CN108010843B - 一种利用极化掺杂制备增强型GaN基晶体管的方法 - Google Patents

一种利用极化掺杂制备增强型GaN基晶体管的方法 Download PDF

Info

Publication number
CN108010843B
CN108010843B CN201711137450.5A CN201711137450A CN108010843B CN 108010843 B CN108010843 B CN 108010843B CN 201711137450 A CN201711137450 A CN 201711137450A CN 108010843 B CN108010843 B CN 108010843B
Authority
CN
China
Prior art keywords
layers
layer
type
flow
gan base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711137450.5A
Other languages
English (en)
Other versions
CN108010843A (zh
Inventor
房育涛
叶念慈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Sanan Semiconductor Co Ltd
Original Assignee
Integrated Circuit Co Ltd Is Pacified By Xiamen City Three
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Integrated Circuit Co Ltd Is Pacified By Xiamen City Three filed Critical Integrated Circuit Co Ltd Is Pacified By Xiamen City Three
Priority to CN201711137450.5A priority Critical patent/CN108010843B/zh
Publication of CN108010843A publication Critical patent/CN108010843A/zh
Priority to PCT/CN2018/110708 priority patent/WO2019095924A1/zh
Application granted granted Critical
Publication of CN108010843B publication Critical patent/CN108010843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种通过极化掺杂的方法制备增强型GaN基晶体管的方法。利用AlN和GaN的自发极化强度之间存在较大的差别,可以通过组分渐变的AlxGa1‑xN实现极化掺杂获得P型AlxGa1‑xN层。在GaN基材料外延生长Al组分逐渐减小的P‑型AlxGa1‑xN层,然后在P‑型AlxGa1‑xN层上生长AlxGa1‑xN层,AlxGa1‑xN层为Al组分x从0%‑10%增加到15%‑35%的组分渐变层或x为15%‑35%的组分固定层,再制作与AlxGa1‑xN层形成欧姆接触的源、漏极以及与P‑型AlxGa1‑xN层形成肖特基接触的栅极。通过改变P‑型AlxGa1‑xN的组分厚度可以调节器件开启电压,通过改变AlxGa1‑xN层的厚度和组分可以调节导通电阻,从而获得低导通电阻高开启电压的增强型GaN基晶体管。制作方法简单,无特殊工艺要求,可控性强。

