,溶剂的毒性和再次低的RLi产率(氘掺入最大为50%)是不利的。由于这些原因,通过烯烃的加氢锂化进行的有机锂合成从未获得制备相关性。
可在无水有机溶剂包括醚和烃中生产烷基锂化合物。除甲基锂外,商业产品只以于烃中的溶液形式销售,因为只有此类溶液在储存中是稳定的。强锂碱实际上已在室温下攻击官能化溶剂诸如醚,并且它们根据α-或β-消除机理分解,形成了锂醇化物和其它副产物。在环状醚诸如四氢呋喃的情况下,例如,还随着形成作为分解变体的烯醇化锂而开环。没有β-H氢的非环醚通常可仅根据α-H消除机理分解,如例如已针对二甲基醚所证明的(A.Maercker,Angew.Chem.99(1987)1002-19)。由于热力学原因,这种分解机理在较小程度上发生。然而,据报道,锂有机物例如丁基锂的稳定性在纯二甲基醚中比在二乙醚中差:分解快约10-20倍(K.Ziegler,H.-G.Gellert,Justus Liebigs Ann.Chem.567(1950)185)。
以类似于碱金属有机物的方式,通常也由元素碱土金属和烷基卤生产碱土元素的二烷基化合物(R2M):
2R-Hal+2M---->R2M+MHal2(4)
Hal=Cl,Br,I;M=Be,Mg,Ca,Sr,Ba
R2Mg化合物的直接合成,例如通过始于商业碱土金属氢化物的类似于方程式(3)的烯烃的加氢金属化是不可能的。因此,已经尝试以更具反应性的形式生产后者。例如,高反应性氢氧化镁可根据以下方程式通过在较高的温度下高压氢化(75-150℃,350巴)格氏化合物来获得,
2RMgX+2H2--->2RH+MgX2+MgH2 *(5)
(W.E.Becker,E.C.Ashby,J.Org.Chem.29,954(1964))。类似地,还可通过在MgH2 *中在200℃下高压氢解(5MPa)来转化二烷基镁化合物,例如二丁基镁(E.J.Setijadi,C.Boyer,Phys.Chem.Chem.Phys.2012,14,11386-97)。由于不利的条件、昂贵的Mg源以及在格氏化合物的情况下卤化镁(MgX2)的不可避免的污染,这种MgH2 *形成法尚未得到任何重视。
此外,已描述了通过在THF悬浮液中并在含铬均相催化剂存在的情况下氢化Mg金属来生产高反应性氢化镁的方法(B.Bogdanovic,P.Bons,S.Konstantinovic,M.Schwickardi,U.Westeppe,Chem.Ber.1993,126,1371-83;US4554153A1)。THF可溶性催化剂由CrCl3/Mg-蒽络合物组成;氢化仅在高压条件(例如,80巴)下进行。根据EP0014983B1,将以这种方式生产的反应性氢化镁MgH2 *在过渡金属催化剂(其选自元素周期表(PTE)的IV至VIII副族的卤化物组成的组)存在的情况下,优选在四氢呋喃中,在0至200℃的温度范围内以及在1至300巴的压力下与烯烃反应。以中等至非常好的产率以THF溶液形式获得二烷基镁化合物。由于在MgH2 *生产中使用有毒铬化合物以及必需的高氢气压力,所以该合成变体也是不利的。此外,溶剂THF可通过蒸发(只是非常费力,不完全并且接受部分产物分解),或通过结晶方法(使用大溶剂量并且具有显著的产率损失)获得的事实是不利的(B.Bogdanovic,P.Bons,S.Konstantinovic,M.Schwickardi,U.Westeppe,Chem.Ber.1993,126,1371-83中的实验数据)。
根据从文献EP 514707B1已知的方法,在与烯烃反应之前或期间通过研磨至≤10μm,优选≤1μm的粒度而不添加络合催化剂来活化氢化镁。在与醚溶剂,优选THF或二甘醇二甲基醚中的烯烃反应中,添加如EP 0014983B1中所述的过渡金属卤化物作为催化剂。不利的是,通常二烷基镁化合物的产率很低(25-34%)。此外,如前所述,困难在于获得无醚(特别是无THF)的R2Mg。在ZieglerNatta聚烯烃催化剂的生产中二烷基镁化合物主要被用作镁源。由于各种原因,供体无溶剂(特别是无THF)的产品对于本应用是必需的。
本发明的目的是指出这样的方法,所述方法始于廉价的商购可得原料,使得能够在温和条件下合成有机金属化合物RnM(M=碱金属或碱土金属,n=金属M的化合价,R=烷基),其中
·任何活性金属M(即,氧化态为0的金属)可被转化成所需的有机金属化合物RnM而不形成几乎无价值的副产物,诸如金属卤化物等,以及
