CN108003615B - 一种高导热聚酰亚胺复合材料及其制备方法 - Google Patents

一种高导热聚酰亚胺复合材料及其制备方法 Download PDF

Info

Publication number
CN108003615B
CN108003615B CN201711201436.7A CN201711201436A CN108003615B CN 108003615 B CN108003615 B CN 108003615B CN 201711201436 A CN201711201436 A CN 201711201436A CN 108003615 B CN108003615 B CN 108003615B
Authority
CN
China
Prior art keywords
composite material
coupling agent
carbon fiber
polyimide
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711201436.7A
Other languages
English (en)
Other versions
CN108003615A (zh
Inventor
熊平
王洋
黄活阳
周利庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Science and Industry Changsha New Materials Research Institute Co Ltd
Original Assignee
Changsha New Material Industry Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha New Material Industry Research Institute Co Ltd filed Critical Changsha New Material Industry Research Institute Co Ltd
Priority to CN201711201436.7A priority Critical patent/CN108003615B/zh
Publication of CN108003615A publication Critical patent/CN108003615A/zh
Application granted granted Critical
Publication of CN108003615B publication Critical patent/CN108003615B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开了一种高导热聚酰亚胺复合材料及其制备方法,按重量百分含量,该复合材料的原料包括以下组分:聚酰亚胺树脂:50‑85%;改性碳纤维:5‑30%;碳纳米管:3‑10%;石墨烯:3‑10%;所述碳纳米管为镀铜碳纳米管;所述改性碳纤维为经偶联剂改性的碳纤维。利用本发明制备的高导热聚酰亚胺复合材料,在充分保持聚酰亚胺力学性能的同时,导热性能显著提高。采用本发明制备的高导热聚酰亚胺复合材料与未经处理的填料制备的高导热聚酰亚胺复合材料相比,其导热性率提高40%‑60%。