Description

一种利用极化掺杂制备增强型GaN基晶体管的方法
技术领域
本发明涉及半导体材料生长和半导体器件制作,特别是涉及一种利用极化掺杂制备增强型GaN基晶体管的方法。
背景技术
氮化镓基高电子迁移率晶体管(HEMT)是由AlxGa1-xN势垒和GaN沟道层形成的异质结场效应晶体管,由于AlxGa1-xN势垒和GaN沟道层界面有着较大的自发极化和压电极化不连续性,因此在异质结界面存在大量的剩余极化电荷从而在界面形成高浓度的二维电子气。AlxGa1-xN势垒层的组分,厚度以及晶体质量都是影响氮化镓基晶体管的关键外延参数。GaN基HEMT具有二维电子气(2DEG)浓度高,迁移率高,击穿电场强等优点被广泛用于高频和高压微波器件。
由于GaN基HEMT的2DEG来自于极化电荷不连续性,因此在势垒没有掺杂和偏压的情况下,GaN沟道层中仍存在高浓度的二维电子气,所以通常情况下氮化镓基HEMT是常开型器件。在电力电子电路中最常用到的晶体管是常关型晶体管,因此需要制作常关型GaN基晶体管。通常实现常关型GaN基晶体管的方法有两大类:一种是将常开型GaN基晶体管与一个硅基常关晶体管组合封装实现常关晶体管的功能;另一种是直接通过刻蚀势垒,势垒注入负离子或者在势垒上生长P-GaN层耗尽导电沟道的二维电子气,从而直接制作出常关型GaN基晶体管。第一种方法由于在电路中串联了一个硅晶体管限制了氮化镓基晶体管具有的耐高温,开关速度快等优点的发挥。第二种方法直接制作增强型GaN基晶体管可以有效发挥GaN基晶体管的耐高温,导通电阻小,开关频率快等优点,但是其器件制作难度大,开启电压的稳定性和可靠性与器件制作工艺以及外延结构密切相关。
发明内容
本发明的目的在于克服现有技术之不足,提供一种利用包含极化掺杂获得P-型AlxGa1-xN势垒的复合势垒外延结构及增强型GaN基晶体管的制备方法,通过采用极化掺杂渐变组分的P-AlxGa1-xN层和AlxGa1-xN层构成的复合势垒层,不仅可以获得高的导通电阻同时可以获得较大的开启电压。
本发明解决其技术问题所采用的技术方案是:
一种利用极化掺杂制备增强型GaN基晶体管的方法,所述方法包括以下步骤:
(1)于一衬底上依次生长缓冲层和沟道层;
(2)采用MOCVD工艺,首先调节TMAl流量逐渐减小、TMGa流量逐渐增加于沟道层上生长极化掺杂的P-型AlxGa1-xN层,然后改变流量于P-型AlxGa1-xN层上生长AlxGa1-xN层,所述P-型AlxGa1-xN层和AlxGa1-xN层组成复合势垒层;其中所述P-型AlxGa1-xN层的Al组分x由35%-15%渐变到10%-0%,所述AlxGa1-xN层为x从0%-10%增加到15%-35%的组分渐变层或x为15%-35%的组分固定层;
(3)于AlxGa1-xN层表面上形成源极和漏极,所述源极和漏极分别与AlxGa1-xN层形成欧姆接触;
(4)于源极和漏极之间定义一栅极区域,去除栅极区域的AlxGa1-xN层,于裸露的P-型AlxGa1-xN层表面上形成栅极,所述栅极与P-型AlxGa1-xN层形成肖特基接触。
可选的,所述P-型AlxGa1-xN层的生长过程中TMAl流量由250-150sccm降低到120-0sccm,TMGa流量由65-120sccm增加到130-200sccm,NH3流量为9000-12000sccm;所述P-型AlxGa1-xN层的厚度为5-20nm。
可选的,所述P-型AlxGa1-xN层外延生长的表面温度为1050-1100℃。
可选的,所述AlxGa1-xN层为组分渐变层时,其生长过程中TMAl流量由0-120sccm增加到150-250sccm,TMGa流量由130-200sccm降低到65-120sccm,NH3流量为9000-12000sccm;所述AlxGa1-xN层的厚度为5-20nm。
可选的,所述AlxGa1-xN层为组分固定层时,其生长过程中TMAl流量为250-150sccm,TMGa流量为65-120sccm,NH3流量为9000-12000sccm,所述AlxGa1-xN层的厚度为5-20nm。
可选的,所述AlxGa1-xN层外延生长的表面温度为1050-1100℃。
可选的,步骤(3)中,于预设源极区域和漏极区域分别沉积金属,于850-950℃下退火25-50秒形成欧姆接触,形成所述源极和漏极。
可选的,步骤(4)中,于裸露的P-型AlxGa1-xN层表面沉积金属,于600-800℃下退火20-60min形成肖特基接触,形成所述栅极。