·应当有可能以纯(无溶剂)的形式或作为非供体溶剂(特别是不含THF的非供体溶剂)中的溶液分离有机金属化合物而无分解。
根据本发明,通过预先形成的MHn *(方程式6)或通过原位形成的金属氢化物(方程式7)在含烷基甲基醚(AME)的非质子和无水液相中转化烯烃来实现所述目的。这在下面使用烷基锂合成的实例来显示:
令人惊奇地发现,在含AME的溶剂混合物中,利用高反应性金属氢化物(方程式6或类似地利用另一种碱金属或碱土金属)或在原位条件下(方程式7或类似地利用其它碱金属或碱土金属化合物)的加氢金属化直接进行并具有良好的产率。为了增加加氢金属化的产率和反应速率并且还能够使用商业非高反应性金属氢化物,过渡催化剂(反应方程式(6)和(7)中的“催化剂2”)的存在是必需的。对于根据反应变体(7)的高反应性金属氢化物MHn *的原位形成,高反应性金属M2*和/或通式为M1 x[M2(A1 yA2 z)3+x]b的化合物(在方程式7中称为“催化剂1”)的存在对于实现足够高的金属氢化物MHn *的形成速率是优选的。高反应性M2*必须具有0.01与100μm之间的平均粒度D50,并且不得因先前与空气、氧气、水分或其它反应性物质的接触而负面影响其反应性。M2*优选为具有0.01与100μm之间的指定平均粒度D50的细分散的铝粉末。在通式M1 x[M2(A1 yA2 z)3+x]b中:
·M1=碱金属(Li、Na、K、Rb、Cs)、碱土金属(Be、Mg、Ca、Sr、Ba)或选自由Sc、Y、La、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu组成的组的元素;
·x=0或1;
·M2=选自由B、Al、Ga或In的PTE的第3主族的元素;
·A1=H或含有1-18个C原子的支链或直链烷基基团,其中多达4个A基团可以相同或不同;
·A2=烷氧基残基(OR,其中R=具有1-8个C原子的烷基)、二烷基氨基残基(NR2,其中R=具有1-8个C原子的烷基)或选自Cl、Br、I的卤素;
·y可取值1、2或3,其中y+z=3;
·b=M1的化合价;
合适的烯烃含有2至18个C原子;具有末端双键的烯烃是优选的,也称为α-烯烃,即其中R1和R3=H的烯烃。特别优选的是乙烯、1-丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-癸烯。此外,可使用R2和R4=含有1-8个C原子的烷基的烯烃,例如2-烷基丙-1-烯、2-烷基-1-丁烯、2-烷基-1-己烯(在每种情况下烷基含有1-8个C原子)。在某些条件下,可使用根据本发明的加氢锂化反应来获得具有内部双键的烯烃,例如2-丁烯、2-戊烯、2-己烯、2-庚烯、2-辛烯、2-癸烯。
对于根据方程式6的加氢金属化,在不使用过渡金属催化剂(方程式(6)中的催化剂2)的情况下不能使用商购可得的金属氢化物,例如商业氢化锂粉末,因为它们不起反应。
合适的供体溶剂是醚,特别优选烷基甲基醚R-O-CH3(AME)(其中R=烷基残基),例如二甲基醚、甲基乙基醚、甲基丙基醚、甲基丁基醚、甲基戊基醚、甲基环戊基醚、甲基己基醚。二甲基醚是尤其最优选的。
通过添加含过渡金属的催化剂(方程式6和7中的催化剂2),可明确地部分增加加氢金属化的速率。作为催化剂,可考虑使用PTE的第4和第5副族的卤素或烷氧基化合物,特别是Ti、Zr、Hf、V、Nb、Ta的氯化物以及所述金属的茂金属化合物诸如,例如Cp2TiCl2、CpTiCl3、Cp2ZrCl2或所述金属的其它络合化合物。相对于金属氢化物MHn,以0.001至10摩尔%,优选0.005至5摩尔%的量添加它们。
根据方程式(6)或(7)的金属氢化物加成(该反应代表实例M=Li,这些类似地应用于可根据本发明使用的另外的金属氢化物)可在-40℃与+150℃之间,优选-20℃与100℃之间,特别优选0℃至50℃的温度范围内进行。如果作为AME,使用在室温(RT)下为气态的特别优选的二甲基醚,则指定使用在低温(例如,-40℃至+20℃,取决于压力)下操作的加压系统和/或回流冷却器系统(冷凝器)。特别优选的是烃和AME的混合物,最特别优选的是饱和烃诸如戊烷、己烷、庚烷、辛烷、癸烷、十二烷与二甲基醚的混合物或商购可得的烃混合物诸如工业己烷、工业庚烷或沸点馏分(石油醚)诸如,例如壳牌公司以商品名“Shellsole”销售的石油醚与二甲基醚的烃混合物。在反应混合物中烃含量可构成按重量计高达95%,优选按重量计高达80%的比例。