Description

一种高导热聚酰亚胺复合材料及其制备方法
技术领域
本发明涉及一种高导热聚酰亚胺复合材料及其制备方法,属于聚酰亚胺复合材料领域。
背景技术
聚酰亚胺是主链上含有亚胺环的一类高分子材料。由于主链上含有稳定的芳杂环结构,使其体现出其他高分子材料所无法比拟的优异性能。它作为先进的复合材料基体,具有突出的耐温性能和优异的机械性能,是目前树脂基复合材料中耐温性最高的材料之一。
由于聚酰亚胺优异的阻燃性、耐温性,其广泛应用于航空航天、医疗、电子等领域。但是,聚酰亚胺的热导率仅有0.2W/m K,不能很好的适用于对散热需求高的领域,限制了聚酰亚胺的应用。本发明通过共混改性技术制备高导热聚酰亚胺复合材料,显著提高了聚酰亚胺的热导率,解决了聚酰亚胺导热性差的问题。
发明内容
本发明解决的技术问题是,聚酰亚胺树脂的热导率低,制成聚酰亚胺复合材料后,导热性差。
本发明的技术方案是,提供一种高导热聚酰亚胺复合材料,按重量百分含量,该复合材料的原料包括以下组分:
聚酰亚胺树脂:50-85%;改性碳纤维:5-30%;碳纳米管:3-10%;石墨烯:3-10%;所述碳纳米管为镀铜碳纳米管;所述改性碳纤维为经偶联剂改性的碳纤维。
优选地,按重量百分含量,该复合材料的原料主要由以下组分组成:50-85%;改性碳纤维:5-30%;碳纳米管:3-10%;石墨烯:3-10%。
优选地,所述镀铜碳纳米管的制备方法为:在SnCl2溶液中对碳纳米管表面进行敏化处理,然后在PdCl2溶液中进行活化处理,最后在铜镀液中进行镀铜处理,将镀铜后的碳纳米管进行清洗、烘干,得到镀铜碳纳米管。
优选地,所述聚酰亚胺树脂为热塑性聚酰亚胺树脂,优选熔体流动速率≥3.0g/10min(360℃,2.16kg)的聚酰亚胺树脂。
优选地,所述改性碳纤维为毫米级碳纤维;所述改性碳纤维的长度为3-6mm。
优选地,所述改性碳纤维的制备方法为:将偶联剂稀释,加入碳纤维,超声振荡10-30分钟,抽滤、烘干,得到改性碳纤维。
优选地,所述偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、磷酸酯偶联剂或硼酸酯偶联剂中的一种或几种复配。
优选地,所述偶联剂为硅烷偶联剂KH-550。
优选地,所述碳纳米管的纯度≥96%,管径:8-100纳米,长度:10-50微米。
优选地,所述石墨烯片径为0.1-10微米。
一种高导热聚酰亚胺复合材料的制备方法,复合材料的原料配方加入搅拌机中搅拌,得到预混料;将预混料置于双螺杆挤出机中经熔融挤出造粒,其挤出工艺参数为:一区温度340-350℃、二区温度350-360℃、三区温度355-365℃、四区温度360-370℃、五区温度355-365℃、六区温度350-360℃;机头温度355-365℃;主机转速:80-150r/min;喂料频率:1-3Hz。
本发明与现有技术相比,具有以下有益效果:
1、对碳纳米管表面进行镀铜处理,导热材料在聚酰亚胺基体中更容易形成导热桥路,提高聚酰亚胺复合材料的导热性能。
2、石墨烯作为碳纤维和碳纳米管之间的锚固点添加在聚酰亚胺中,提高聚酰亚胺复合材料的热导率。
3、利用本发明制备的高导热聚酰亚胺复合材料,在充分保持聚酰亚胺力学性能的同时,导热性能显著提高。采用本发明制备的高导热聚酰亚胺复合材料与未经处理的填料制备的高导热聚酰亚胺复合材料相比,其导热性率提高40%-60%。
具体实施方式
实施例1
一种高导热聚酰亚胺复合材料,其组分如下:聚酰亚胺树脂:50份,表面处理后的碳纤维:30份,镀铜碳纳米管:10份,石墨烯:10份。
碳纤维表面偶联处理:将硅烷KH-550偶联剂稀释至20%的浓度,加入碳纤维,超声振荡15分钟,抽滤、烘干。
碳纳米管镀铜处理:在SnCl2溶液中对碳纳米管表面进行敏化处理30分钟,然后在PdCl2溶液中进行活化处理30分钟,最后在市售的化学铜镀液中进行镀铜处理。对镀铜后的碳纳米管进行清洗、烘干。
聚酰亚胺树脂的预处理:在150℃真空烘箱中干燥4小时。
将聚酰亚胺、石墨烯和处理好的碳纤维、碳纳米管按比例加入高速搅拌机中,搅拌3分钟。将混合后的预混料置于双螺杆中经熔融挤出造粒,其挤出工艺参数为:一区温度340~350℃、二区温度350~360℃、三区温度355~365℃、四区温度360~370℃、五区温度355~365℃;六区温度350~360℃;机头温度355~365℃;主机转速:80-150r/min;喂料频率:1-3Hz。经过冷却、切粒、干燥,即可得到高导热聚酰亚胺复合材料。
实施例2
一种高导热聚酰亚胺复合材料,制备方法与实施例1相同,各组分含量不同。其组分如下:聚酰亚胺树脂:85份,表面处理后的碳纤维:9份,镀铜碳纳米管:3份,石墨烯:3份。
实施例3
一种高导热聚酰亚胺复合材料,制备方法与实施例1相同,各组分含量不同。其组分如下:聚酰亚胺树脂:80份,表面处理后的碳纤维:5份,镀铜碳纳米管:10份,石墨烯:5份。
实施例4
一种高导热聚酰亚胺复合材料,制备方法与实施例1相同,各组分含量不同。其组分如下:聚酰亚胺树脂:70份,表面处理后的碳纤维:17份,镀铜碳纳米管:5份,石墨烯:8份。
对比例1
一种高导热聚酰亚胺复合材料,制备方法与实施例1相同。其组分如下:聚酰亚胺树脂:85份,表面处理碳纤维:5份,镀铜碳纳米管:10份。
对比例2
一种高导热聚酰亚胺复合材料,制备方法与实施例1相同。其组分如下:聚酰亚胺树脂:80份,未表面处理碳纤维:5份,碳纳米管:10份。石墨烯:5份。
对比例3
一种高导热聚酰亚胺复合材料,制备方法与实施例1相同。其组分如下:聚酰亚胺树脂:75份,表面处理碳纤维:23份,镀铜碳纳米管:1份。石墨烯:1份。
测试实施例1-4及对比例1-2的拉伸强度、弯曲强度、熔体流动速率、表面电阻率、磨损量。其中拉伸强度依照GB/T1040.2-2006测试;弯曲强度依照GB/T9341-2008测试;冲击强度依照GB/T1043.1-2008测试;导热系数依照GB/T22588-2008测试;电导率依照GB/T11007-2008测试。
Figure GDA0002174110420000041
从上表可以看出,实施例1~3在采用表面处理后的碳纤维与碳纳米管,以石墨烯作为两从上表可以看出,实施例1~3在采用表面处理后的碳纤维与碳纳米管,以石墨烯作为两者的锚固剂,聚酰亚胺复合材料的导热性能明显提高。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