由上述方法制备的增强型GaN基晶体管由下至上包括衬底、缓冲层、沟道层及复合势垒层,复合势垒层上设置有源极、漏极及栅极,且栅极位于源极和漏极之间;所述复合势垒层包括设于沟道层上的P-型AlxGa1-xN层和设于P-型AlxGa1-xN层上的AlxGa1-xN层,其中P-型AlxGa1-xN层的x由35%-15%渐变到10%-0%,AlxGa1-xN层为Al组分x为15%-35%的组分固定层或者Al组分x由0%-10%增加到15%-35%的组分渐变层;所述源极和漏极与AlxGa1-xN层形成欧姆接触,所述栅极与P-型AlxGa1-xN层形成肖特基接触。
本发明的有益效果是:
1.本发明通过控制势垒层的生长条件,利用AlxGa1-xN极化强度与Al组分的关系在沟道层上方通过极化掺杂方法形成P-型AlxGa1-xN层,然后在P-型AlxGa1-xN层上生长单层AlxGa1-xN形成复合势垒结构。通过P-型AlxGa1-xN的组分厚度可以调节器件开启电压,通过单层AlxGa1-xN的厚度和组分可以调节导通电阻,从而获得制备低导通电阻高开启电压的增强型GaN基晶体管外延材料。
2.在器件制作过程中通过结合极化掺杂P-型势垒和刻蚀势垒两种耗尽沟道2DEG的方法可以获得稳定的器件开启电压。当AlxGa1-xN的Al组分逐渐减小时自发极化强度也逐渐减小,因此在Al组分逐渐减小的渐变层中会存在剩余的极化负电荷从而形成极化P型AlxGa1-xN层。当栅极区域的单层AlxGa1-xN被刻蚀掉后,仅剩下P型AlxGa1-xN层时沟道中有2DEG(二维电子气)也会被耗尽,从而实现增强型GaN基HEMT器件。3.制作方法简单,无特殊工艺要求,可控性强,可以有效控制器件的开启电压和导通电阻和改善器件高压特性,适合实际生产应用。
附图说明
图1为本发明之截面结构示意图;
图2为本发明之俯视结构示意图;
图3为本发明实施例1的AlxGa1-xN层为固定组分的复合势垒层的示意图;
图4为本发明实施例2的AlxGa1-xN层为渐变组分的复合势垒层的示意图。
具体实施方式
下文中将结合附图对本发明的实施例进行详细说明。本发明的所有附图仅为示意以便更容易理解本发明,其具体比例可依照设计需求进行调整。本文中描述的器件制作过程中的元件的尺寸和个数仅为示例,实际可以根据设计需要对其进行调整。
参考图1和图2,一种增强型GaN基晶体管由下至上包括衬底1、缓冲层2、沟道层3及复合势垒层,复合势垒层上设置有源极6、漏极7及栅极8,且栅极8位于源极6和漏极7之间;所述复合势垒层包括设于沟道层3上的P-型AlxGa1-xN层4和设于P-型AlxGa1-xN层4上的AlxGa1-xN层5,其制备方法包括如下步骤:
1)GaN沟道层及缓冲层生长:利用金属有机化学气相沉积设备(MOCVD)在所选用的异质外延衬底1(蓝宝石,SiC,Si)上生长缓冲层2(成核层和过渡层),在缓冲层2上高温(表面温度1040℃)生长200nm GaN沟道层3;
2)在1)上面继续外延生长复合势垒层,为了获得P-型AlxGa1-xN层4,这一层生长过程中TMAl(三甲基铝)流量从250-150sccm到120-0sccm逐渐减小,TMGa(三甲基镓)流量从65-120sccm到130-200sccm逐渐增加同时NH3的流量为9000-12000sccm,外延生长的表面温度1050-1100℃;在上述MO流量,V/III比和表面温度的生长条件下势垒生长速度为0.5μm/h-1μm/h左右,P-型AlxGa1-xN的Al组分(即x)从35%-15%左右逐渐降低到10%-0%,厚度为5-20nm。由于极化效应组分逐渐减低的AlxGa1-xN形成P-型AlxGa1-xN层4。
3)在P-型AlxGa1-xN层4上面生长AlxGa1-xN层5。这一层可以是Al组分逐渐增加的组分渐变层,具体生长条件为:生长过程中TMAl流量从0-120sccm到150-250sccm逐渐增加,TMGa流量从200-130sccm到120-65sccm逐渐减小同时NH3的流量为9000-12000sccm,外延生长的表面温度1050-1100℃;在上述MO流量,V/III比和表面温度的生长条件下势垒生长速度为0.5μm/h-1μm/h左右,AlxGa1-xN层5的Al组分从0%-10%左右逐渐增加到15%-35%,厚度为5-20nm。这一层也可以是固定Al组分的组分固定层,具体生长条件为:生长过程中TMAl流量为150-250sccm,TMGa流量为65-120sccm,同时NH3的流量为9000-12000sccm,外延生长的表面温度1050-1100℃;在上述MO流量,V/III比和表面温度的生长条件下势垒生长速度为0.5-1μm/h左右,AlxGa1-xN层的Al组分为15%-35%左右,厚度为5-20nm。