由于二甲基醚令人满意地溶解于所述烃中,因此在特别优选的于约0℃与50℃之间的范围内的反应温度下进行方便的几无压力的方法程序是可能的。反应混合物中的AME含量取决于金属M或金属氢化物MHn的浓度。AME与M或MHn之间的摩尔比为至少0.01:1,至多50:1,优选至少0.1:1至30:1,特别优选0.2:1至20:1。
如果不使用完全预先形成的反应性金属氢化物,而是必须首先根据方程式7原位产生金属氢化物,则应当以化学计量的量或在氢源存在的情况下以催化量添加催化剂“催化剂1”,所述催化剂为细分散的活性金属M2*和/或通式为M1 x[M2(A1 yA2 z)3+x]b的化合物。催化剂与M或MHn的摩尔比为至少0.0001:1和至多0.5:1,优选至少0.001:1至0.3:1,特别优选0.005:1至0.2:1。令人惊讶地发现,在氢气氛下,在高反应性金属M2*和/或一般通式为M1 x[M2(A1 yA2 z)3+x]b的化合物存在的情况下,在温和条件下以高产率成功地实现M的氢化。前提条件是金属M具有比金属M2或M1 x[M2(A1 yA2 z)3+x]b中的M2更负的标准电位。下面概括了各自的标准电位(D.R.Lide,Handbook of Chemistry and Physics第83版,2002-2003):
据假设M2-H化合物的氢被转移到碱金属M,并且反应的驱动力在于形成热力学上更稳定的氢化物。由于M1 x[M2(A1 yA2 z)3+x]b的脱氢,因此元素M2*形成;后者以极具反应性的形式(细分散的,部分呈无定形形式)存在,并且其相对于例如氢是极具反应性的,即其在氢源存在的情况下被再氢化。在该背景下,可以理解的是,以催化量使用M1 x[M2(A1 yA2 z)3+x]b或活化的元素M2*是足够的。
作为化学计量的氢化剂或氢化催化剂,优选使用铝的化合物M1 x[Al(A1 yA2 z)3+x]b或活性/活化的铝金属。特别地,以工业规模生产的碱金属铝氢化物LiAlH4和NaAlH4、Na[H2AlEt2]是特别合适的。也可同样成功地使用铝烷AlH3和烷基铝氢化物诸如二异丁基氢化铝。
此外,令人惊奇地发现,当以元素形式(H2)或分子储存形式(例如,作为1,3-环己二烯)供应M的氢化所必需的氢时,也可使用某些通式为M1 x[M2(A1 yA2 z)3+x]b的非氢化物化合物(因此使用A1和A2均不为H的此类化合物)。不考虑假设的正确性,假设在氢化条件下,形成金属M2*的反应形式或由M2和M组成的合金,其可吸收氢并在随后的步骤中将氢转移至碱金属M。可基于工业上可得的烷基铝(即,M2=Al)的实例来解释这一点。例如,如果三乙基铝在含AME的悬浮液中与元素锂反应,则观察到黑色细分散的铝形成,而锂至少部分地溶解:
4Et3Al+3Li---->3LiAlEt4+Al*↓ (8)
Et3Al+3L---->3LiEt+Al*↓ (8a)
LiEt+Et3Al---->LiAlEt4 (8b)
细分散的Al*容易与氢反应形成AlH3。后者又可以在温和条件下将氢转移至碱金属M。除了三乙基铝以外,例如,还可使用三甲基铝和三丁基铝。
类似地,通过将AlCl3在含有AME的溶液中与例如锂金属反应,除了LiAlCl4以外,还形成了反应性元素铝金属。铝酸盐诸如Li[AlEt4]也可与氢反应形成含氢化物的种类。
在根据方程式7的原位金属氢化物合成中,反应温度可在宽范围内变化;通常它们在-20℃与150℃之间,优选为0℃与100℃之间,特别优选25℃与70℃之间。如果期望根据方程式7或8的反应程序,则必须确保与元素氢的接触。通常无过量压力的操作方法就足够了;然而,为了实现可能的最短反应时间,可能要在H2压力条件下工作。优选地,H2过量压力为2-300巴,特别优选为10-100巴。也可能将在选择的工作条件下释放氢的化合物用作氢源。其实例是:1,3-环己二烯、十氢化萘、N-乙基咔唑。
令人惊讶地发现,烷基甲基醚,特别是二甲基醚可以从反应产物MRn简单且完全地分离出来。这是令人惊奇的,因为本领域技术人员已知,例如,偶极矩为1.3德拜(为了比较:二乙基醚=1.098德拜)的二甲基醚是强路易斯碱和非常强的供体溶剂。已经发现,根据本发明,在室温或稍微升高的温度(最高60℃)下,优选在真空条件下浓缩或蒸发优选地澄清过滤的反应混合物通常是足够的。如果使用高沸点烃共溶剂(它们优选是C链长度至少为7的烃,例如庚烷、辛烷等),则可通过蒸馏选择性地分离低沸点二甲基醚。此处以纯物质或于烃中的溶液(其中相对于RnM含量,AME残基含量为至多20摩尔%,优选至多5摩尔%,特别优选至多1摩尔%,并且烃含量达到按重量计至多95%)的形式获得烷基金属化合物MRn