1.一种高导热聚酰亚胺复合材料,其特征在于,按重量百分含量,该复合材料的原料包括以下组分:
聚酰亚胺树脂:50-85%;
改性碳纤维:5-30%;
碳纳米管:3-10%;
石墨烯:3-10%;
所述碳纳米管为镀铜碳纳米管;
所述改性碳纤维为经偶联剂改性的碳纤维;
所述镀铜碳纳米管的制备方法为:在SnCl2溶液中对碳纳米管表面进行敏化处理,然后在PdCl2溶液中进行活化处理,最后在铜镀液中进行镀铜处理,将镀铜后的碳纳米管进行清洗、烘干,得到镀铜碳纳米管。
2.如权利要求1所述的复合材料,其特征在于,所述聚酰亚胺树脂为熔体流动速率≥3.0g/10min的热塑性聚酰亚胺树脂。
3.如权利要求1所述的复合材料,其特征在于,所述改性碳纤维的长度为3-6mm。
4.如权利要求1所述的复合材料,其特征在于,所述改性碳纤维的制备方法为:将偶联剂稀释,加入碳纤维,超声振荡10-30分钟,抽滤、烘干,得到改性碳纤维。
5.如权利要求1所述的复合材料,其特征在于,所述偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、磷酸酯偶联剂或硼酸酯偶联剂中的一种或几种复配。
6.如权利要求1所述的复合材料,其特征在于,所述偶联剂为硅烷偶联剂KH-550。
7.如权利要求1所述的复合材料,其特征在于,所述碳纳米管的纯度≥96%,管径:8-100纳米,长度:10-50微米。
8.如权利要求1所述的复合材料,其特征在于,所述石墨烯片径为0.1-10微米。
9.一种高导热聚酰亚胺复合材料的制备方法,其特征在于,按权利要求1-8任一项所述的复合材料中的原料配方加入搅拌机中搅拌,得到预混料;将预混料置于双螺杆挤出机中经熔融挤出造粒,其挤出工艺参数为:一区温度340-350℃、二区温度350-360℃、三区温度355-365℃、四区温度360-370℃、五区温度355-365℃、六区温度350-360℃;机头温度355-365℃;主机转速:80-150 r/min;喂料频率:1-3Hz。
CN201711201436.7A 2017-11-27 2017-11-27 一种高导热聚酰亚胺复合材料及其制备方法 Active CN108003615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711201436.7A CN108003615B (zh) 2017-11-27 2017-11-27 一种高导热聚酰亚胺复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711201436.7A CN108003615B (zh) 2017-11-27 2017-11-27 一种高导热聚酰亚胺复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108003615A CN108003615A (zh) 2018-05-08
CN108003615B true CN108003615B (zh) 2020-02-18