4)制备源漏电极:通过光刻方法(电子束曝光(EBL)、紫外曝光(UVL))在AlxGa1-xN层5表面制备源漏电极需要的光刻胶图形,在覆盖光刻胶外延片表蒸镀源漏电极金属(Ti/Al/Ni/Au,厚度20nm/150nm/70nm/100nm),在剥离液中剥离金属得到源漏电极,利用快速退火炉将源漏电极退火(退火温度850-950℃,退火时间25-50s,退火是气氛是氮气(氮气流量6L/min));如图1和2所示,源电极6,漏电极7;
5)利用ICP的方法刻蚀栅极区域的AlxGa1-xN层5漏出P-型AlxGa1-xN层4表面;具体刻蚀条件为:功率300W/15W,压力5-20mtorr,Cl2(10sccm-30sccm),Ar(5sccm-20sccm),刻蚀速率5-20nm/min左右,通过控制刻蚀时间刻蚀掉表面的AlxGa1-xN单层;
6)制备栅金属:通过光刻方法(电子束曝光(EBL)、紫外曝光(UVL))在P-型AlxGa1- xN层4表面制备栅电极需要的光刻胶图形,用磁控溅射设备在覆盖光刻胶外延片表蒸镀栅电极(TiN,厚度150-200nm),在剥离液中剥离金属得到栅电极,利用退火炉将栅电极退火(退火温度600-800℃,退火时间20-60min,退火气氛是氮气(氮气流量20L/min));如图1和2所示,栅电极8;
下面以具体应用示例对本发明的实施以实例方式作进一步描述:
实施例1
(1)利用MOCVD在1mm的6寸硅衬底上生长沟道层和缓冲层。缓冲层包括200nm的高温(表面温度1100℃)AlN成核层,1.5μm的组分递变的AlGaN过渡层(Al0.75Ga0.25N-200nm,Al0.55Ga0.45N-400nm,Al0.25Ga0.75N-900nm,表面温度1060℃)和接着生长2.0μm的GaN高阻层(表面温度980℃)。沟道层为200nm的高温(表面温度为1060℃)GaN层;
(2)利用MOCVD继续在(1)的GaN沟道层表面外延生长极化掺杂的P-型AlxGa1-xN层。生长条件为MO流量其中TMGa从90线形增加到150sccm,TMAl从200sccm线形减小到100sccm,同时NH3的流量为9000sccm(Al组分从20%渐变到6%);生长时间50s厚度为10nm左右;然后生长AlxGa1-xN层,具体生长条件为TMGa流量60sccm,TMAl流量120sccm,同时NH3流量9000sccm(Al组分约为25%),生长时间90s厚度15nm左右,得到的复合势垒层结构参考图3;
(3)通过紫外光刻方法在AlxGa1-xN层的表面指标源极和漏极所需要光刻胶图形(源漏电极边缘间距25μm,电极长度20μm,电极宽度100μm),利用电子束蒸发设备在光刻胶表面蒸镀Ti/Al/Ni/Au(20nm/150nm/70nm/100nm);在剥离液中剥离金属得到源漏电极,利用快速退火炉将源漏电极在900℃条件下退火50s(氮气流量6L/min))使源漏电极和势垒形成欧姆接触;
(4)通过ICP刻蚀栅极区域的AlxGa1-xN单层,刻蚀条件为:功率300W/15W,压力5mtorr,Cl2(12sccm),Ar(5sccm),刻蚀速率6nm/min左右,刻蚀时间3min10s;刻蚀掉表面的20nm的AlxGa1-xN层漏出极化掺杂的P-型AlxGa1-xN层;
(5)通过紫外曝光方法在势垒层表面源漏电极间制备栅电极需要的光刻胶图形(栅长2μm,距离源极距离3μm,距离漏极距离15μm,栅宽100μm),用磁控溅射设备在覆盖光刻胶外延片表蒸镀栅电极(TiN,厚度180nm),在剥离液中剥离金属得到栅电极,利用管式退火炉在650℃氮气气氛下将栅电极退火40min,使栅电极和P-型AlxGa1-xN层形成肖特基接触。
实施例2
实施例2与实施例1的差别在于:步骤(2)中,AlxGa1-xN层的生长条件为:TMAl流量从100sccm到200sccm逐渐增加,TMGa流量从150sccm到90sccm逐渐减小同时NH3的流量为9000sccm,外延生长的表面温度1070℃;在上述MO流量,V/III比和表面温度的生长条件下势垒生长速度为0.6μm/h左右,AlxGa1-xN势垒层的Al组分从6%左右逐渐增加到20%,厚度为10nm左右。得到的复合势垒层结构参考图4。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种利用极化掺杂制备增强型GaN基高电子迁移率晶体管HEMT的方法,其特征在于包括以下步骤:
(1)于一衬底上依次生长缓冲层和沟道层;