由于在工业上相关的条件下以可容许的成本分离AME通常不能彻底完全实现,所以根据本发明的产物或产物溶液通常含有残留含量的AME和/或(取决于储存期限和储存条件)非挥发性AME降解产物。后者主要由通过醚裂解形成的甲醇锂(lithium methylate)组成,如使用实例M=Li和AME=二甲基醚所示的:
2R-Li+Me2O---->R-(CH2)-Li+MeO-Li+RH(9)
根据本发明的产物含有相对于金属有机物RnM至少0.001摩尔%到至多20摩尔%,优选0.001摩尔%到至多5摩尔%,特别优选0.001摩尔%到至多1摩尔%的AME(优选二甲基醚)和/或甲醇锂。

Claims (17)

1.一种用于生产碱金属或碱土金属元素的有机金属化合物RMn的方法,其中n=所述金属M的化合价,并且R=具有2至18个C原子的烷基残基,所述方法的特征在于在烷基甲基醚中或在含烷基甲基醚的溶剂混合物中,并且在氢源存在以及在过渡金属催化剂存在的情况下通过所述金属M对烯烃进行加氢金属化,其中烷基甲基醚与金属M之间的摩尔比为至少0.01:1和至多50:1。
2.一种用于生产碱金属或碱土金属元素的有机金属化合物RMn的方法,其中n=所述金属M的化合价,并且R=具有2至18个C原子的烷基残基,所述方法的特征在于,在过渡金属催化剂存在的情况下,在含有烷基甲基醚的溶剂或溶剂混合物中利用高反应性金属氢化物MHn *对烯烃进行加氢金属化,其中烷基甲基醚与高反应性金属氢化物MHn *之间的摩尔比为至少0.01:1和至多50:1。
3.根据权利要求1或2所述的方法,其特征在于,所述金属M选自Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba,特别优选Li和Mg。
4.根据权利要求1或2所述的方法,其特征在于,所述烯烃优选为α-烯烃,特别优选选自由乙烯、1-丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-癸烯组成的组。
5.根据权利要求1或2所述的方法,其特征在于,所述烷基甲基醚选自由以下组成的组:二甲基醚、甲基乙基醚、甲基丙基醚、甲基丁基醚、甲基戊基醚、甲基环戊基醚、甲基己基醚,特别优选二甲基醚。
6.根据权利要求1至5中的一项或多项所述的方法,其特征在于,烷基甲基醚与M或MHn之间的摩尔比为至少0.1:1至30:1,优选0.2:1至20:1。
7.根据权利要求1至6中的一项或多项所述的方法,其特征在于,以具有0.01μm至100μm的平均粒度D50的细分散形式使用所述高反应性金属氢化物MHn *
8.根据权利要求1至7中的一项或多项所述的方法,其特征在于,在具有0.01μm至100μm的平均粒度D50的细分散的金属M2*以及氢源存在的情况下原位生产所述反应性金属氢化物MHn*,其中
M2=选自B、Al、Ga、In的PTE的第3主族的元素;
n=1或2,对应于所述金属M的化合价。
9.根据权利要求1至7中的一项或多项所述的方法,其特征在于,在具有通式M1 x[M2(A1 yA2 z)3+x]b的化合物存在的情况下原位生产所述反应性金属氢化物MHn *,其中
M1=选自由Li、Na、K、Rb、Cs组成的组的碱金属;选自由Be、Mg、Ca、Sr、Ba组成的组的碱土金属,或选自由Sc、Y、La、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu组成的组的稀土族的元素;
x=0或1;
M2=选自由B、Al、Ga、In组成的组的PTE的第3主族的元素;
A1=H或含有1-18个C原子的支链或直链烷基基团,其中多达4个A基团可以相同或不同;
A2=烷氧基残基OR,其中R=具有1-8个C原子的烷基,二烷基氨基残基-NR2,其中R=具有1-8个C原子的烷基或来自Cl、Br、I的卤素;
y可取值1、2或3,并且其中y+z=3;
b=M1的化合价;
n=1或2,对应于所述金属M的化合价。
10.根据权利要求8或9所述的方法,其特征在于M2是铝。
11.根据权利要求9所述的方法,其特征在于,所述M1 x[M2(A1 yA2 z)3+x]b选自由络合氢化铝、烷基铝氢化物、烷基铝化合物、氯化铝或金属卤素铝酸盐组成的组。