Family

ID=62054003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711201436.7A Active CN108003615B (zh) 2017-11-27 2017-11-27 一种高导热聚酰亚胺复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108003615B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734724B (zh) * 2018-10-19 2021-12-21 嘉兴学院 一种环氧树脂导热胶的制备方法
CN109880090A (zh) * 2019-02-18 2019-06-14 华研(佛山)纳米材料有限公司 一种含石墨烯以及碳纳米管的聚酰亚胺导热材料、导热膜及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528038B (zh) * 2011-12-31 2013-09-11 浙江工业大学 一种铜/碳纳米管复合超疏水材料的制备方法
CN102952963B (zh) * 2012-11-07 2014-12-10 中国路桥工程有限责任公司 一种碳纳米管增强碳铝铜复合材料滑板的制备方法
US9598558B2 (en) * 2013-12-27 2017-03-21 Carbodeon Ltd Oy Nanodiamond containing composite and a method for producing the same

Also Published As

Publication number Publication date
CN108003615A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
Khan et al. Review on nitride compounds and its polymer composites: a multifunctional material
CN106675008B (zh) 高导热尼龙6复合材料及其制备方法
CN108003615B (zh) 一种高导热聚酰亚胺复合材料及其制备方法
CN102719092B (zh) 一种复合增强尼龙组合物及其制备方法
CN112322039B (zh) 一种高导热的增强聚苯硫醚复合材料及其制备方法
CN108203543B (zh) 石墨烯增强聚酰亚胺纳米复合材料及其制备方法与应用
JP2008208316A (ja) 炭素繊維複合材料
JP2009191392A (ja) ピッチ系炭素繊維フィラー及びそれを用いた成形体
CN108929536A (zh) 一种导热电子设备用石墨烯/聚酰胺复合材料及制备方法
JPH10195311A (ja) 熱可塑性樹脂成形品、および成形品用材料、成形品の製造方法
Lin et al. Controllable mechanical and conductive performance of polyphenylene sulfide composite with quasi 2D ordered long carbon fiber forests
JP2009108424A (ja) 熱伝導性フィラー及びそれを用いた成形体
JP2010065123A (ja) 熱伝導性成形体
CN106987118A (zh) 连续碳纳米管纤维增强pa6热塑性复合材料及其制备方法
Zhao et al. Dielectric polyimide composites with enhanced thermal conductivity and excellent electrical insulation properties by constructing 3D oriented heat transfer network
Quan et al. Construction of cellulose nanofiber/carbon nanotube synergistic network on carbon fiber surface to enhance mechanical properties and thermal conductivity of composites
JP2009108425A (ja) 炭素繊維およびそれを用いた複合材料
WO2010024462A1 (ja) ピッチ系黒鉛化短繊維及びそれを用いた成形体
CN102408717A (zh) 一种led的聚苯硫醚复合导热材料的制造方法
KR101877729B1 (ko) 전자파 차폐섬유 제조용 수지조성물 및 이를 이용한 융복합 섬유
CN108117746A (zh) 基于纳米颗粒填料的耐油抗拉尼龙复合材料
JP2009108423A (ja) 熱伝導性フィラー及びそれを用いた成形体
CN101525485A (zh) 一种聚酰胺-四针状ZnOw晶须复合材料及其制备方法
CN110655787B (zh) 导电聚苯醚/聚酰胺66组合物及其制备方法
Singh et al. Electromagnetic interference shielding and ohmic heating of layered structures of activated carbon fabric and metalized fabric

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180508

Assignee: AEROSPACE SCIENCE AND INDUSTRY WUHAN MAGNETISM ELECTRON Co.,Ltd.

Assignor: CHANGSHA ADVANCED MATERIALS INDUSTRIAL RESEARCH INSTITUTE Co.,Ltd.

Contract record no.: X2021980015077

Denomination of invention: The invention relates to a high thermal conductivity polyimide composite and a preparation method thereof

Granted publication date: 20200218

License type: Common License

Record date: 20211222

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 7th Floor, Building B8, Lugu Enterprise Plaza, Yuelu District, Changsha City, Hunan Province, 410000

Patentee after: Aerospace Science and Industry (Changsha) New Materials Research Institute Co.,Ltd.

Address before: 410205 7th floor, building B8, Lugu Enterprise Square, Yuelu District, Changsha City, Hunan Province

Patentee before: CHANGSHA ADVANCED MATERIALS INDUSTRIAL RESEARCH INSTITUTE Co.,Ltd.