(2)采用MOCVD工艺,首先调节TMAl流量逐渐减小、TMGa流量逐渐增加于沟道层上生长极化掺杂的P-型AlxGa1-xN层,然后改变流量于P-型AlxGa1-xN层上生长AlxGa1-xN层,所述P-型AlxGa1-xN层和AlxGa1-xN层组成复合势垒层;其中所述P-型AlxGa1-xN层的Al组分x由35%-15%渐变到10%-0%,所述AlxGa1-xN层为x从0%-10%增加到15%-35%的组分渐变层或x为15%-35%的组分固定层;
(3)于AlxGa1-xN层表面上形成源极和漏极,所述源极和漏极分别与AlxGa1-xN层形成欧姆接触;
(4)于源极和漏极之间定义一栅极区域,去除栅极区域的AlxGa1-xN层,于裸露的P-型AlxGa1-xN层表面上形成栅极,所述栅极与P-型AlxGa1-xN层形成肖特基接触。
2.根据权利要求1所述的利用极化掺杂制备增强型GaN基高电子迁移率晶体管HEMT的方法,其特征在于:所述P-型AlxGa1-xN层的生长过程中TMAl流量由250-150sccm降低到120-0sccm,TMGa流量由65-120sccm增加到130-200sccm,NH3流量为9000-12000sccm;所述P-型AlxGa1-xN层的厚度为5-20nm。
3.根据权利要求1或2所述的利用极化掺杂制备增强型GaN基高电子迁移率晶体管HEMT的方法,其特征在于:所述P-型AlxGa1-xN层外延生长的表面温度为1050-1100℃。
4.根据权利要求1所述的利用极化掺杂制备增强型GaN基高电子迁移率晶体管HEMT的方法,其特征在于:所述AlxGa1-xN层为组分渐变层时,其生长过程中TMAl流量由0-120sccm增加到150-250sccm,TMGa流量由130-200sccm降低到65-120sccm,NH3流量为9000-12000sccm;所述AlxGa1-xN层的厚度为5-20nm。
5.根据权利要求1所述的利用极化掺杂制备增强型GaN基高电子迁移率晶体管HEMT的方法,其特征在于:所述AlxGa1-xN层为组分固定层时,其生长过程中TMAl流量为250-150sccm,TMGa流量为65-120sccm,NH3流量为9000-12000sccm,所述AlxGa1-xN层的厚度为5-20nm。
6.根据权利要求1、4或5所述的利用极化掺杂制备增强型GaN基高电子迁移率晶体管HEMT的方法,其特征在于:所述AlxGa1-xN层外延生长的表面温度为1050-1100℃。
7.根据权利要求1所述的利用极化掺杂制备增强型GaN基高电子迁移率晶体管HEMT的方法,其特征在于:步骤(3)中,于预设源极区域和漏极区域分别沉积金属,于850-950℃下退火25-50秒形成欧姆接触,形成所述源极和漏极。
8.根据权利要求1所述的利用极化掺杂制备增强型GaN基高电子迁移率晶体管HEMT的方法,其特征在于:步骤(4)中,于裸露的P-型AlxGa1-xN层表面沉积金属,于600-800℃下退火20-60min形成肖特基接触,形成所述栅极。
9.一种由权利要求1-8任一项所述方法制备的增强型GaN基高电子迁移率晶体管HEMT,其特征在于:所述晶体管由下至上包括衬底、缓冲层、沟道层及复合势垒层,复合势垒层上设置有源极、漏极及栅极,且栅极位于源极和漏极之间;所述复合势垒层包括设于沟道层上的P-型AlxGa1-xN层和设于P-型AlxGa1-xN层上的AlxGa1-xN层,其中P-型AlxGa1-xN层的x由35%-15%渐变到10%-0%,AlxGa1-xN层为Al组分x为15%-35%的组分固定层或者Al组分x由0%-10%增加到15%-35%的组分渐变层;所述源极和漏极与AlxGa1-xN层形成欧姆接触,所述栅极与P-型AlxGa1-xN层形成肖特基接触。
CN201711137450.5A 2017-11-16 2017-11-16 一种利用极化掺杂制备增强型GaN基晶体管的方法 Active CN108010843B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711137450.5A CN108010843B (zh) 2017-11-16 2017-11-16 一种利用极化掺杂制备增强型GaN基晶体管的方法
PCT/CN2018/110708 WO2019095924A1 (zh) 2017-11-16 2018-10-17 一种利用极化掺杂制备增强型GaN基晶体管的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711137450.5A CN108010843B (zh) 2017-11-16 2017-11-16 一种利用极化掺杂制备增强型GaN基晶体管的方法