12.根据权利要求11所述的方法,其特征在于,使用选自由LiAlH4、NaAlH4、Na[H2AlEt2]组成的组的络合氢化铝;氢化铝二异丁基氢化铝或AlH3;选自由Me3Al、Et3Al或Bu3Al组成的组的烷基铝化合物、氯化铝或选自由LiAlCl4或NaAlCl4组成的组的金属卤素铝酸盐。
13.根据权利要求8或9所述的方法,其特征在于,以化学计量的量,或在氢源存在的情况下以至少催化量使用所述化合物M1 x[M2(A1 yA2 z)3+x]b,其中催化剂与M或MHn的摩尔比为至少0.0001:1和至多0.5:1,优选至少0.001:1至0.3:1,特别优选0.005:1至0.2:1。
14.根据权利要求8所述的方法,其特征在于,在-20℃至150℃,优选0℃至100℃,特别优选在25℃与70℃之间原位进行所述金属氢化物MHn *的形成。
15.根据权利要求8所述的方法,其特征在于,优选在1-300巴,特别优选10-100巴的压力范围内,在H2气氛下形成所述MHn *
16.根据权利要求1至15中的一项或多项获得的有机金属组合物,其含有所述碱金属或碱土金属元素的有机金属化合物RMn,其中n=所述金属M的化合价,并且R=具有2至18个C原子的烷基残基,以及相对于RMn含量为至少0.001摩尔%到至多20摩尔%,优选0.001摩尔%到至多5摩尔%,特别优选0.001摩尔%到至多1摩尔%的烷基甲基醚和/或甲醇锂的含量。
17.根据权利要求1至15中的一项或多项获得的有机金属组合物,其含有所述碱金属或碱土金属元素的有机金属化合物RMn,其中n=所述金属M的化合价并且R=具有2至18个C原子的烷基残基,以及相对于RMn含量为至少0.001摩尔%到至多20摩尔%,优选0.001摩尔%到至多5摩尔%,特别优选0.001摩尔%到至多1摩尔%的二甲基醚和/或甲醇锂的含量,以及按重量计高达95%的烃溶剂。
CN201680031695.7A 2015-04-02 2016-03-24 生产金属有机物的方法 Active CN108012541B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102015206046 2015-04-02
DE102015206046.2 2015-04-02
DE102015206897 2015-04-16
DE102015206897.8 2015-04-16
PCT/EP2016/056533 WO2016156193A2 (de) 2015-04-02 2016-03-24 Verfahren zur herstellung von metallorganylen

Publications (2)

Publication Number Publication Date
CN108012541A true CN108012541A (zh) 2018-05-08
CN108012541B CN108012541B (zh) 2021-06-15

Family

ID=55640728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680031695.7A Active CN108012541B (zh) 2015-04-02 2016-03-24 生产金属有机物的方法

Country Status (10)

Country Link
US (2) US10370390B2 (zh)
EP (1) EP3277695B1 (zh)
JP (1) JP6968051B2 (zh)
KR (1) KR20180008441A (zh)
CN (1) CN108012541B (zh)
AU (1) AU2016239911B2 (zh)
CA (1) CA2983362C (zh)
DE (1) DE102016204940A1 (zh)
MA (1) MA41837A (zh)
WO (1) WO2016156193A2 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706809A (en) * 1970-09-17 1972-12-19 Takasago Perfumery Co Ltd Process for preparing highly reactive organo-magnesium compounds
US4329301A (en) * 1979-02-20 1982-05-11 Studiengesellschaft Kohle Mbh Method of preparing di-organo-magnesium compounds
US4354982A (en) * 1979-03-07 1982-10-19 Studiengesellschaft Kohle M.B.H. Production of organolithium compounds and lithium hydride

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998941A (en) * 1974-10-04 1976-12-21 Ethyl Corporation Preparation of alkali metal hydrides
DE2804445A1 (de) 1978-02-02 1979-08-09 Studiengesellschaft Kohle Mbh Verfahren zur herstellung von magnesiumhydriden
US4327071A (en) * 1981-05-07 1982-04-27 Mine Safety Appliances Company Method of preparing potassium hydride
US4792620A (en) * 1983-10-14 1988-12-20 Bp Chemicals Limited Carbonylation catalysts
DE4116382C1 (zh) 1991-05-18 1992-06-11 Th. Goldschmidt Ag, 4300 Essen, De
DE4419456A1 (de) * 1994-06-03 1995-12-07 Goldschmidt Ag Th Verfahren zur Herstellung von Magnesiumhydrid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706809A (en) * 1970-09-17 1972-12-19 Takasago Perfumery Co Ltd Process for preparing highly reactive organo-magnesium compounds
US4329301A (en) * 1979-02-20 1982-05-11 Studiengesellschaft Kohle Mbh Method of preparing di-organo-magnesium compounds
US4354982A (en) * 1979-03-07 1982-10-19 Studiengesellschaft Kohle M.B.H. Production of organolithium compounds and lithium hydride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BORISLAV BOGDANOVIC ET AL.: "Diorganomagnesium Compounds from Magnesium, Hydrogen, and 1-Alkenes and Their Application in Synthesis", 《CHEM. BER.》 *

Also Published As

Publication number Publication date
US20190062347A1 (en) 2019-02-28
EP3277695B1 (de) 2022-06-15
CN108012541B (zh) 2021-06-15
CA2983362A1 (en) 2016-10-06
DE102016204940A1 (de) 2016-10-06
US10640519B2 (en) 2020-05-05
AU2016239911A1 (en) 2017-11-23
WO2016156193A2 (de) 2016-10-06
EP3277695A2 (de) 2018-02-07