Publications (2)

Publication Number Publication Date
CN108010843A CN108010843A (zh) 2018-05-08
CN108010843B true CN108010843B (zh) 2019-08-09

Family

ID=62052525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711137450.5A Active CN108010843B (zh) 2017-11-16 2017-11-16 一种利用极化掺杂制备增强型GaN基晶体管的方法

Country Status (2)

Country Link
CN (1) CN108010843B (zh)
WO (1) WO2019095924A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108010843B (zh) * 2017-11-16 2019-08-09 厦门市三安集成电路有限公司 一种利用极化掺杂制备增强型GaN基晶体管的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101312207A (zh) * 2007-05-21 2008-11-26 张乃千 一种增强型氮化镓hemt器件结构
CN104900689A (zh) * 2015-06-08 2015-09-09 中国科学院半导体研究所 降低基区电阻率的GaN基HBT外延结构及生长方法
CN105762183A (zh) * 2016-05-17 2016-07-13 中国电子科技集团公司第十三研究所 具有场板的AlGaN/GaN极化掺杂场效应晶体管及制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362389B2 (en) * 2013-08-27 2016-06-07 University Of Notre Dame Du Lac Polarization induced doped transistor
CN108010843B (zh) * 2017-11-16 2019-08-09 厦门市三安集成电路有限公司 一种利用极化掺杂制备增强型GaN基晶体管的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101312207A (zh) * 2007-05-21 2008-11-26 张乃千 一种增强型氮化镓hemt器件结构
CN104900689A (zh) * 2015-06-08 2015-09-09 中国科学院半导体研究所 降低基区电阻率的GaN基HBT外延结构及生长方法
CN105762183A (zh) * 2016-05-17 2016-07-13 中国电子科技集团公司第十三研究所 具有场板的AlGaN/GaN极化掺杂场效应晶体管及制造方法

Also Published As

Publication number Publication date
WO2019095924A1 (zh) 2019-05-23
CN108010843A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
EP1817798B1 (en) Cap layers and/or passivation layers for nitride-based transistors, transistor structures and methods of fabricating same
US7709859B2 (en) Cap layers including aluminum nitride for nitride-based transistors
TWI433240B (zh) 具有自我對準耐高溫接點之半導體元件及其製造方法
TWI310611B (en) Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
US7045404B2 (en) Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
KR101108344B1 (ko) 캡층 및 리세스된 게이트를 가지는 질화물계트랜지스터들의 제조방법들
CN102651385B (zh) 化合物半导体器件及其制造方法
KR101008272B1 (ko) 노멀 오프 특성을 갖는 질화물계 고전자 이동도 트랜지스터및 그 제조방법
CN103548127A (zh) 半导体装置及其制造方法
JP2014022752A (ja) 窒化物系半導体素子及びその製造方法
JP2009049121A (ja) ヘテロ接合型電界効果トランジスタ及びその製造方法
CN108010843B (zh) 一种利用极化掺杂制备增强型GaN基晶体管的方法
WO2015009249A9 (en) Enhancement-mode iii-n transistor with n-polarity and method of fabricating the same
CN105679679A (zh) 一种新型GaN基凹槽栅MISFET的制备方法
CN109599437A (zh) 基于InGaN双沟道异质结构的高电子迁移率晶体管及其制备方法
CN107978628B (zh) 一种覆盖纳米柱势垒的GaN晶体管及其制备方法
KR20190112523A (ko) 이종접합 전계효과 트랜지스터 및 그 제조 방법
KR101291148B1 (ko) N-극성의 질화물계 반도체 소자 및 그의 제조 방법
KR101303592B1 (ko) 질화물계 반도체 소자의 제조 방법
CN116137286A (zh) 一种增强型GaN HEMT器件及其制备方法
CN205621740U (zh) 一种新型GaN基凹槽栅MISFET器件
KR20130137983A (ko) 질화물 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230331

Address after: 410000 No. 399, Changxing Road, high tech Development Zone, Changsha, Hunan Province

Patentee after: Hunan San'an Semiconductor Co.,Ltd.

Address before: No.753-799 Min'an Avenue, Hongtang Town, Tong'an District, Xiamen City, Fujian Province, 361000

Patentee before: XIAMEN SANAN INTEGRATED CIRCUIT Co.,Ltd.

TR01 Transfer of patent right