AU2016239911B2 (en) 2020-08-20
KR20180008441A (ko) 2018-01-24
CA2983362C (en) 2024-02-27
WO2016156193A3 (de) 2017-01-12
MA41837A (fr) 2018-02-06
JP6968051B2 (ja) 2021-11-17
US10370390B2 (en) 2019-08-06
JP2018514584A (ja) 2018-06-07
US20180162880A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
Jepsen et al. Boron–nitrogen based hydrides and reactive composites for hydrogen storage
Wang et al. Metal BNH hydrogen-storage compound: Development and perspectives
IE48062B1 (en) Process for the production of magnesium hydrides
Cao et al. Reversible hydrogen storage in yttrium aluminum hydride
Brown et al. Hydride oxidation from a titanium–aluminum bimetallic complex: insertion, thermal and electrochemical reactivity
US11292804B2 (en) Highly reactive metal hydrides, process for their preparation and use
CA1244044A (en) Preparation of alkaline earth metal organometallic compounds
Gennari et al. A Systematic approach to the synthesis, thermal stability and hydrogen storage properties of rare-earth borohydrides
CN108012541A (zh) 生产金属有机物的方法
Buchner et al. s-Block chemistry in weakly coordinating solvents
Sandig-Predzymirska et al. The direct and reversible hydrogenation of activated aluminium supported by piperidine
Ashby et al. Existence of HMgX compounds
JP2773985B2 (ja) メチルシクロペンタジエニルマンガントリカルボニル化合物を製造する方法
US8883109B2 (en) High capacity stabilized complex hydrides for hydrogen storage
Wang et al. Hydrogen generation behaviors of LiAlH4 and NH4Cl in Et2O, THF or DME
Bagnall Lability and stability in f-transition metal organocompounds: some applications of unusual ligands and techniques to their synthesis
JP2023537859A (ja) 一置換シクロペンタジエン及び金属シクロペンタジエニル錯体、並びにその合成方法
Strickler et al. Preparation of TiCl 3 coordination complexes
Button The Activation of Carbon Oxides by Low Valent Group IV and Thorium Complexes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant